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Summary

Network meta-analysis synthesizes several studies of multiple treatment comparisons to

simultaneously provide inference for all treatments in the network. It can often strengthen

inference on pairwise comparisons by borrowing evidence from other comparisons in the network.

Current network meta-analysis approaches are derived from either conventional pairwise meta-

analysis or hierarchical Bayesian methods. This paper introduces a new approach for network

meta-analysis by combining confidence distributions (CDs). Instead of combining point estimators

from individual studies in the conventional approach, the new approach combines CDs which

contain richer information than point estimators and thus achieves greater efficiency in its

inference. The proposed CD approach can e ciently integrate all studies in the network and

provide inference for all treatments even when individual studies contain only comparisons of

subsets of the treatments. Through numerical studies with real and simulated data sets, the

proposed approach is shown to outperform or at least equal the traditional pairwise meta-analysis

and a commonly used Bayesian hierarchical model. Although the Bayesian approach may yield

comparable results with a suitably chosen prior, it is highly sensitive to the choice of priors

(especially the prior of the between-trial covariance structure), which is often subjective. The CD

approach is a general frequentist approach and is prior-free. Moreover, it can always provide a

proper inference for all the treatment effects regardless of the between-trial covariance structure.
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Introduction

Recent advances in computing and data storage technology have greatly facilitated data

gathering from many disparate sources. The demand for efficient methodologies for

combining information from independent studies or disparate sources has never been

greater. So far, meta-analysis is one of the most, if not the most, commonly used approaches

for synthesizing findings from different sources for pairwise comparisons. For example, it is

used in medical research for summarizing estimates from a set of randomized controlled

trials (RCTs) of the relative efficacy of two treatments (cf. Normand, 1999; Sutton and

Higgins, 2008). For more complicated comparative effectiveness research, where the

comparisons involve a network of more than two treatments, several generalizations have

been developed for combining information from various sources. A useful survey can be

found in the report of the ISPOR Task Force on Indirect Treatment Comparisons Good

Research Practices (Jansen et al., 2011; Hoaglin et al., 2011) and the references therein. A

key advantage of network meta-analysis is that it can perform indirect comparisons among

multiple treatments.

We describe network meta-analysis in a general setting with a working example. In the

general setting, the process begins with a systematic research for RCTs that compare

treatments for a particular condition. The trials that satisfy a set of eligibility criteria yield a

network of evidence, in which each node represents a treatment and each edge represents a

direct comparison in one or more trials. We assume that the network is connected, and

denote the total number of treatments by p and the number of treatments in trial i by pi (2 ≤

pi ≤ p). For example, Stettler et al. (2007) assembled data from 37 trials for comparing the

performance of three types of stents, namely EMS, PES and SES, used in patients with

coronary artery disease. Figure 1 illustrates the network of comparisons among the three

stents. Each stent is connected to the other two through a number of direct comparisons, and

these three stents form a network. The primary objective is to assess the effectiveness of

these three stents (more broadly all treatments in the network). The network meta-analysis

yields estimates of all pairwise comparisons.

There exist several network meta-analysis approaches in the literature. Lumley (2002)

introduced a model for combining evidence from trials with pairwise comparisons between

treatments. Although this method allows borrowing evidence from indirect comparisons to

strengthen the results of direct comparisons, it can be restrictive in practice because it

requires that each individual trial be a two-arm trial (i.e., comparing exactly two treatments).

Thus, this method cannot deal with multi-arm trials as in the example of Figure 1.

Generalizing the method in Smith et al. (1995), Lu and Ades (2004) introduced a network

meta-analysis approach using a Bayesian hierarchical model. Although this approach can

include multi-arm trials, its inference is quite sensitive to the choice of priors, as seen in the
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simulation studies in Section 4. More specifically, if the assumption of the prior distribution

does not meet the underlying true model (the unknown between-trial covariance structure),

the resulting credible interval may fail to achieve the nominal coverage probability, falling

far below the nominal level in some cases.

This paper aims to introduce a new network meta-analysis approach that: i) can e ciently

synthesize evidence from a number of independent trials on multiple treatments; ii) can

include trials with multiple arms; and iii) does not need to specify priors for parameters of

interest or other parameters. The proposed new approach is derived from combining

multivariate confidence distributions.

To some extent, our proposed CD approach extends of the method developed in Lumley

(2002) to include multi-arm trials. Compared with the Bayesian method in Lu and Ades

(2004), the proposed CD approach is a pure frequentist approach and it does not require

specification of priors. In fact, the proposed CD approach can be viewed as a frequentist

counterpart of the Bayesian method of Lu and Ades (2004).

The general idea of combining CDs has been developed in Singh et al. (2005) and Xie et al.

(2011). The concept of CD and its utility in statistical inference have been researched

intensely; see, e.g., Schweder and Hjort (2002) and Singh et al. (2005, 2007). A detailed

survey of the recent developments on CD can be found in Xie and Singh (2013). Roughly

speaking, a CD bases inference on a sample-dependent distribution function, rather than a

point or an interval, on the parameter space. A CD can be viewed as a frequentist

“distribution estimator” of an unknown parameter, as described in Xie and Singh (2013) and

Cox (2013). As a distribution function, a CD naturally contains more information than a

point or interval estimator, and is thus a more versatile tool for inference. For example, point

or interval approaches may fail to provide inference for an odds ratio when the 2x2 table

observes zero events, but the CD approach remains valid, as shown in Liu et al. (2012). CDs

have been demonstrated in Singh et al. (2005) and Xie et al. (2011) to be especially useful

for combining information on a single parameter. In particular, Xie et al. (2011) has shown

not only that the CD combining approach can provide a unifying framework for almost all

univariate meta-analysis applications, but it can also provide new estimates that achieve

desirable properties such as high efficiency and robustness.

Network meta-analysis generally involves multiple parameters, and the information on each

parameter may have non-negligible impact on the inferences for other parameters. To fully

utilize the joint information on multiple parameters, we construct multivariate joint CD

functions for the entire set of parameters from each study. The combination of these joint

CD functions leads to a novel frequentist approach to network meta-analysis.

Our numerical studies show that the proposed CD approach compares favorably with, and is

often superior to, traditional meta-analysis and the hierarchical Bayesian network meta-

analysis method proposed in Lu and Ades (2004). Specifically, in comparison with the

traditional method, the CD method is more efficient because it also uses indirect evidence.

In comparison with the Bayesian method, the CD approach is prior-free and can always

provide a proper inference (i.e., confidence intervals with correct coverage rates) for
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treatment effects, regardless of the between-trial covariance structure. Moreover, our

simulation studies show that the performance of the Bayesian approach is sensitive to the

choice of prior distributions, which should be chosen to reflect the underlying between-trial

covariance structure.

The paper is organized as follows. Section 2 reviews the concept of CD and develops a

general method for combining multivariate normal CDs to facilitate network meta-analysis.

Section 3 uses two real data examples to illustrate the proposed CD approach in the analysis

of a three-treatment network, and to compare it with the traditional meta-analysis and

Bayesian network meta-analysis. In Section 4, several simulation studies are presented to

show that the proposed CD approach can always provide proper inferences for all treatments

in the network. These inference results are also compared with those from the traditional and

Bayesian network meta-analysis approaches. Moreover, we devise a simple adaptive CD

approach to address possible inconsistent (or contradictory) evidence from indirect and

direct comparisons. This adaptive approach can alleviate undue influence from indirect

comparisons whose evidence contradicts the direct comparisons. Section 5 provides a

summary and further remarks.

2 A CD approach for network meta-analysis

Assume that the network comprises k independent studies (or clinical trials) and involves the

effects of p treatments, denoted by the vector θ ≡ (θ1, … , θp)T. The individual studies may

have involved only a subset of the p treatments. More specifically, the i-th study involves pi

(pi ≤ p) treatments. If pi < p, the i-th study provides only partial information about θ, in the

sense that only the pi-dimensional parameter θi ≡ Aiθ is identifiable. Here Ai is the pi × p

selection matrix associated with the i-th study and is obtained by removing from the p × p

identity matrix (or, more generally, any p × p orthogonal matrix A) the rows corresponding

to the parameters which are missing in the i-th study. In this paper, we propose the following

multivariate random-effects model for network meta-analysis, which can be viewed as a

multivariate extension of the univariate hierarchical random-effects model reviewed in

Normand (1999):

(1)

where yi is a summary statistic from the i-th study, Σi is the covariance matrix of yi, and S is

the covariance matrix of random-effects distribution. In practice, it has been assumed in

conventional meta-analysis (see, for example, Normand (1999)) that samples from

individual studies may not be available, but their summary statistics yi’s (often sufficient

statistics of θi’s) are. The same assumption is also made in the hierarchical random-effects

model (1). Note that, if model (1) holds only asymptotically when the sample size of each

individual study ni → 1, the results provided in this paper also hold only asymptotically. In

any event, model (1) covers a broad range of settings, including many non-normal ones. A

case in point is the multinomial real data example in Section 3.

In this paper, the number of treatments of interest p is assumed to be finite, while the

number of studies k is allowed to be either finite or infinite.
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Different from the usual meta-analysis applications, a key question in network meta-analysis

is how the information on θi (which may provide only partial information on θ) can be

integrated to make efficient inference about the entire θ. Our proposed approach of

combining multivariate normal CDs for θi’s can provide a solution.

Before presenting our CD approach for network meta-analysis, we review the procedure for

combining CDs in the univariate case in Section 2.1 and then extend it to the multivariate

case in Section 2.2.

2.1 CD approach for univariate meta-analysis

When the parameter of interest is univariate, model (1) simplifies to model (2)-(3) in

Normand (1999), namely,

(2)

where θi is the study-specific mean (random-effect) and θ and τ2 are hyper-parameters for θi.

Again, yi is only a summary statistic of which the individual sample may not be necessarily

available. In addition, model (2) may hold only asymptotically.

For the univariate case, all current meta-analysis estimators used in practice (c.f., Table IV

of Normand, 1999) are nothing but various versions of weighted average of the summary

statistics yi’s. Following the CD concept, those estimators can all be obtained through the

unifying framework developed in Xie et al. (2011). Xie et al. (2011) further showed that the

CD approach is far more flexible and can reach beyond the conventional methods of

weighted averages, including for example the development of robust and non-linear

combining approaches.

In contract with the usual point or interval estimator, a CD can be viewed as a frequentist

“distribution estimator” of a given parameter of interest. It has been loosely referred to as a

distribution function on the parameter space that can represent confidence intervals of all

levels for a given parameter of interest. More specifically, the following formal definition of

CD is proposed in Schweder and Hjort (2002) and Singh et al. (2005):

Definition 1Suppose Θ is the parameter space of the unknown parameter of interest θ, and χ

is the sample space corresponding to data X = {x1, …, xn}. Then a function H(·) = H(X,·) on

χ × Θ → [0, 1] is a confidence distribution (CD) if:

i. For each given X ∈ χ, H(·) is a continuous cumulative distribution function on Θ;

and

ii. At the true parameter value θ= θ0, H(θ0) = H(X, θ0), as a function of the sample X,

follows the uniform distribution U [0, 1].

The function H(·) is an asymptotic CD (aCD) if the U[0, 1] requirement holds only

asymptotically and the continuity requirement on H(·) is dropped.

In other words, a confidence distribution is a function defined on both the parameter space

and the sample space, satisfying requirements (i) and (ii). Requirement (i) simply says that a
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CD should be a distribution on the parameter space. Requirement (ii) imposes some

restrictions to facilitate desirable frequentist properties such as unbiasedness, consistency

and/or efficiency. The CD concept is broad, covering examples from regular parametric

(fiducial distribution) to bootstrap distributions, significance functions (also called p-value

functions), normalized likelihood functions, and, in some cases, Bayesian priors and

posteriors; see, e.g., Singh et al. (2007) and Xie and Singh (2013). A CD can be used to

draw various inferences for the unknown parameter. For example, the median/mean of the

distribution function H(·) can be used as a point estimator of θ, and the interval (−∞, H−1(1

− ∞))forms a level (1 − α) confidence interval, an immediate consequence Requirement (ii).

Example 1 (CDs for univariate normal mean) Let {yi, i = 1, …, n} be an iid sample from

N(θ, σ2) with mean ȳ. Suppose that the parameter θ is of primary interest. If σ2 is known,

then  satisfies the two requirements in Definition 1, and it is a

CD for θ. If σ2 is unknown, one can show that  is a CD for

θ. Here σ2 is the sample variance, and Ftn−1 is the cumulative distribution function of the

student-t distribution with (n − 1) degrees of freedom. However,

 is only an asymptotic CD for θ.

To combine individual CDs, say, Hi(θ) for i = 1, …, k, Singh et al. (2005) proposed a

general recipe that uses a coordinate-wise monotonic function that maps the k-dimensional

cube [0, 1]k to the real line. Specifically, a combined CD can be constructed following

(3)

where the function G(c) is defined as G(c)(t) = Pr{g(c)(U1, …, Uk) ≤ t} in which U1, …, Uk

are independent U[0, 1] random variables. Xie et al. (2011) applied this general recipe to

meta-analysis, with a special choice of g(c):

(4)

where a0(·) is a given monotonic function and , with at least one , are generic

weights for the combination. Xie et al. (2011) and subsequent research showed that, with

suitable choices of g(c), almost all combining methods currently used in meta-analysis can

be unified under the framework of Equation (3), including p-value combination methods,

model-based meta-analysis (fixed-effect and random-effects models), the Mantel-Haenszel

method, Peto’s method, and also the method in Tian et al. (2009) by combining confidence

intervals.

For the special model in (2), one can construct  based on

the ith study and take a0(·) = Φ−1(·) and  in (4). Here τ2 is assumed

known. If τ2 is unknown, one can replace it with the DerSimonian and Laird estimator 
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(DerSimonian and Laird, 1986) or preferably the restricted-maximum-likelihood estimator

. Then the combined CD function for θ is

(5)

where . The combined CD function is normal with

mean  and variance , which is ready for making point estimates and

constructing confidence intervals for the parameter θ.

From Definition 1, a CD function H(·) is a cumulative distribution function on the parameter

space for each given sample Xn. Thus, we can construct a random variable ξ defined on χ ×

Θ such that, conditional on the sample, ξ has the distribution H(·). We call this random

variable ξ a CD random variable (see, e.g., Singh et al., 2007; Xie and Singh, 2013).

Conversely, suppose we have a CD random variable ξ ∈ χ × Θ whose conditional

distribution, conditional on the sample, has a cumulative distribution function H(·). Then

H(·) is a CD for the parameter of interest θ. In special cases when τ2 is replaced by  or

, the inference by (5) is, respectively, the same as the conventional method of

moments or the REML approach that are listed in Table IV of Normand (1999).

We can express the normal CD combination (5) as a combination of CD random variables.

Specifically, for a CD-random variable  derived

from the i-th study, we can define , where , and its

corresponding combined CD is

(6)

It is straightforward to show that the H(c)(·) defined in (6) is the same as the one defined in

(5).

The concept of CD random variable has been investigated in several recent publications. For

example, Xie and Singh (2013) explored the connection of CD random variables with boot-

strap estimators when the bootstrap approach applies. Hannig and Xie (2012) discussed the

association of a CD random variable with the so-called belief random set, a fundamental

concept in the Dempster-Shafer theory of belief functions (cf. Dempster, 2008; Martin and

Liu, 2013).

2.2 A general procedure to combine multivariate normal CDs

Constructing and combining CDs for multi-dimensional parameters is not a straightforward

extension of the univariate case. One difficulty is that the cumulative distribution function is
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not a useful notion in the multivariate case, because (a) the region F(x) ≤ α is not of main

interest and (b) the property  when  does not hold in  (Singh et al.,

2007). Research thus far suggests that we either limit our interest to center-outward

confidence regions (instead of all Borel sets) in the p × 1 parameter space or use asymptotic

normality; see Xie and Singh (2013) and also De Blasi and Schweder (2012). In the present

context, it suffices to consider only the multivariate normal CDs because individual CDs are

based on asymptotic normality. We use a multivariate normal CD definition proposed in

Singh et al. (2007). Intuitively, a distribution function H(·) is a multivariate normal CD for a

p × 1 vector θ if and only if the projected distribution of H(·) on any direction , ||λ||2 =

1, is a univariate normal CD for λTθ. Here is a formal definition of a multivariate normal

CD:

Definition 2 Let ξ be a random vector on . For any given p × 1 vector λ, ||λ||2 = 1, we

denote by Hλ(·) the conditional distribution of λTξ given X. We also denote by H(·) the

conditional distribution of ξ given X. Then we call H(·) the multivariate normal CD (or,

asymptotic multivariate normal CD) for a p × 1 parameter vector θ if and only if, for any

given λ, Hλ(·) is a univariate normal CD (or asymptotic CD) function for λTθ. Also, the

random vector ξ is called a CD random vector for θ.

Example 2 (CDs for multivariate normal mean) Suppose xi, i = 1, …, n are identically and

independently distributed observations from a multivariate normal distribution with mean θ

and covariance matrix Σ. If Σ is known, then the sample-dependent distribution N(y, Σ) is a

multivariate normal CD function for θ, where y = x̄ is the sample mean. If Σ is unknown but

can be estimated consistently, say by , then the sample-dependent distribution  is

an asymptotic multivariate normal CD function for θ.

The CD combination method for the multivariate case cannot be easily specified by

following (3) and (4), especially under the setting of (1), where pi may differ. Instead, we

utilize the concept of CD random vector and an extension of (6) to propose the following

scheme for combining multivariate normal CDs.

Theorem 1 Let Hi(i) Hi(Xi, θi), i = 1 …, k are multivariate normal CD functions for the

multivariate parameters θi from k independent samples Xi, where θi = Aiθ for the same p-

dimensional target parameter vector θ. Additionally, let ξi be the CD random vector for θi.

For any , we define

(7)

where  is the Moore–Penrose pseudo-inverse of Ai. Then H(c)(·) = H(X1, … ,Xk; ·) is a

multivariate normal CD for θ provided the following conditions hold:

1. Each p × p matrix Wi is positive semi-definite.

2. e(Wi) = Vi, where e(Wi) is the column space of Wi and Vi is the row space of Ai.
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3.
, where .

In Theorem 1, conditions (2) and (3) state that, even if rank(Ai) < p for all i, so that θ is not

identifiable in any individual study, we can still derive a multivariate normal CD for θ as

long as the treatments are connected in a network.

Recall the multivariate model introduced in (1). We first consider the case in which Σi and S

are known. From Example 2, we know that  is a multivariate normal CD

function for θi based on the i-th study. Let ξi be the corresponding CD random vector for

inference on θi and . It follows that  is

normally distributed with mean vector  and variance

, given the sample. Thus, following the recipe in Equation (7), the

combined CD for θ is

(8)

where Ψ(·) is the cdf of the standard p×1 multivariate normal distribution function.

Conditions (1) and (2) of Theorem 1 are satisfied by the specification of Wi, and condition

(3) is satisfied as long as the comparisons involved in the studies form a connected network.

Based on the combined multivariate CD function in (8), we can use  as a point estimator

for θ with variance Sc. Furthermore, inferences on any linear contrasts λTθ of θ can be

obtained from λTξ(c), where ξ(c) follows the distribution specified in Equation (8).

If Σi and S are unknown, we can replace them with the sample estimators  and SREML.

Then, as long as these estimators are consistent, the distribution  is

asymptotically a multivariate normal CD for θi. Here  is the sample covariance matrix, and

SREML is the restricted-maximum-likelihood estimator of the heterogeneity between studies.

As a result, the combined CD function (8) is an asymptotic multivariate normal CD for θ

with Σi and S replaced by  and SREML, respectively. For the estimation of S, Jackson et al.

(2010) developed a direct extension of the DerSimonian and Laird estimator of

heterogeneity to multivariate case. Hereafter, we denote by SDL and SREML respectively the

estimator derived from Jackson et al. (2010) and the restricted-maximum-likelihood

estimator. We apply and examine both estimators in our numerical study of real examples

and simulations in Sections 3 and 4. Further discussions on the performance of the DL and

REML estimators for the heterogeneity in univariate random-effects models can be found in

Sidik and Jonkman (2007) and Thorlund et al. (2011).

As shown in Liu (2012) and Yang (2013), if individual samples in all studies are given, our

approach in (8) yields exactly the same or asymptotically equivalent results (depending on

whether (1) holds exactly or approximately) as the likelihood approach, and thus the two

approaches have the same statistical accuracy. We stress that our approach uses only
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summary statistics and does not need individual observations, which generally is the setting

in conventional meta-analysis. One can also use an approximate likelihood approach by

treating yi’s as if they are “individual” observations. This in fact yields the same results as

our CD approach.

One advantage of our CD approach is its flexibility, in that, for example, one can easily

adapt the approach to address possible inconsistent (or contradictory) evidence from indirect

and direct comparisons, as illustrated in Section 4. Another advantage of our approach is

that it uses explicit expressions, so its computational cost is minimal. The discussion and

comparison with likelihood-based approaches are similar to those provided in Xie et al.

(2011) for univariate meta-analysis problems.

Note that our model and approach cover many non-normal cases so long as the summary

statistic yi’s are normal or asymptotically normally distributed, such is the case with the real

data example in Section 3 below.

3 Real data examples

In this section, we illustrate the proposed CD approach for network meta-analysis using two

real data examples, one on coronary artery disease and the other on cirrhosis. For

comparison, we also include the traditional pairwise meta-analysis and the Bayesian

hierarchical model.

3.1 An example on coronary artery disease (CAD)

Stettler et al. (2007) used data from a network of 37 trials to compare the performance of

three types of stent: bare metal stent (BMS), sirolimus-eluting stent (SES), and paclitaxel-

eluting stent (PES), in patients with coronary artery disease. Each trial involved at least two

of the three treatments; we analyze the data on a negative outcome, whether patients

required target lesion revascularisation (TLR) within one year (cf. Figure 1). One trial,

TAXUS I, had zero events and is thus excluded from the analysis. Of the remaining 36

trials, listed in Table 1, 15 trials compared BMS with SES, 6 trials compared BMS with

PES, 14 trials compared SES with PES, and 1 trial compared all three treatments. The

network is connected, so simultaneous inference on the treatment effects is possible.

3.1.1 A multivariate random-effects model—We use treatments A, B, and C to denote

the three types of stents BMS, SES and PES, respectively. We use Ti to denote the set of

treatments compared in the i-th trial; for example, Ti = {A, C} for TAXUS IV. Further, let

nij and rij be the number of total patients and number of patients who experienced a TLR in

the i-th study with treatment j. Then with a binary individual responses we would assume

(9)

where pij denotes the probability that a patient on treatment j experiences an event in the i-th

trial.

The target parameter is p = (pA, pB, pC)T, the overall probability of an event for BMS, SES,

and PES, respectively. In practice, one often applies a log transformation to the observed
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odds of an event. Owing to the rapid convergence to a normal distribution on the log-odds

scale, it is customary to consider a general random-effects model for θi = (logit(pij))T, ∀j ∈

Ti with parameter θ = (logit(pA), logit(pB), logit(pC))T; cf. DerSimonian and Laird (1986);

Normand (1999). Here, logit(p) = log(p/(1 − p)). Specifically, we have

(10)

where Ai is the selection matrix associated with Ti; for example,  if Ti = {A,

B},  if Ti = {A, C},  if Ti = {B,C}, and Ai = I3 if Ti =

{A,B,C}.

Further, let ,  and yi = [yij, j ∈ Ti]T

. Then an asymptotically equivalent model is

(11)

Finally, if that our primary concern is the efficacy of SES vs BMS, the parameter of interest

is the log-odds ratio reflecting the relative efficacy of treatment B vs A, that is δAB ≡ θB −

θA. We proceed to compare the results obtained from the proposed CD procedure with

those-from the traditional pairwise meta-analysis and the Bayesian network meta-analysis.

3.1.2 The CD approach—Consider the random-effects model in (11). We estimate the

covariance matrix S by the restricted-maximum-likelihood estimator SREML. We can

construct a multivariate normal aCD function for θi based on the i-th individual study,

namely . We use  to denote the

associated CD random variable and take . Then, by (8),

 is the combined CD for θ, where

 and . Since we have  in the

current case, we can replace  with  in the above formulas.

To make inferences for δAB ≡ θB − θA, we can use the marginal distribution of 

where λAB = (−1, 1, 0)T and . Therefore, the point estimator 

and its variance based on the CD procedure are
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In practice, we might also be interested in simultaneous inferences on, say, q linear

combinations of θ, e.g., Qθ where . The Bayesian approach often uses the marginal

posterior distribution of Qθ as the basis for statistical inference. Similarly, to draw

inferences for θ, the proposed CD network meta-analysis approach can use the marginal

distribution of Qξ(c) given the data. Here ξ(c) is the CD random vector associated with the

combined CD function H(c)(·) for θ.

3.1.3 Traditional pairwise meta-analysis—A traditional meta-analysis for such a

problem uses only the direct evidence, e.g., clinical trials that explicitly compared BMS vs

SES; see, e.g., Simmonds and Higgins (2007) and Hoaglin et al. (2011). Let

 for A,B ∈ Ti. A random-effects model (Der-Simonian and

Laird, 1986) is considered:

(12)

An overall estimate of the common log-odds ratio δAB, based on the direct evidence, is often

a weighted average of the estimates  from individual studies (Hardy and Thompson,

1996):

(13)

where the weight wi is often taken as the empirical weight determined by the reciprocal of

the variance  adjusted to incorporate the heterogeneity , for example

, as suggested in DerSimonian and Laird (1986).

In practice, when the variance  and the heterogeneity  are unknown, they are often

replaced by their corresponding estimates  and , where

, provided that rij ≠ 0 and rij ≠ rij, and  is the

REML estimate.

Similarly, we can obtain estimates  and  for the pairwise comparisons of BMS vs PES

and SES vs PES, respectively, based on the 7 and 15 trials that compared them directly.

Then an indirect comparison of BMS vs SES can be obtained by taking
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(14)

We can then combine the ,direct and ,indirect to obtain an estimator that

integrates the two sources of information, provided that the direct and indirect comparisons

are consistent with each other or at least not contradictory. Here is a simple illustration of

inconsistent/contradictory evidence: the direct comparison concludes that the effect of

treatment X is larger than that of treatment Y, but the indirect comparison concludes the

opposite. Some discussion on issues of inconsistent evidence in network meta-analysis can

be found in Lumley (2002), Lu and Ades (2006), and Dias et al. (2010).

Although one can always apply the procedure above to combine the direct and indirect

estimates, this procedure splits the three-arm trial into three two-arm trials and uses them for

three difference estimates. This is a drawback for traditional pairwise meta-analysis —

Trials with more than two arms cannot be fully incorporated in the meta-analysis unless they

are split into multiple two-arm trials. Those two-arm trials are treated as if they were

independent; whereas they came from the same trial. Consequently, such a network meta-

analysis often incurs bias and loss of efficiency, as observed in Jansen et al. (2011) and

Hoaglin et al. (2011). Taking into account this drawback, we consider  and

 as two separate estimators of δAB in the analysis in later sections.

We show later that the CD approach can combine the direct and indirect evidence for δAB

efficiently, provided that the observed evidences from the direct and indirect comparisons

are consistent with each other or at least not contradictory.

3.1.4 Bayesian hierarchical model—Similar to the CD approach, a Bayesian approach

can also incorporate all trials. However, the Bayesian approach has to rely on prior

distributions, which then impose additional assumptions.

To carry out network meta-analysis on clinical trials with direct and indirect treatment

comparisons, Lu and Ades (2004, 2006) proposed the following hierarchical Bayesian

model:

(15)

where
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As stated in Lu and Ades (2004), this model extends the one proposed by Smith et al. (1995)

to address the issues of incorporating indirect comparisons and to fully incorporate trials

with more than two arms.

Specifically, Lu and Ades (2004) considered two sets of prior distributions, Bayesian-HOM

prior and Bayesian-HET prior. The first set of prior distributions (“Bayesian-HOM”)

assumes a homogenous variance for δAB,i and δAC,i:

(16)

The second set of prior distributions (“Bayesian-HET”) allows heterogenous variances for

δAB,i and δAC,i:

(17)

Except for the different assumptions on the structure of covariance matrix C, both Bayesian-

HOM and Bayesian-HET impose the same noninformative priors on δ, μ, and . The

assumptions of priors are subjective and often difficult to verify. Our numerical studies in

Section 4 suggest that the Bayesian approach is sensitive to the choice of priors.

3.1.5 Results—We consider the following six methods and compare their inferences on

δAB:

• Traditional-Direct: Traditional frequentist meta-analysis on direct pairwise

comparisons.

• Traditional-Indirect: Traditional frequentist meta-analysis on indirect pairwise

comparisons.

• Bayesian-HOM: Bayesian network meta-analysis with homogeneous variance

structure on δ.

• Bayesian-HET: Bayesian network meta-analysis with heterogeneous variance

structure on δ.

• CD[SDL]: The proposed CD procedure with S estimated by an extension of the

DerSimonian and Laird method to the multivariate case (Jackson et al. (2010)).

• CD[SREML]: The proposed CD procedure with S estimated by maximizing

restricted likelihood.

The values of  and its corresponding 95% confidence interval (CI) or 95% credible

interval (CrI) from all six methods are summarized in Table 2.
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Table 2 shows that all six methods yield similar point estimates of δAB. However, because

they use both direct and indirect evidence, the Bayesian methods and the CD methods yield

smaller variance estimates and tighter confidence interval, in comparison with traditional

pairwise meta-analysis. Also, the results from indirect comparisons are in line with those

obtained from direct comparisons, although less e cient. It seems appropriate to combine the

trials with direct and indirect evidence.

3.2 An example on cirrhosis

As another example, we consider the data presented in Pagliaro et al. (1992) and used in Lu

and Ades (2004). The authors analyzed 26 trials of non-surgical treatments intended to

prevent first bleeding in patients with cirrhosis and esophageal varices who had never bled,

in order to assess the effectiveness of three types of treatments: beta-blockers, endoscopic

sclerotherapy and non-active treatment (control), denoted by A, B, and C, respectively. Of

the 26 trials, 2 trials compared all three treatments, 7 trials compared beta-blockers vs

control, and 17 trials compared sclerotherapy vs control. In Table 3, for trial i and treatment

j, rij is the number of patients who had a first bleeding event and nij is the total number of

patients. Our concern is with the relative performance of the active treatments: beta-blockers

vs sclerotherapy. However, the only trials that compared them directly were the two three-

arm trials, which were not sufficiently large. In this situation direct evidence is not strong

enough, and incorporating indirect evidence is particularly important for making inferences.

We apply the same six methods as in the CAD data set. The parameter of interest is δAB, the

log-odds ratio of first bleeding for beta-blockers vs sclerotherapy. The results are presented

in Table 4.

In Table 4, we again observe that the Bayesian methods and the CD procedures have

substantially lower variance as a result of integrating all treatment comparisons. Therefore,

the network-meta-analysis approaches have effectively strengthened the results obtained

from direct comparisons by borrowing information from indirect comparisons. Unlike the

results in the CAD example, pairwise meta-analysis using only direct comparisons does not

achieve significant results, whereas the Bayesian and CD approaches yield significant or

almost significant results. However, the validity of combining direct and indirect treatment

comparisons should be carefully investigated, the difference between  and

 raises concerns about consistency between direct and indirect evidence. The topic

of inconsistent evidence is discussed in Higgins et al. (2002, 2003). We also discuss this

topic further in Section 4.3 and Section 5.

In these two examples, the CD and Bayesian approaches yield similar results. The

confidence intervals derived from the CD approach are only slightly tighter than those

derived from the Bayesian approach. However, our simulation studies in the next section

show that the Bayesian credible intervals may not achieve the nominal coverage probability,

and their empirical coverage probabilities may be far below the nominal level when the

assumed prior on the between-trial covariance structure does not agree with the underlying

true model. This latter condition is almost impossible to verify in practice. In contrast, the

proposed CD combining approach does not require any prior, and the derived confidence
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intervals can maintain adequate coverage probability regardless of the between-trial

covariance structure.

4 Simulation studies

We conducted simulation studies to compare the performance of the proposed CD

combining approach with traditional pairwise meta-analysis and the Bayesian method.

4.1 Simulation settings

We based our simulation on the structure of the cirrhosis data. Specifically, the evidence

network involves three treatments (A, B, and C). The problem of interest is to infer the

relative effectiveness of A vs B.

Consider two scenarios, one with 24 trials and the other with 96 trials. In the first scenario,

the 24 clinical trials, comprise 1 trial comparing all three treatments, 3 trials comparing A

and B, 10 trials comparing treatments A and C, and 10 trials comparing B and C. The

number of patients in each arm of each trial is 100, i.e., nij = 100, ∀i and j ∈ Ti. In the second

scenario the number of trials of each type is four times that in the first scenario. The

simulation is designed to show the benefit of borrowing strength from indirect evidence

when direct evidence (trials directly comparing treatments A and B) is somewhat limited.

We generate the simulated data from the model:

(18)

where Ai consists of the rows of the identity matrix corresponding to the treatments in Ti.

We specify the true value of θ = (−1.82, −1.21, 0.80)T as the values are close to those

estimated from the cirrhosis data. It follows that the probabilities of observing an event in

treatment A, B, and C are p = (0.14, 0.23, 0.31)T. For the covariance matrix S, we consider

three cases:

Case 1:

Case 2:

Case 3:
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where , and δAB,i, δAC,i, μi and TBS are defined as in

model (15). Here “ ⇔ ” indicates the one-to-one correspondence between the covariance

matrix S in model (18) and the covariance matrix B in the Bayesian models.

In Case 1, S is set to an identity matrix to ensure that the true model (18) meets the

assumptions of Bayesian-HOM in Section 3.1.4, and is thus equivalent to the case of (16)

with σ2 = 2. Similarly, the covariance matrix S in Case 2 allows the true model (18) to meet

the assumptions of Bayesian-HET, and is thus equivalent to the case of ,  and ρ

= 0.5 in (17). As suggested in Joseph et al. (1997), we further extend the model to

incorporate correlations between δAB,i, δAC,i and μi, instead of assuming independence.

Therefore, in Case 3, the covariance matrix S is specified to give an arbitrary covariance

structure such that B fails to meet the assumptions of either Bayesian-HOM or Bayesian-

HET. In summary, we consider a total of six (= 2 × 3) settings in our simulation study: 24

and 96 trials each with three specifications of the covariance matrix S.

4.2 Results

We consider and compare the performance of a total of nine approaches. They include the

six methods listed in Section 3.1.5: Traditional-Direct and Traditional-Indirect, Bayesian-

HOM and Bayesian-HET, and CD[SDL] and CD[SREML]. Additionally, we include three

other CD approaches: two semi-Bayesian approaches, CD[SBHOM] and CD[SBHET], in

which the covariance matrix S is estimated by the Bayesian method with prior in (16) and

(17), respectively, and CD[STRUE], which uses the true covariance matrix S. The

CD[STRUE] method allows us to separate the effect of estimating the mean alone and study

the potential impacts on estimation of the mean when different approaches are used to

estimate S. Thus, the nine methods are:

• Traditional frequentist methods:

- Traditional-Direct: Traditional frequentist meta-analysis of direct

pairwise comparisons.

- Traditional-Indirect: Traditional frequentist meta-analysis via indirect

pairwise comparisons.

• Bayesian methods:

- Bayesian-HOM: Bayesian network meta-analysis with homogenous

variance structure on δ.

- Bayesian-HET: Bayesian network meta-analysis with heterogenous

variance structure on δ.

• CD methods:

Yang et al. Page 17

Stat Methodol. Author manuscript; available in PMC 2015 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



- CD[SDL]: S estimated by SDL.

- CD[SREML]: S estimated by SREML.

- CD[SBHOM]: S estimated by SBHOM.

- CD[SBHET]: S estimated by SBHET.

- CD[STRUE]: using the known true S.

In simulation Scenario 1 Case 1, for example, we generate data according to the model

specified in (18), and then apply each method to estimate δAB and calculate the

corresponding 95% confidence (credible) interval. We repeat this process 1000 times. For

each method, we report the mean and standard deviation of the 1000  and the percentage

of times (coverage) that the 1000 95% CIs cover the true δAB = 0.6070 and the average

interval length. The results for Scenarios 1 and 2 with Case 1 (S = I3 × 3) are presented in

Table 6. Similarly, the results for Case 2 and Case 3 are presented in Tables 7 and 8. It is

straightforward to verify that the chance that no trial has zero events in the entire 1000

replications is at least 99.97%. Thus the zero events issue is not considered in the simulation

study.

From the results in Tables 6, 7 and 8, it is evident that the traditional pairwise meta-analysis

is much less e cient than the CD network meta-analysis approaches. Specifically, compared

with the results from the CD[SREML] method, the lengths of 95% CIs obtained from

traditional meta-analysis methods are much greater, even though the probabilities of

covering the true value are comparable. This suggests that, when the parameter of interest is

a vector, information on one parameter may be potentially useful for inferences on other

parameters. Thus, mixed treatment comparisons should be considered in our settings.

Consider the probability that the nominal 95% CI covers the true δAB as one criterion for

assessing the performance of each meta-analysis method. It is evident from the simulation

study that the results of the Bayesian methods are sensitive to the specifications of their prior

distributions. Specifically, Bayesian-HOM fails to achieve appropriate coverage in Cases 2

and 3 (e.g., 89% and 90% in Table 7 and 86% and 81% in Table 8), regardless whether the

number of studies is small or large. Similarly, Bayesian-HET fails to provide satisfactory

coverage in the Case 3 (85% and 82% in Table 8) when its assumption on prior cannot cover

the true model. In summary, both Bayesian methods are able to estimate δAB properly only if

their prior assumptions cover the underlying true covariance model, and they fail to do so

when their prior assumptions are not compatible with the underlying true covariance model.

So the Bayesian procedures are vulnerable to their assumptions on priors, and we should

make as few assumptions as possible when specifying priors.

In examining the results of the CD procedures, we first observe that CD[STRUE] achieves

desirable coverage rates in all cases (95%–98% in Tables 6, 7, and 8). Therefore, the

performance of the CD procedure is satisfactory for combining information on θ. However,

the performance of the CD procedure is strongly affected by the quality of estimating the

covariance matrix S. To help establish a practical guideline, we compare the quality of

estimates based on the extended DL method SDL and the REML method SREML.
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Specifically, we plug in the corresponding estimates in the process of constructing and

combining individual CDs, and again we study the performance of estimates  and the

corresponding 95% CIs. The performance of CD[SREML] is reasonable in all settings, i.e.,

close to the nominal 95% coverage (see, e.g., 92%–96% in Tables 6, 7, and 8) as long as the

number of studies is sufficiently large. Further, the coverage rate of CD[SREML] improves

from 89%–92% to 92%–96% as the number of studies increases from 24 to 96. On the other

hand, the coverage rate of CD[SDL] is relatively low, around 79%–86%, when the sample

size is small. Moreover, the performance of CD[SDL] does not always improve as the

number of studies increases. For example, the coverage rate of CD[SDL] drops from 78.7%

to 74.9% in Table 8. Thus, the REML method is preferable to the extended DL method for

estimating the covariance matrix S. This observation is consistent with the shortcomings of

the DL method reported in univariate random-effects models by Emerson et al. (1993).

Between the REML and DL methods, we recommend the CD procedure with SREML for

network meta-analysis when S is unknown.

Finally, the results for the semi-Bayesian CD procedures appear to be similar to the results

for the corresponding Bayesian procedures. Specifically, the performance of CD[SBHOM] is

in line with Bayesian-HOM. It achieves appropriate coverage in Case 1 (94% and 96% in

Table 6), but fails in Cases 2 and 3 (90% and 93% in Table 7 and 86% and 75% in Table 8),

regardless of the number of studies k = 24 or 96. Similarly, the results for CD[SBHET] are in

line with Bayesian-HET. It provides satisfactory coverage in Cases 1 and 2 (94% and 95%

in Table 6 and 91% and 97% in Table 7), but fails Case 3 (85% and 76% in Table 8). Once

again, the CD procedure is sensitive to the quality of estimation of S. Also, the confidence

distribution H(c)(·) in (8) is an asymptotic CD that is more suitable for making inferences on

θ when k → ∞, under which both the mean vector θ and the between-trials covariance

matrix S can be estimated consistently.

4.3 A CD approach with adaptive weights

As we observed from in Section 4.2, the overall findings for a network can be quite

unreliable when indirect evidence and direct evidence inconsistent. In this section, an

adaptive weighting system improves resistance to the impact of inconsistent indirect

comparisons by down-weighting the trials that contribute to the inconsistent evidence. Here,

the degree of inconsistency from an indirect comparison is measured by how the trials in the

indirect comparison deviate from the overall outcome for the direct comparison. The precise

formulation of this measure, which we loosely call “distance,” is given after Model (19).

Taking into account this distance, the CD combining process can still use indirect

comparisons that provide outcomes consistent with those from the direct comparisons, but it

can also reduce the impact of inconsistent indirect comparisons. We demonstrate this

property through the following simulation studies.

We consider the model (18) used in Scenario 1 in Section 4.1, with two modifications. First,

we increase the total number of trials from 24 to 33 so that three trials, instead of one trial,

compare treatments A, B, and C, and ten trials, instead of three trials, directly compare

treatments A and B. We still have ten trials comparing treatments A and C and ten trials

comparing treatments B and C. Thus, for inferences on δAB, we have 13 direct comparisons
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and 20 trials with information on the indirect comparison. Second, the trials containing

information on the direct comparison are consistent, but some of the remaining 20 trials

containing information on the indirect comparison may be biased. Specifically, we consider

the following model to generate the simulation data:

(19)

where

Here, the values of ηA,i and ηB,i are fixed numbers simulated from N(2, 4).

Model (19) indicates that all trials that compare both treatments A and B directly have the

same underlying true parameter θ, whereas some trials involving A only or B only may have

different underlying true parameters. If we are to include the trials that provide the indirect

comparison in our analysis, it would be desirable to exclude or down-weight those trials. In

this case, we devise the following notion of distance di,

where  and  are obtained from Equation (13). Heuristically, di for each

indirect comparison trial measures its deviation from the overall outcome given by all direct

comparison trials. For example, we could consider including only the studies with distance |

di| ≤ 1 in the meta-analysis. In other words, we would define  as

and use  in the method CD[SREML]-adjusted. Specifically, we set

, and take the cdf of the random vector in (7) as the

combined multivariate normal CD. We show that in this way the combined CD is able to

exclude those inconsistent indirect trials – trials with large di. There are many other choices

of adaptive weights. For convenience, we use here the simple, though somewhat restrictive, |

di| ≤ 1 to remove inconsistent studies from combination. A detailed discussion of choices of

adaptive weights and their applications to combining CDs can be found in Xie et al. (2011).

Yang et al. Page 20

Stat Methodol. Author manuscript; available in PMC 2015 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



In a further simulation study (Case 4), we consider two settings. In Setting 1, we generate

the simulated data using model (18), in which all studies have the same underlying true

parameter value, but modify it to have 33 trials with the same composition of trials as model

(19). In Setting 2, the simulated data are generated from model (19). In this case, some trials

used in the indirect comparison have a different underlying true parameter value. In both

settings, three trials compare all three treatments, ten trials compare treatments A and B, ten

trials A and C, and ten trials B and C. The number of patients involved in each arm of each

study is 100. We apply CD[SREML], CD[SREML]-adjusted, and CD[STRUE] to the simulated

data sets. We repeat the entire process 1000 times and report the results in Table 9.

All three methods are able to achieve appropriate coverage rate (92% – 95% in Setting 1) if

all trial outcomes are consistent with one another. However, in Setting 2, with inconsistent

indirect trials, only CD[SREML]-adjusted provides appropriate inference on δAB. In

particular, the estimate  by CD[SREML]-adjusted is not far from the true δAB =

0.6070, and its 95% CI has a coverage rate of 97.7%. Therefore, with carefully designed

study-specific weights, the CD procedure is able to provide some resistance to the impact of

inconsistent indirect trials mistakenly included in the meta-analysis.

5 Concluding remarks

In this paper, we have proposed a frequentist method for network meta-analysis by

combining multivariate normal confidence distributions (CDs) associated with individual

studies. This proposed CD approach can perform indirect comparisons in a network of

mixed treatment comparisons, and it can use the findings from indirect comparisons e

ciently to enhance the overall inference of the entire network. The CD approach can also be

modified by using an adaptive weighting scheme to reduce the effect of indirect

comparisons whose findings contradict those from the direct comparisons. Overall, the

proposed CD approach can effectively and e ciently integrate direct and indirect information

from disparate sources. In fact, the CD approach can estimate consistently and e ciently the

parameters of interest as well as the between-trials covariance matrix when the number of

studies goes to infinity. Through simulation studies, we have also demonstrated that the CD

approach generally outperforms traditional pairwise meta-analysis and the Bayesian

hierarchical model. In conclusion, the CD approach is highly competitive for network meta-

analysis.

Even though model (1) and our network meta-analysis in this paper are formulated under the

normality assumption, this assumption can be easily relaxed to accommodate non-normal

cases, such as any location-scale distribution families (including the t-model, etc.).

Moreover, we stress that the normality in model (1) is assumed only for the summary

statistics, but not for the model that underlies the individual observations. If the sample sizes

of individual studies are sufficiently large, model (1) holds for many non-normal settings,

following the central limit theorem. In any case, the normal model (1) is not as restrictive as

it appears, and it in fact covers many non-normal cases.

In comparing the approaches on the CAD data in Section 3.1, we excluded the TAXUS I

trial to avoid addressing the issue of zero events there. In traditional pairwise meta-analysis,
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one customarily adds 0.5 to zero events. This correction is arbitrary and introduces bias in

the inferences. By removing zero-event trials from the analysis, one would lose the

information they contain. For example, for TAXUS I, zero event is a favorable outcome for

both BMS and PES. This loss can cause concerns as well, especially if the zero-event trials

constitute a sizable portion of the data. For an exact inference method involving zero events,

the approach of combining significance functions proposed in Liu et al. (2012) can avoid the

shortcomings of the earlier approaches.

In network meta-analysis, it is important to assess the consistency of the evidence from all

trials in the network. However, such assessment is often difficult. One reason is that designs

often differ between the trials yielding direct comparisons and the trials leading to indirect

comparisons. Furthermore, it is practically impossible to distinguish between inconsistency

and heterogeneity of random effects. See Higgins et al. (2002, 2003) for further discussion

of this topic.

Although our examples involve clinical trials in medical studies, we emphasize that the

proposed CD approach can be applied broadly for any multiple comparison studies in many

other domains. For example, to establish ratings for a list of restaurants based on a survey of

customer ratings, customers would be able to provide data only on the restaurants that they

have patronized. The CD approach could be applied by constructing and combining CDs

based on the ratings given to those restaurants by a group of customers.

Appendix

Lemma 1Suppose Wi, i = 1, …, k are p × p positive semi-definite symmetric matrices and Vi

is the column space of Wi. Let . Then

 is positive definite provided that .

Proof of Lemma 1:

It is a direct result that  is positive semi-definite. Suppose there exists a p × 1 vector

v ≠ 0 such that . Then, for any fixed i, we have vTWiv = 0, which implies

that . It follows that , and immediately v ∈ kernel(Wi) since Wi

is symmetric. Thus v ⊥ Vi. Since i is arbitrary, we conclude that  and v has to be

0, which contradicts the assumption that v ≠ 0.

Proof of Theorem 1:

Let  and H(c)(t) = Pr{ξ(c) ≤ t|Y1, … ,Yk}. We need to show

that H(c)(·) = H(Y1, … ,Yk; ·) is a multivariate normal CD for θ. Define Hλ(t) = Pr{λTξ(c) ≤ t|

Y1, … ,Yk} for any given vector λ satisfying ||λ||2 = 1. By Definition 2, it suffices to show

that Hλ(t) is a univariate normal CD function for λTθ.

To do so, we first note that Hλ(t) goes from 0 to 1 monotonically as t goes from −∞ to ∞.

Thus, Hλ(t) is a cdf. Second, we note that ξi, defined by ξi|Yi = yi ~ N(yi, var(Yi)), is a CD
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random vector for θi, and furthermore,  is a CD random vector for θ in the sense that

the distribution function of  is a CD for ηTθ for any η ∈ Vi. Since  exists

by Lemma 1, we consider the conditional distribution of  given

Yi.

Clearly, it is a univariate normal CD for , because

. Therefore, it is straightforward to show that, at the true parameter

value θ = θ0,

where . Thus, we have established that, at the true θ

= θ0 and as a function of the sample Y1, … ,Yk, Hλ(Y1, … ,Yk) follows the uniform

distribution U[0, 1]. This completes the proof.
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Figure 1.
Network of comparisons for bare-metal stents (BMS), paclitaxel-eluting stents (PES), and

sirolimus-eluting stents (SES) in 37 trials (Stettler et al., 2007)
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Table 1

CAD Trial Data, Target Lesion Revascularisation at 1 year

Study
BMS (A) SES (B) PES (C)

rij nij rij nij rij nij

BASKET 35 281 25 264 25 281

C-SIRIUS 11 50 2 50 — —

DECODE 8 29 5 54 — —

DIABETES 27 80 6 80 — —

E-SIRIUS 44 177 8 175 — —

Ortolani 2007 11 52 6 52 — —

Pache 2005 51 250 25 250 — —

PRISON II 20 100 4 100 — —

RAVEL 16 118 1 120 — —

RRISC 10 37 6 38 — —

SCANDSTENT 47 159 4 163 — —

SCORPIUS 20 95 5 95 — —

SESAMI 19 160 7 160 — —

SES-SMART 27 128 9 129 — —

SIRIUS 106 525 26 533 — —

TYPHOON 45 357 13 355 — —

HAAMUS-TENT 9 82 — — 3 82

PASSION 23 309 — — 16 310

TAXUS II 39 269 — — 13 260

TAXUS IV 96 652 — — 28 662

TAXUS V 107 579 — — 62 577

TAXUS VI 46 227 — — 19 219

Cervinka 2006 — — 1 37 2 33

CORPAL — — 22 331 25 321

Han 2006 — — 9 202 11 196

ISAR-DESIRE — — 14 100 22 100

ISAR-DIABETES — — 9 125 15 125

ISAR-SMART3 — — 16 180 29 180

LONG DES II — — 6 250 18 250

Petronio 2007 — — 1 42 1 43

PROSIT — — 3 116 9 115

REALITY — — 44 684 43 669

SIRTAX — — 30 503 54 509

SORT OUT II — — 40 1065 46 1033

TAXi — — 4 102 2 100

Zhang 2006 — — 14 225 16 187
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Table 2

Results of meta-analyses on CAD data

Method δ̂AB s.d.(δ̂AB) 95% CI Length of 95% CI

Traditional-Direct −1.3757 0.1672 (−1.7035, −1.0479) 0.6556

Traditional-Indirect −1.2874 0.5129 (−2.2926, −0.2822) 2.0104

Bayesian-HOM −1.3681 0.1084 (−1.5900, −1.1650) 0.4250

Bayesian-HET −1.3770 0.1312 (−1.6170, −1.1028) 0.5142

CD[SDL] −1.2984 0.1174 (−1.5285, −1.0683) 0.4602

CD[SREML] −1.2957 0.1096 (−1.5104, −1.0809) 0.4295
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Table 3

Cirrhosis data: number of patients who had a first bleeding event.

Study
Beta-blockers (A) Sclerotherapy (B) Control (C)

rij nij rij nij rij nij

1 2 43 9 42 13 41

2 12 68 13 73 13 72

3 4 20 — — 4 16

4 20 116 — — 30 111

5 1 30 — — 11 49

6 7 53 — — 10 53

7 18 85 — — 31 89

8 2 51 — — 11 51

9 8 23 — — 2 25

10 — — 4 18 0 19

11 — — 3 35 22 36

12 — — 5 56 30 53

13 — — 5 16 6 18

14 — — 3 23 9 22

15 — — 11 49 31 46

16 — — 19 53 9 60

17 — — 17 53 26 60

18 — — 10 71 29 69

19 — — 12 41 14 41

20 — — 0 21 3 20

21 — — 13 33 14 35

22 — — 31 143 23 138

23 — — 20 55 19 51

24 — — 3 13 12 16

25 — — 3 21 5 28

26 — — 6 22 2 24
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Table 4

Results of meta-analysis on cirrhosis data

Method δ̂AB s.d.(δ̂AB) 95% CI Length of 95% CI

Traditional-Direct 0.7284 0.8439 (−0.9256,2.3824) 3.3080

Traditional-Indirect −0.0927 0.8069 (−1.6738,1.4884) 3.1622

Bayesian-HOM 0.5228 0.3171 (−0.0969,1.1461) 1.2430

Bayesian-HET 0.6466 0.3250 ( 0.0410, 1.3151) 1.2741

CD[SDL] 0.5688 0.2588 ( 0.0617, 1.0761) 1.0144

CD[SREML] 0.6381 0.2445 ( 0.1589, 1.1174) 0.9585
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Table 5

Simulation Settings - Number of Trials k and Patients Involved in Each Group nij

Total Number of Trials k[CKR]Type of Trial ABC AB AC BC nij

Simulation Scenario 1 k=24 1 3 10 10 100

Simulation Scenario 2 k=96 4 12 40 40 100
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Table 6

Summary of results of simulation studies - Case 1

Method δ̂AB s.d.(δ̂AB) 95% CI coverage
Average

Length of 95% CI

Scenario 1 - Small Number of Trials k = 24

Traditional-Direct 0.5952 0.7167 0.867 2.7041

Traditional-Indirect 0.5913 0.6312 0.941 2.5225

Bayesian-HOM 0.5796 0.4097 0.937 1.5704

Bayesian-HET 0.5736 0.4104 0.938 1.5712

CD[SREML] 0.5677 0.4057 0.897 1.3766

CD[STRUE] 0.5732 0.3850 0.955 1.5554

CD[SDL] 0.5718 0.4195 0.862 1.2550

CD[SBHOM] 0.5719 0.3925 0.940 1.5337

CD[SBHET] 0.5714 0.3927 0.943 1.5225

Scenario 2 - Large Number of Trials k = 96

Traditional-Direct 0.5843 0.3658 0.927 1.3950

Traditional-Indirect 0.6104 0.3118 0.962 1.2681

Bayesian-HOM 0.6126 0.2016 0.948 0.7663

Bayesian-HET 0.6126 0.2016 0.943 0.7701

CD[SREML] 0.5780 0.1915 0.936 0.7242

CD[STRUE] 0.5856 0.1900 0.966 0.7777

CD[SDL] 0.5762 0.1932 0.904 0.6536

CD[SBHOM] 0.5852 0.1920 0.959 0.7716

CD[SBHET] 0.5852 0.1918 0.954 0.7680

Stat Methodol. Author manuscript; available in PMC 2015 September 01.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Yang et al. Page 33

Table 7

Summary of results of simulation studies - Case 2

Method δ̂AB s.d.(δ̂AB) 95% CI coverage
Average

Length of 95% CI

Scenario 1 - Small Number of Trials k = 24

Traditional-Direct 0.6176 1.4759 0.849 5.4220

Traditional-Indirect 0.5905 0.8818 0.937 3.4753

Bayesian-HOM 0.6095 0.7450 0.887 2.4177

Bayesian-HET 0.5706 0.7360 0.913 2.6355

CD[SREML] 0.5793 0.6922 0.916 2.5426

CD[STRUE] 0.5820 0.6865 0.973 2.9649

CD[SDL] 0.6165 0.7289 0.811 2.0011

CD[SBHOM] 0.6323 0.7030 0.901 2.3815

CD[SBHET] 0.6044 0.6930 0.906 2.4856

Scenario 2 - Large Number of Trials k = 96

Traditional-Direct 0.6433 0.7431 0.924 2.8474

Traditional-Indirect 0.6287 0.4279 0.951 1.7643

Bayesian-HOM 0.6852 0.3540 0.899 1.1858

Bayesian-HET 0.6454 0.3436 0.960 1.3952

CD[SREML] 0.6200 0.3226 0.959 1.3164

CD[STRUE] 0.6261 0.3254 0.980 1.4823

CD[SDL] 0.6455 0.3227 0.864 0.9721

CD[SBHOM] 0.6636 0.3324 0.933 1.2085

CD[SBHET] 0.6279 0.3256 0.968 1.3876
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Table 8

Summary of results of simulation studies - Case 3

Method δ̂AB s.d.(δ̂AB) 95% CI coverage
Average

Length of 95% CI

Scenario 1 - Small Number of Trials k = 24

Traditional-Direct 0.4706 0.8260 0.868 3.0721

Traditional-Indirect 0.4250 0.4582 0.915 1.8193

Bayesian-HOM 0.4135 0.4400 0.855 1.4116

Bayesian-HET 0.4065 0.4388 0.853 1.4186

CD[SREML] 0.4834 0.4201 0.892 1.4924

CD[STRUE] 0.5010 0.4058 0.953 1.7241

CD[SDL] 0.3957 0.4510 0.787 1.2756

CD[SBHOM] 0.3750 0.4169 0.855 1.3811

CD[SBHET] 0.3753 0.4141 0.852 1.3824

Scenario 2 - Large Number of Trials k = 96

Traditional-Direct 0.4823 0.4132 0.912 1.5936

Traditional-Indirect 0.4472 0.2250 0.896 0.9051

Bayesian-HOM 0.4603 0.2131 0.807 0.6828

Bayesian-HET 0.4589 0.2097 0.822 0.6996

CD[SREML] 0.5057 0.1943 0.919 0.7724

CD[STRUE] 0.5261 0.1978 0.949 0.8620

CD[SDL] 0.4435 0.2029 0.749 0.6242

CD[SBHOM] 0.3959 0.2027 0.754 0.6954

CD[SBHET] 0.3950 0.2002 0.759 0.7042
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Table 9

Summary of results of simulation studies - Case 4

Method δ̂AB s.d.(δ̂AB) 95% CI coverage
Average

Length of 95% CI

Setting 1-33 Trials without Inconsistent Indirect Trials

CD[SREML] 0.5733 0.2984 0.9200 1.1122

CD[SREML]-adjusted 0.5780 0.3705 0.9230 1.4078

CD[STRUE] 0.5818 0.2955 0.9520 1.2139

Setting 2 - 33Trials with Inconsistent Indirect Trials

CD[SREML] 1.1425 0.3932 0.7190 1.4808

CD[SREML]-adjusted 0.6479 0.3934 0.9770 1.9963

CD[STRUE] 1.1001 0.3367 0.6260 1.2250
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