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Background

Function and expression

Arylamine N-acetyltransferases (NATS) are xenobiotic metabolizing enzymes for which
three distinct enzymatic activities have been described [1]. The first (EC 2.3.1.5) involves
the acetyl coenzyme A (CoA) dependent N-acetylation of arylamines and arylhydrazines, a
reaction usually associated with xenobiotic detoxification. The second (EC 2.3.1.118) is also
acetyl-CoA dependent and involves O-acetylation of N-hydroxyarylamines [2], typically
generated through N-oxidation of arylamines by cytochrome P450 enzymes. The third (EC
2.3.1.56) is an acetyl-CoA independent N,O-acetyltransfer performed on N-arylhydroxamic
acids, generating highly reactive mutagenic compounds that bind to DNA. NATSs have
important roles in the metabolism and detoxification of xenobiotics and therapeutic drugs,
and are implicated in cancer risk due to their role in the activation or detoxification of
carcinogens and their interaction with environmental chemicals [3-5].
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Two NAT genes (NAT1 and NAT2) have been characterized in humans, which differ in gene
structure, extent of genetic variation, pattern of developmental and tissue expression [6-8].
Their protein products have different physiological roles, and despite being structurally
similar, differences in key residues result in different substrate profiles/ affinities [6, 7, 9].
NAT1 is ubiquitously expressed, and therefore may be involved in homeostasis and
development, though levels of expression vary between cell types and tissues [3, 8, 10-12].
NAT2 expression is found predominantly in the liver, small intestine and colon tissues and
thus is regarded as a typical xenobiotic metabolizing enzyme [3, 8, 10, 12, 13], though basal
NAT2 mRNA levels can be found in most tissues [2].

Genomic locus organization and protein structure

The genes NAT1, NAT2 and the nonfunctional pseudogene NATP (AACP) are found on
chromosome 8p22 [2, 3, 14, 15]. NAT1 and NAT2 share 87.5% coding sequence homology,
and around 80% with the corresponding sequence in NATP [14]. The NAT1 gene contains
eight non-coding exons upstream of the intronless open reading frame (ORF), resulting in
differentially spliced transcripts with the same coding region that can be found in different
tissues [16—-18]. The NAT2 gene has one non-coding exon around 8.6kb upstream of the
intronless ORF [13, 17, 19]. The two genes have ORFs of 870 nucleotides in length and they
encode similar size proteins of 290 amino acids (~30 kDa) (Gene ID 9 and 10) [20, 21]. The
crystal structure of human NAT1 and NAT2 proteins, 3-dimensional modeling and docking
simulations have provided insight into the functional properties of the two different
isoenzymes, revealing a larger substrate binding pocket with a lip in NAT2 compared to
NAT1, likely contributing to different substrate specificities [9, 22].

Genetic polymorphisms and phenotype

Both NAT1 and NAT2 are polymorphic genes — to date 28 NAT1 alleles and 88 NAT2 alleles
have been assigned official symbols by the Arylamine N-acetyltransferase Gene
Nomenclature Committee, according to consensus guidelines [23-25]. NAT1*4 and NAT2*4
are the reference (or “wildtype”) alleles for the respective genes, and most variant alleles
differ from these by one or more single nucleotide polymorphisms (SNPs).

Many NAT1 alleles result in a phenotype equivalent to that of reference NAT1*4 (* 20, *21,
*23, *24, *25, *27), some confer a ‘slow’ acetylation phenotype (*14A, *14B, *17, *22), or
result in truncated proteins with no enzymatic activity (* 15, *19A, *19B), and others are
undetermined [26]. Despite these polymorphisms, looking across global human populations
the NAT1 sequence seems to be highly conserved, though variation in the 3’-untranslated
region (3’UTR) has been maintained [27-29].

In contrast, the NAT2 gene has a high frequency of functional variation, differing amongst
populations that are ethnically diverse, and has high levels of haplotype diversity [27, 28].
SNPs within the NAT2 gene can affect NAT2 function by resulting in reduced enzyme
stability, altered affinity for substrate, or a protein that is targeted for proteosome
degradation [2, 30]. NAT2 genotypes can be grouped into three different phenotypes; ‘slow
acetylator’ (two slow alleles), ‘intermediate acetylator’ (1 slow and 1 rapid allele), and
‘rapid’ acetylator (2 rapid alleles, sometimes referred to as ‘fast’) [3]. Some papers simply

Pharmacogenet Genomics. Author manuscript; available in PMC 2014 August 01.



1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

McDonagh et al.

Page 3

report rapid (any genotypes containing NAT2*4) and slow (any non-carriers of NAT2*4)
acetylators, for example; [31]. However, rapid alleles additional to NAT2*4 have been
identified recently (e.g. *11A, *12A-C, *13A, *18), and heterozygous (intermediate)
genotypes seem to display differences in phenotype compared to homozygous rapid (for
examples see Section 4. Caffeine). In addition, within the slow acetylator genotype group
there is heterogeneity in phenotype due to variation in enzyme activity conferred by
different alleles [2, 32—-34], which may affect the ability to detect significant associations
[35].

Early studies report a bimodal pattern of drug acetylation in a given population, and
sulfamethazine (SMZ) was described as a suitable probe drug to divide individuals into a
slow or rapid acetylator phenotype by plotting serum, urine or liver cytosol acetylation
percentages [36—-39]. Now, many studies genotype NAT2 variants to define acetylator
phenotype instead, and the SNPs investigated can vary between studies. An economic 4-
SNP genotyping panel was reported to accurately predict NAT2 acetylator phenotype in
different populations; rs1801280, rs1799930, rs1799931 and rs1801279 (Table 1) [40-42].
Early genotyping methods based on PCR-RFLP typically used Kpnl (cuts wildtype allele C
at position 481 rs1799929), Tagl (cuts wildtype allele G at position 590 rs1799930) and
BamHI (cuts wildtype allele G at position 857 rs1799931) enzymes to distinguish NAT2*4
from the slow alleles described as *5, *6 and * 7, respectively (for example [43, 44]) or
defined as *5B, *6A, and * 7B, respectively (for example [45, 46]). However, such
approaches may lead to misclassification as the three SNPs they detect are present in
numerous NAT2* alleles (see Table 1). The methodology is also unable to detect other NAT2
slow alleles, such as NAT2* 14A and *14B.

Several studies examining the diversity of NAT2 haplotypes between different populations
and ethnicities support the hypothesis suggesting the NAT2 slow acetylator phenotype was
positively selected for in the transition to an agricultural/ pastoral lifestyle from a hunter-
gatherer/ nomadic lifestyle, resulting in changes in diet and thus exposure to different
xenobiotics [27, 47-51]. For example, slow acetylator status is higher amongst Tajik
populations (agriculturists) compared to Kirghiz populations (nomads) in Central Asia [48],
and a high frequency of rapid or intermediate status is observed in hunter-gatherer
populations in Western/ Southern Africa (Kung San, Bakola Pygmy, Biaka Pygmy
populations) [28, 47]. In India, the frequency of slow acetylators (based on genotype) is
higher than rapid acetylators in areas where a vegetarian diet dominates, and the converse is
observed in areas where non-vegetarian diet is more frequent [52]. Worldwide NAT2 allele
frequencies are detailed in Table 1, and more detailed information regarding allele
frequencies in different populations can be found at http://www.pharmgkb.org/vip/PA18.

It should be noted that the phenotype associated with a particular variant or allele may be
specific to particular drugs, and that the designated phenotypes of NAT1 and NAT2 alleles
are not always consistent in all studies (discussed in detail in [30]). For example, compared
with the product of the NAT1*4 reference allele, the enzyme conferred by NAT1*11 (as
determined by genotyping 445G>A, 459G>A, 640T>G) displays increased acetylation
activity against p-aminobenzoic acid. However, this effect seems to be substrate specific, as
the difference in activity is not statistically significant with the carcinogen N-hydroxy-2-
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amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (N-OH-PhIP) [53]. Other studies report
contradicting results (as discussed in [53]). Another example of inconsistent phenotype is
seen with the NAT2* 7 signature variant rs1799931 857G>A, which displays decreased N-
acetylation of sulfamethazine (SMZ) and decreased O-acetylation of the carcinogen N-
OH-4-aminobiphenyl in vitro, indicating a slow acetylator phenotype. However O-
acetylation activity against N-OH-PhIP does not differ from NAT2 4 [54]. These results are
also reflected in cells which express the NAT2* 7B allele (rs1799931 857G>A and
rs1041983 282C>T) [54]. Regulatory mechanisms, substrate interaction, exposure to
xenobiotics and other environmental factors may also influence NAT1 and NAT2 allele
expression and activity [8, 55].

Another issue is determining phenotype from genotype. NAT2 alleles are often reported by
examining a single SNP, however genotyping for other positions is required to confirm that
it is the only variant in order to rule out other positions, and the number of SNPs covered by
studies differs (also discussed in [56]). This is particularly important for SNPs that are in
NAT2 alleles with different phenotypes, for example rs1799929 allele T (the signature SNP
for NAT2*11), is present in several slow and rapid alleles, but alone does not seem to affect
acetylation activity (see Table 1) [54].

Pharmacogenetics

Below we describe some of the important pharmacogenetic associations between NAT1 and
NAT2 genetic variants and drug response, arranged by drug indication. Pharmacogenetic
associations between NAT polymorphisms and drug responses are predominantly described
for NAT2, because of its role in the metabolism of numerous pharmaceuticals, and in Table
1 we focus on important genetic variants of NAT2. Further details of individual studies are
provided at http://www.pharmgkb.org/gene/PA18. Please note; some studies do not mention
NAT genotyping or the specific NAT enzyme involved in metabolism, simply reporting
acetylation phenotype. However, where possible, we provide specific details for studies that
do describe the specific enzyme or genetic variant.

1. Anti-infective agents

1.1 Isoniazid (INH)—The vast majority of NAT2 pharmacogenetic studies are those that
report an association (or lack of) with anti-tuberculosis (anti-TB) drug-induced
hepatotoxicity (ATDH), liver injury (DILI), or hepatitis. Standard therapy for TB infection
involves a treatment regimen of INH, pyrazinamide, and rifampicin, sometimes with
ethambutol or streptomycin, for 2 months, then INH and rifampicin for an additional 4
months [57, 58]. Latent infections can be treated with INH alone [57]. NAT2 has a major
role in the metabolism of INH, mediating its biotransformation to the metabolite acetyl-INH,
which is hydrolyzed to isonicotinic acid or acetyl-hydrazine [58-62]. Acetyl-hydrazine can
be further acetylated to the non-toxic diacetylhydrazine, or hydrolyzed to hydrazine [58-62].
Liver toxicity of INH treatment derives from INH itself (a hydrazine derivative) and its
metabolites, including acetyl-hydrazine, hydrazine and ammonia, and is thought to involve
the formation of reactive oxygen species that can cause necrosis and autoimmunity [58-60,
63, 64] and may also involve epigenetic effects [65].
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Due to reduced metabolism, NAT2 slow acetylators have reduced clearance and increased
exposure to INH and hydrazine compared to rapid acetylators [63, 66—70]. NAT2 slow
acetylator profile (or two slow NAT2 alleles) has therefore been associated with an increased
risk of hepatotoxicity/ liver injury/ hepatitis induced by anti-TB drug treatment as compared
to rapid acetylators (and sometimes intermediates) in many studies [43-46, 71-87].
Individual NAT2 SNPs have also been associated with ATDH (see Table 1).

However, there are numerous contradictory studies that do not find an association between
increased risk of ATDH and slow NAT2 acetylator genotype in TB patients [46, 88-92], or
NAT2 genotype with INH-induced adverse reactions in healthy individuals, despite an
association seen between genotype and acetylator phenotype [93]. Meta-analyses suggest
there is a significantly increased risk of anti-TB drug induced liver injury/ hepatotoxicity in
NAT?2 slow acetylators [94-97], but a publication bias for positive results in smaller studies
is reported [94, 95]. This, along with allele frequency, definition of hepatotoxicity, study
exclusion criteria, drug combination, other genetic variants, population ethnicity, genotyping
method, haplotype reconstruction/ allele definition method, and grouping of genotypes into
acetylator status, are all factors that may contribute to the differences seen in study outcome.

Despite these inconsistencies, a recent randomized control trial that compared standard INH
dosing (n=52) with pharmacogenetic-based dosing (n=47) in Japanese patients supports an
association between acetylator status (determined by NAT2 genotype) and INH treatment
outcome. A significant decrease in the incidence of DILI in slow-acetylators and a reduced
incidence of persistent positive TB culture (indicating efficacy) in rapid acetylators was
observed compared to the corresponding genotype groups on standard dose [98]. Combined,
the relative risk of unfavorable events was significantly lower in the pharmacogenetic-based
treatment group compared to the standard treatment group, suggesting that NAT2-based
dosing may be of clinical relevance to enhance INH treatment efficacy and reduce toxicity,
though further and more extensive studies in other populations are required [98].

FDA-approved drug labels for INH differ slightly between manufacturers. One does not
directly mention the NAT2 gene, but does mention that slow acetylation may result in higher
levels of the drug and therefore an increase in toxic reactions (Remedyrepack Inc.) [99].
Another mentions that rate of acetylation is genetically determined, different ethnicities
display differences in rate of inactivation, and that slow acetylation may result in higher
blood levels of the drug and therefore an increase in toxic reactions (Mikart Inc.) [100].
Rifater drug labels (a combination of rifampin, INH, pyrazinamide) contain similar
information [101]. All labels contain a boxed warning regarding hepatitis associated with
INH treatment, but none mention this with regard to NAT2 or genetic testing.

1.2 Sulfamethoxazole—Sulfamethoxazole is acetylated to N-acetylsulfamethoxazole, or
oxidized to sulfamethoxazole hydroxylamine by CYP450 enzymes (a reactive metabolite
which may result in toxicity) [102]. Recent studies have shown an association between
NAT2 genotypes and sulfamethoxazole pharmacokinetics (PK). In renal transplant patients
treated with an immunosuppressive regimen, significantly higher sulfamethoxazole
concentrations in slow acetylators (defined as homozygotes or compound heterozygotes for
NAT2*5, *6, or *7 variants) are seen compared to rapid acetylators (homozygous NAT2* 4/
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*4), though the clinical relevance of this is not clear as toxic side effects in this study were
not observed [103].

Pneumocystis fungi is commonly found in the respiratory tract of most healthy individuals,
however it can cause pneumonia in those who are immune-compromised or receiving
immunosuppressive drugs, and is one of the most common infections associated with
acquired immunodeficiency syndrome (AIDS) in HIV-infected patients [104]. Co-
trimoxazole (sulfamethoxazole combined with trimethoprim) is the choice medication for
prophylaxis and treatment of Pneumocystis pneumonia, however it is associated with several
significant side effects including skin rash, Stevens-Johnson syndrome and hepatic
impairment [104]. Different rates of co-trimoxazole induced adverse reactions are reported
between ethnicities/ races (higher in Caucasians/ White patients), indicating a possible
underlying pharmacogenetic association [105, 106]. Susceptibility to toxicity has been
investigated in relation to NAT2 genotype due to the role of NAT2 in sulfamethoxazole PK.
In a study of 48 Caucasian children under 3 years of age, 60% developed adverse reactions
when treated with co-trimoxazole for pneumonia infection [107]. NAT2 variants rs1799930
allele A and rs1799931 allele A were independently found at a significantly higher
frequency in children with co-trimoxazole-induced adverse drug reactions (ADRS)
compared to those without. Conversely, a significantly higher number of children with no
variant alleles were found in the group without ADRs (absence of variant alleles rs1799929
481T, rs1208 803G, rs1799930 590A, rs1799931 857A) [107]. In systemic lupus
erythematosus (SLE) patients in Japan who were treated with co-trimoxazole, slow
acetylator status (determined in this study by NAT2 genotypes *6A/*6A, *6A/* 7B, *7B/* 7B)
was associated with an increased risk of adverse events, compared to rapid acetylators
(genotypes NAT2*4/* 4, * 4/* 5B, * 4/*5E, *4/*6A, *4/*7B) [31]. However, when sequencing
the NAT2 gene, a matched case-control study excluding immuno-compromised patients
found no association with individual NAT2 variants or slow acetylator genotype and risk of
hypersensitivity to co-trimoxazole [108]. Some adverse reactions with underlying auto-
immune responses are not concentration-dependent, for example carbamazepine-induced
Stevens Johnson Syndrome for which individuals with the HLA-B*5201 allele are at high
risk [109]. This may therefore be a factor underlying the lack of association between NAT2
genotype and hypersensitivity to co-trimoxazole.

Side effects of co-trimoxazole are higher in those with HIV infection compared to those
without (Septra drug label) [108, 110], though association with NAT2 acetylator status and
toxicity in HIV patients has been inconsistent. In the majority of studies, no association with
co-trimoxazole hypersensitivity (fever and/ or rash, including Stevens-Johnson syndrome)
and NAT2 slow acetylator genotype or individual NAT2 slow allele frequencies in HIV
patients is reported [111-114]. A significant association with risk of co-trimoxazole—
induced cutaneous reactions was however seen in AIDS patients with a combined NAT2
slow acetylator and GSTM1 null/null genotype [114]. Using dapsone or caffeine as a probe
drug, no association with slow acetylator phenotype and co-trimoxazole hypersensitivity is
observed in HIV patients [112-115] though one study reports HIV patients who experienced
co-trimoxazole hypersensitivity were significantly more likely to have a slow acetylator
phenotype than patients who did not experience toxicity [116]. Meta-analyses show no
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significant difference in the frequency of slow acetylator phenotype (combining 4 studies) or
genotype (combining 3 studies) in HIV patients with or without hypersensitivity to co-
trimoxazole [111, 112].

It should be noted that discordance between NAT2 acetylator genotype and acetylator
phenotype has been reported in HIV patients [112-114]. Lower NAT2 activity has been
observed in HIV-infected subjects compared to uninfected subjects [117, 118]. Genotyping
may also be a factor influencing this discrepancy. In one study, discrepancy between
genotype and phenotype (as measured by dapsone as a probe drug) in 8 patients could be
resolved in half of the cases by sequencing for other variants, the others were slow
genotypes with a borderline rapid phenotype — highlighting the importance of looking at
variation across the NAT2 gene rather than a handful of variants [112].

2. Cardiovascular and hematology agents

Hydralazine—Hydralazine is a vasodilator used to treat hypertension [119, 120]. More
recently, due to its epigenetic effects, one group has investigated its use in combination with
valproic acid in clinical trials with the hypothesis of reducing tumor resistance and
increasing anti-cancer chemotherapy efficacy [121-123]. Its beneficial epigenetic effects in
cancer cells are thought to be as an inhibitor of DNA methyltransferase (DNMT) enzymes in
order to reactivate tumor suppressor genes silenced by DNA methylation [124], and may
also inhibit histone methyltransferase activity [123] and histone acetyltransferases [65].
Hydralazine is thought to be metabolized by two pathways, both of which involve
acetylation [125]. One is via direct acetylation, forming the metabolite 3-methyl-s-triazolo
[3,4-a]-phthalazine (MTP), and 3-OH-MTP [125, 126]. Another is via oxidation to form an
unstable intermediate compound that is acetylated to form N-acetylhydrazinophthalazine
(NACHPZ) [125].

Acetylation status has been associated with PK parameters of hydralazine. After oral dose,
rapid acetylators display lower hydralazine plasma concentrations and area under the
concentration-time curve (but no real difference in drug half life) compared to slow
acetylators [119, 125, 127]. MTP/ hydralazine ratio can be used to divide a population into
slow and rapid acetylators, with a lower and higher ratio, respectively [128]. In one study,
patients with a slow acetylator genotype displayed significant reductions in blood pressure
measurements at 24 hours before and after hydralazine, whereas significant effects were not
observed in rapid or intermediate acetylators [129]. Three out of a total of four patients who
presented hydralazine-induced adverse reactions had a slow acetylator genotype [129].
However, evidence for hydralazine dose adjustment based on acetylator status is not clear.
In recent clinical trials in cancer patients, rapid acetylators (according to SMZ-acetylator
phenotype) are given more than double the dose of hydralazine than that of slow acetylators.
This resulted in similar plasma levels between the two acetylator groups in two studies [122,
127], but significantly higher plasma levels in rapid acetylators in a third study by the same
group [121]. In a separate study examining blood pressure and cardiac output, using half
doses of hydralazine in SMZ-slow acetylators was ineffective at changing peripheral
resistance [130]. A model incorporating multiple clinical factors including acetylator status
may better predict dose required for better response to hydralazine [131]. The FDA-
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approved BiDil® (contains isosorbide dinitrate and hydralazine hydrochloride) is indicated
for the treatment of heart failure in self-identified Black patients (though the genetics behind
the mode of efficacy is to our knowledge currently unknown), and the drug label contains
information regarding acetylation status explaining that rapid acetylators have lower
exposure to the drug, however changes to dosing according to this are not mentioned [132].

Hydralazine treatment is associated with an increased risk of systemic lupus erythematosus
(SLE) [133, 134], and this has been associated with acetylator status, though again lacks
clear evidence (discussed in [38]). Acetylator status may be related to disease severity, with
an increased number of lesions seen in slow SMZ acetylators with discoid LE and SLE [38].
Studies using bacterial strains suggest that hydralazine is detoxified by acetylation to MTP
[126]. Other studies also suggest that drug-induced toxic side effects are likely due to
hydralazine itself rather than its metabolites — hydralazine and INH both inhibit complement
component C4, whereas MTP and N-acetyl INH have little inhibitory effect - inhibitory
effects on the complement system may contribute to impaired clearance of immune
complexes and thus to SLE [7, 135, 136]. Development of anti-nuclear antibody positivity in
patients treated with hydralazine has been reported to be more likely and more rapid in slow
acetylators compared to rapid acetylators, with occurrence of lupus more likely in slow
acetylators [119, 125]. However, further evidence and studies determining the genetic
variants behind this association are required. Another potential mechanism behind
hydralazine-induced lupus is the reduction of B cell receptor gene rearrangements required
for self-tolerance shown in mice models, and transfer of hydralazine treated bone marrow B
cells to naive mice caused autoantibody production compared to vehicle control transferred
cells [137]. Slow acetylators may have reduced clearance of hydralazine and thus higher
repression of this mechanism compared to rapid acetylators, but again this requires
investigation. Another theory suggests hydralazine-derivative (including todralazine and
INH) -induced liver injury is due to inhibition of histone acetylation (carried out by histone
acetyltransferase (HAT) enzymes), affecting transcription and inhibiting proliferation and
thus impairing liver regeneration after hepatotoxicity has occurred [65]. This is supported by
slow acetylator mouse models in which todralazine treatment did not induce liver failure on
its own, however in mice with anti-CD95 induced liver injury, resulted in mortality, smaller
livers and impaired histone acetylation compared to controls despite similar alanine
transaminase (ALT) levels [65]. The role of HATS, their cofactors, and histone acetylation
in liver regeneration after toxic injury has been shown in other studies [138, 139]. This may
be another contributing factor to drug-induced liver injury that affects association with
NAT2 genotype. Toxicity of hydralazine and related compounds is likely a combination of
formation of reactive species, triggering of immune responses/ autoimmunity, and
epigenetic effects.

3. Pain, anti-inflammatory and immunomodulating agents

Sulfasalazine—Sulfasalazine is indicated for the treatment of ulcerative colitis, Crohn’s
disease and as a second-line treatment for arthritis (DrugBank [140-142]), [143]. Itisa
combination of 5-aminosalicyclic acid and sulfapyridine linked together by an azo bond
[125, 143]. Gut bacteria split the bond, a mechanism thought to deliver the two compounds
at higher concentrations to the colon than if administered alone [143, 144]. The effective
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derivative of sulfasalazine is considered to be 5-aminosalicylic acid, the majority of which
remains in the colon where it is subject to N-acetylation by NAT1 [125, 145]. The second
derivative, sulfapyridine, is readily absorbed and converted to N-acetyl-sulfapyridine, a
process influenced by NAT?2 acetylator status [125, 143].

Sulfasalazine PK is not influenced by NAT2 polymorphisms, however, metabolism of
sulfapyridine to N-acetyl-sulfapyridine is significantly reduced in slow acetylators (carriers
of two variant alleles NAT2*5B, *6A, *7B or *5, *6 and *7) compared to both intermediate
(one variant and one NAT2*4 allele) and rapid acetylators (NAT2*4/*4) [146, 147]. Slow
acetylators have higher concentrations and elimination half-life of sulfapyridine (based on
genotyping NAT2 SNPs rs1041983, rs1801280, rs1799929, rs1799930, rs1799931) [148].
Plotting of the metabolic ratio N-acetyl-sulfapyridine/ sulfapyridine against NAT2 genotype
gives two distinct groups — rapid and slow acetylators [148]. There may therefore be an
association between increased risk of sulfasalazine-induced toxicity and higher
concentrations of sulfapyridine observed in slow acetylators [125, 143]. A prospective study
in Japan of female rheumatoid arthritis (RA) patients treated with sulfasalazine identified 4
patients who had adverse events in a one year period - none had the NAT2*4 allele, each
carrying two variant alleles [149].

Paraxanthine, a metabolite of caffeine, can undergo acetylation by NAT2 to form 5-
acetylamino-6-formylamino-3-methyluracil (AFMU) (see PharmGKB Caffeine Pathway,
Pharmacokinetics http://www.pharmgkb.org/pathway/PA165884757) [150]. Caffeine can be
used as a non-toxic probe drug in vivo for predicting acetylator phenotype; by measuring
metabolite ratio AFMU/1-methyl xanthine (1X) in urine after caffeine consumption, a bi- or
tri-modal pattern in a given population is observed [39, 115, 151]. AFMU/AFMU+1X+1-
methyluric acid (1U), AFMU+5-acetylamino-6-amino-3-methyluracil (AAMU)/AFMU
+AAMU+1X+1U or AAMU/ AAMU+1X+1U metabolite ratios can also be used to
determine acetylator phenotype [152-156]. Variability in NAT2 activity (as determined by
caffeine AFMU/AFMU+1X+1U ratio) between different populations exists - significantly
higher NAT2 activity is observed in Koreans compared to Swedes, and this may be due to a
higher proportion of the NAT2*4 rapid allele in Koreans and the higher frequency of slow
acetylator genotype in Swedes [153]. Some studies report good concordance between
acetylator phenotype determined by caffeine metabolite ratio and NAT2 genotype [155,
157], however others show discordance [114, 154, 158-161]. These discrepancies may be
due to differences in sample collection and handling, laboratory techniques and conditions,
genotyping method, differences in assignment of slow/intermediate/rapid to genotypes based
on NAT2 allele combinations, whether heterozygotes are analyzed independently, as well as
other genetic, disease state, environmental factors or use of drugs that could affect the
caffeine metabolism pathway (as discussed in [30, 158, 160, 162—-164]). In one study, up to
54% of the variation in acetylation activity determined by caffeine test could be explained
by NAT2 genotype (homozygous wildtype, homozygous variant or heterozygous determined
by PCR-RFLP), though phenotype variation was seen with homozygous wildtype [162].
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Due to their role in the activation or deactivation of xenobiotics, the NAT1 and NAT2
enzymes have been implicated in chemical carcinogenesis pathways. Polymorphisms in the
NAT1 and NAT2 genes have therefore been investigated for an association with cancer risk,
though findings are inconsistent likely due to the complex nature of cancer etiology and the
multiple factors that contribute to susceptibility.

For studies examining the risk of bladder cancer, some report a significant association with
NAT2 slow acetylator genotype/ phenotype (e.g. [165]), others do not after adjusting for
multiple factors [35, 166]. Recent GWAS meta-analyses reveal multiple risk loci, including
NAT2 [167]. A meta-analysis of cases in the general population (n=5594) showed a
significant association between NAT2 slow acetylation with risk of bladder cancer
(OR=1.37, C.1.=1.22-1.54, p=2x107") [168]. The rs1495741 AA genotype (located
downstream of the NAT2 gene and associated with the slow acetylator status) was
significantly associated with increased risk of bladder cancer in Europeans compared to
those with AG or GG genotype [169], and a GWAS meta-analysis consisting of 12,270
cases and 55,059 controls confirmed the association with the A risk allele, along with
numerous other SNPs at other loci that contribute to risk [167]. Furthermore, both an
additive and multiplicative association was shown between smoking and rs1495741 allele A
with risk of bladder cancer [167]. This GWAS meta-analysis study did not identify risk
alleles associated with NAT1, and a meta-analysis of 11 studies (n=3311 cases, n=3906
controls) found no association between bladder cancer and the NAT1*10 allele [170].
However, NAT1* 14A has been associated with increased risk of bladder cancer in Lebanese
men [171-173].

Associations between NAT1/2 variants and susceptibly to other cancers also lack clarity or
require further study [5, 12, 174, 175]. For example, NAT2 slow acetylator genotype may be
a small, low penetrance risk factor for head and neck cancer [176]. Mixed results are
reported for NAT2 genotype and risk of breast cancer [177, 178] and esophageal cancer
[179-181]. The InterLymph Consortium found no association between NAT2 phenotype
(based on genotype, 4421 cases, 4095 controls) or NAT1*10 (1528 cases, 1586 controls) and
risk of non-hodgkin lymphoma [182].

Gene-environment interactions for cancer risk have been reported in an attempt to identify
risk factors [175]. For example, individuals with a NAT1 rapid acetylator genotype (defined
as homozygous for alleles NAT1* 10, *11, or these alleles in combination with NAT1* 3, *4),
and AHR rs2066853 genotype GA or AA, and high meat consumption were found to have
an increased risk of concurrent adenomatous and hyperplastic colorectal polyps [183].
Conversely, meta-analyses show no statistically significant interaction between NAT1
acetylator phenotype and meat intake (2 studies), or NAT2 acetylator phenotype and meat
intake (3 studies), with relation to risk of colorectal cancer [184], though this may be due to
low penetrance and the need to include multiple genetic risk factors.

As well as combinatorial environmental/ genetic factors, reaction context is also an
important consideration - examining the site of action and specific reaction by NAT1/ NAT2
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may make these associations clearer and more consistent. For example, O-acetylation by
NAT1 can result in the formation of nitrenium ions from the unstable N-acetoxyarylamine
which can react with DNA to cause mutations, whereas N-acetylation by NAT1 detoxifies
aromatic amines [2, 185]. Similarly, O-acetylation of N-hydroxy-heterocyclic amine
carcinogens by NAT2 in the colon can explain the association between rapid acetylator
phenotype and colorectal cancer risk in those who consume well-done meat, whereas
association with slow acetylator phenotype and bladder cancer in smokers or those exposed
to chemical dyes can be explained by N-acetylation competing with N-hydroxylation by
cytochrome P450 enzymes that produce aromatic amine carcinogens in the liver [2]. N-
acetylation of an aryldiamine (for example benzidine) could increase risk of bladder cancer
due to enhancement of N-hydroxylation, whereas N-acetylation of an arylmonoamine may
have the opposite effect [2, 168]. It should also always be kept in mind that ‘slow’ and
‘rapid’ acetylator phenotype is not homogenous, and that if the underlying genetic
polymorphisms affect enzyme-substrate affinity, then the resulting association may only be
seen with some drugs/ chemicals and exposure levels [2]. NAT1 activity is influenced by
substrate-dependent down-regulation, the redox state of cells, and epigenetic regulation [12],
thus these may contribute to the lack of consistency seen between a direct association
between NAT1 genotype and cancer risk, along with interacting environmental factors, other
genetic polymorphisms, inconsistencies in allele-phenotype definitions or genotyping
methods. For instance, attributing the rapid acetylation phenotype to the NAT1*10 and *11
alleles remains an issue of controversy among investigators and the phenotypic effects of
many NAT1 polymorphisms (especially those in the 3' untranslated region of the gene) are
still not well understood [2]. Cell-specific expression of alleles, alternative NAT1 transcripts
driven by different promoters or alternative polyadenylation site use may also be a factor, or
if SNPs are missed in genotyping, for example misclassification of NAT1* 10B for NAT1* 10
[2, 185].

Overexpression of NAT1 is a common finding in estrogen receptor positive breast tumors [7,
186]. Cells over-expressing NAT1 display resistance to etoposide in vitro [187], and thus
NAT1 activity may have implications in response to anti-cancer therapy - polymorphisms in
the NAT1 gene that result in changes in enzyme activity could affect drug response, though
this needs to be investigated. These, and studies that show an association between increased
NAT1 expression/ activity and cancer cell proliferation, support the use of specific NAT1
probes as potential diagnostic tools and the development of direct NAT1 inhibitors as
potential leads for cancer therapeutics [4, 7, 12, 187-191]. Though not their primary target,
several current chemotherapeutics have been shown to inhibit NAT1 or N-acetyltransferase
activity in vitro in human cancer cells; cisplatin [192], tamoxifen [193, 194].

Amonafide has anti-cancer properties but is no longer in clinical development due to failing
to reach phase Il clinical trial primary end points [195]. The drug displayed variable and
unpredictable toxic effects [196]. NAT2 phenotype was one of the underlying genetic factors
contributing to variation in myelosuppression severity; rapid acetylators (determined by
caffeine test) were susceptible to greater toxicity and counterintuitively displayed higher
plasma concentrations of amonafide. This was thought to be due to production of the
metabolite N-acetyl amonafide which inhibits the oxidation of amonafide by CYP1A2 [196-
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198]. Thus, higher and lower doses from the standard dosage were recommended in slow
and rapid acetylators, respectively, and a pharmacodynamic model incorporating acetylator
phenotype, gender and pre-treatment white blood cell count was developed [199, 200]. The
story from this drug highlighted the importance of genetic influence on both drug
pharmacokinetics and pharmacodynamics [196, 200].

NAT2 polymorphisms/ acetylator phenotype has been associated with risk of other complex
multifactorial diseases (including asthma, Parkinson’s Disease and diabetes), however the
associations are inconclusive and further discussion of these is beyond the scope of this
review [201, 202].

NAT1 and NAT2 are polymorphic enzymes with important roles in the deactivation or
activation of numerous xenobiotics in humans. Due to expression of the isoenzyme in the
liver, the genetic variants of NAT2 have primarily been associated with drug metabolism,
response and toxicity. NAT2 genotype confers a slow, intermediate or rapid acetylation
phenotype, resulting in differences in drug metabolic rates and susceptibility to drug
toxicity. However, studies show inconsistencies for which NAT2 and NAT1 variants are
genotyped and in the pooling of variants into phenotype groups, thus these factors along
with how a patient’s disease phenotype is defined, environmental factors, drug-drug
interactions, and acetylation reaction context may contribute to the contradictory evidence
for some pharmacogenetic and disease associations. Further studies are required to help
determine whether genotyping of NAT2 is clinically useful for determining a patient’s
dosage for efficacy of treatment and to avoid drug toxicity.
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