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Abstract

In India, oral cancer has consistently ranked among top three causes of cancer-related deaths, and it has emerged as a top
cause for the cancer-related deaths among men. Lack of effective therapeutic options is one of the main challenges in
clinical management of oral cancer patients. We interrogated large pool of samples from oral cancer gene expression
studies to identify potential therapeutic targets that are involved in multiple cancer hallmark events. Therapeutic strategies
directed towards such targets can be expected to effectively control cancer cells. Datasets from different gene expression
studies were integrated by removing batch-effects and was used for downstream analyses, including differential expression
analysis. Dependency network analysis was done to identify genes that undergo marked topological changes in oral cancer
samples when compared with control samples. Causal reasoning analysis was carried out to identify significant hypotheses,
which can explain gene expression profiles observed in oral cancer samples. Text-mining based approach was used to
detect cancer hallmarks associated with genes significantly expressed in oral cancer. In all, 2365 genes were detected to be
differentially expressed genes, which includes some of the highly differentially expressed genes like matrix
metalloproteinases (MMP-1/3/10/13), chemokine (C-X-C motif) ligands (IL8, CXCL-10/-11), PTHLH, SERPINE1, NELL2,
S100A7A, MAL, CRNN, TGM3, CLCA4, keratins (KRT-3/4/13/76/78), SERPINB11 and serine peptidase inhibitors (SPINK-5/7).
XIST, TCEAL2, NRAS and FGFR2 are some of the important genes detected by dependency and causal network analysis.
Literature mining analysis annotated 1014 genes, out of which 841 genes were statistically significantly annotated. The
integration of output of various analyses, resulted in the list of potential therapeutic targets for oral cancer, which included
targets such as ADM, TP53, EGFR, LYN, CTLA4, SKIL, CTGF and CD70.
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Introduction

About 7.6 million cancer deaths were estimated in 2008

worldwide, out of which 0.64 million people died from cancer in

India [1]. Oral cancer has emerged as one of the top three causes

of cancer-related deaths in South Asian countries like India,

Bangladesh, and Sri Lanka [1]. According to the latest cancer

statistics reported from India, oral cancer is the top-most cause of

cancer related deaths in men, and it contributes about 23% of

deaths caused by all cancer types in men [2]. India has become an

epicenter of oral cancer-related mortalities, and according to a

rough estimate more than half of the worldwide oral cancer

mortalities are from India [1]–[3]. Oral cancer is currently

managed through surgery, radiation and chemotherapy. Cetux-

imab is the only approved targeted therapy available for oral

cancer, which targets epidermal growth factor receptor (EGFR)

involved in cell growth. Targeted therapies have shown their

usefulness in managing various cancers, mostly because of its

ability to reduce toxicities by several folds when compared with

chemotherapeutic drugs. The acquisition of resistance to targeted

cancer therapies due to an emergence of various genetic and/or

non-genetic mechanisms, have seriously undermined their clinical

application [4]–[6]. The challenge of emergence of drug resistance

in cancer cells can be addressed by - (a) targeting multiple targets

by combination therapy, (b) designing a drug against molecular

target(s) which are involved in diverse pathways critically linked

with survival, growth and proliferation of cancer cells, or by the

combination of (a) and (b).

The current study, attempts to identify potential therapeutic

targets for oral cancer that are associated with multiple cancer

hallmarks, which can facilitate rational discovery of effective

therapies for oral cancer. We have used microarray datasets

available from NCBI-GEO database, to study transcriptional

profiles specifically altered in oral cancer. We have integrated

dataset from two studies with similar experimental design (i.e. oral

cancer vs. control) to derive meaningful results from underlying

dataset with improved statistical power. The direct integration of

dataset from different studies is challenging due to existence of

myriad sources of non-biological variations, often referred as

‘batch-effects’. Such probe-level integration of dataset from two

different studies is possible by removing batch-effects by cross-

platform normalization [7]. Different analytical methods have

been integrated to enable logical selection of the most promising

therapeutic targets for oral cancer (Fig. 1). We have used gene
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dependency network analysis to understand topological properties

under cancer and control condition, the genes with marked

topological differences could be regarded as therapeutic target

genes [8]. Causal reasoning analysis was used for identification of

potential genes, which can explain differential gene expression

changes in oral cancer. The development of cancer is a multistep

process enabled by occurrence of key hallmark events like

sustaining proliferative signaling, evading growth suppressors,

resisting apoptotic cell death, enabling replicative immortality,

inducing angiogenesis, activating invasion, metastasis and inflam-

mation [9]. Novel literature mining method has been used to

associate these cancer hallmarks to genes of our interest. In the

present study, the diversity of cancer hallmarks associated with a

gene, along with impressive topological profile in dependency-

and/or causal-network, qualifies a gene to be a potential drug

target for oral cancer.

Large-scale integration of datasets from oral cancer gene

expression studies had been attempted in the past with an

objective to mine transcriptional signatures linked with neoplastic

transformation [10] or survival [11]. Recently, it has been used to

identify frequent somatic drivers for oral carcinogenesis [12]. The

task of identifying potential therapeutic targets by integrative

analysis, has been attempted for the first time in the current study.

With a surge in deaths caused by oral cancer especially in Indian

subcontinent region, there is an urgent need to expedite our efforts

to find novel therapies for oral cancer. The current study, present

a logical framework to find potential therapeutic targets that are

associated with multiple cancer hallmarks, and targeting them is

Figure 1. Process flow of identification of therapeutic targets for oral cancer.
doi:10.1371/journal.pone.0102610.g001
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thus expected to be a perfect answer to challenges associated with

acquired drug-resistance to targeted therapies.

Materials and Methods

Data source
The gene expression data of oral cancer patients and normal

persons (control samples), reported in two different studies [13],

[14] were used in the current work (Table 1).

Direct Data Integration
The gene expression data generated by different experiments

cannot be combined directly for downstream analysis, even after

processing with similar normalization method, because of the

inherent non-biological experimental variations or ‘‘batch-effects’’.

The direct integration of data is possible after processing datasets

with appropriate normalization method followed by chip annota-

tion and the post processing operations required for removal of the

batch-effects with the help of batch correction methods.

Normalization. The raw data or CEL files used in the gene

expression profiling study by Peng et al. [14] were downloaded

from the NCBI gene expression data repository (NCBI-GEO), and

the probe level summaries were obtained by Robust Multichip

Analysis (RMA) algorithm [15] implemented in Affymetrix

Expression Console software (version 1.3). The RMA algorithm

fits a robust linear model at the probe level to minimize the effect

of probe-specific affinity differences. The normalized dataset,

deposited in NCBI-GEO by Ambatipudi et al. [13], was

downloaded and used in the current study. The details of

normalization procedures used for this dataset can be found in

related publication [13].

Chip Annotation. The Netaffyx annotation file HuEx-1_0-st-

v2.na33.1.hg19.transcript.csv was downloaded from http://www.

affymetrix.com/, and used as a primary source of annotation for

HuEx-1_0-st array dataset. Custom parser was written in perl to

extract most relevant columns like Probeset ID, Representative

Public ID, Entrez GeneID from these annotation files. The

annotation file for Agilent-014850 Whole Human Genome

Microarray 4x44K G4112F (Probe Name version) was download-

ed from the corresponding platform file (GPL6480) available from

the NCBI-GEO. Custom parser was written in perl to extract

Entrez GeneID and Gene Symbol mapped against corresponding

probe IDs.

The chip annotation was further enhanced with the help of

gene2accession file downloaded from the NCBI ftp site (ftp://ftp.

ncbi.nlm.nih.gov/gene/DATA). The gene2accession file helped us

in finding missing Entrez GeneIDs for the probes based on other

available information like rna/genomic nucleotide accession id

which is a common field between annotation file and gene2acces-

sion. We could annotate 30,932 probes in Agilent-014850 Whole

Human Genome Microarray 4x44K G4112F (Probe Name

version) and 38,349 probes in HuEx-1_0-st (transcript version)

with the corresponding Entrez GeneIDs. Probes without annota-

tion were not considered for downstream analytical processes.

Dealing with many-to-many relationship between Probes

and Genes. There is not always one to one correspondence

between microarray probes and associated genes, which creates

ambiguity while analyzing results of downstream statistical and/or

functional analysis. Two types of specific cases arise because of the

many-to-many relationships between probes and genes, viz. (a) one

probe is mapped to more than one GeneID (e.g. Probe1-.

BIRC5, BIRC3), due to a non-specific nature of the probe, and (b)

more than one probe can map to same GeneID, often referred as

‘‘sibling’’ probes (e.g. Probe1-. BIRC5, Probe2-. BIRC5), which

usually occurs due to clustering nature of secondary databases

(UniGene, RefSeq) or due to duplicate spotted probes.

Considering only probes with one-to-one relationship would be

the simplest analytical approach; however, it would mean losing

information. Ramasamy et al. [16] recommended replacing

probes mapped to multiple genes with new record for each

GeneID. We have written custom perl script for ‘‘expanding’’ the

probes with multiple genes to deal with non-specific probes, which

maps to more than one gene. This creates new record for each

GeneID.

The information spread across sibling probes was consolidated

with the help of a robust statistic, the Tukey’s biweight [17]. The

median related Tukey’s biweight is a robust statistic, which is

known to have excellent behaviour in the presence or absence of

outliers, because of these attributes, it was implemented in

MAS5.0 algorithm used for probe level summarization [18].

Custom scripts were written in perl and R to deal with sibling

probes, and the R method ‘tbrm()’ available with dplR package

was used to compute Tukey’s biweight robust mean. Groups of

sibling probes were identified, and these records were replaced by

single representative record in which expression values spread

across sibling probes were replaced by Tukey’s biweight robust

mean; this process was repeated for every sibling probe group.

After resolving many-to-many relationship between probes and

genes, 19,593 and 23,407 probes/genes were retained in Agilent-

014850 Whole Genome and HuEx-1_0-st arrays, respectively.

Both datasets were further merged based on common field, i.e.

Entrez GeneID. The merged dataset consisted of 18,927 probes/

genes, 84 cancer samples and 27 control samples. This merged

dataset was used for the subsequent batch correction process.

Batch Correction. We used two analytical methods, i.e.

ComBat [19] and XPN [20] to deal with non-biological variations

or batch-effects. These methods were reported to outperform

other cross-platform normalization techniques [21], [22].

The R implementation of ComBat (www.bu.edu/jlab/wp-

assets/ComBat/) was used for removing batch-effects from the

Table 1. Dataset Details.

DataSet
No. of Cancer
Samples

No. of Control
Samples Platform

NCBI-GEO
Accession Study Reference

DS-1 57 22 Affymetrix Human
Exon 1.0 ST Array – Gene
Version (HuEx-1_0-st)

GSE25099 Peng et al. [14]

DS-2 27 5 Agilent-014850 Whole Human
Genome Microarray 4644K
G4112F (Probe Name version)

GSE23558 Ambatipudi et al. [13]

doi:10.1371/journal.pone.0102610.t001
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two datasets. Similarly normalized datasets were processed by

XPN method, implemented in CONOR package [22] available

with the CRAN package repository (cran.r-project.org/web/

packages/). The normalized and batch corrected data will allow

probe/gene level integration of data from two studies, thus

facilitate a generation of the robust hypotheses on data with

improved statistical power.
Assessment of Quality of Batch Correction. The batch

corrected dataset was assessed for attributes like distribution of

sample types and change in experimental power. This was done

for choosing among ComBat and XPN, as a batch correction

method which suits best for our dataset. R implementation of

Principal Component Analysis - PCA (i.e. prcomp() method) was

used for the assessment of distribution of cancer and control

samples between two dataset used in the current study [13], [14].

The R statistical package ssize() was used for estimation of

experimental power [23].

Differential expression analysis
The normalized and batch corrected dataset was used for

further analysis. The differential expression analysis was per-

formed using LIMMA package (version 3.14.4) with least-squares

regression and empirical Bayes moderated t-statistics [24], [25].

The design matrix was constructed to represent the layout of the

cancer and control samples in the data-matrix. The difference in

expression levels of samples in two conditions was studied by

setting contrast ‘cancer-control’. P-values were adjusted for

multiple comparisons using the Benjamini Hochberg false

discovery rate correction or ‘fdr’ [26]. Genes with the adjusted

p-value less than or equal to 0.05 and the fold change threshold of

1.5 were considered as differentially expressed, in the current

study.

Network Analysis
The R statistical package ‘GeneNet’ (version 1.2.7) [27] was

used to infer large-scale gene association networks among

differentially expressed genes obtained in our study. The

association networks inferred by GeneNet are graphical Gaussian

models (GGMs), which represent multivariate dependencies in

bio-molecular networks by partial correlation. This method

produces a graph in which each node represents a gene, and the

edges represent direct dependencies between connecting nodes/

genes. This method also computes statistical significance value (p-

value) along with fdr corrected/adjusted q-value for the edges in

GGM network, which provides a mechanism to extract only

significant edges in the network. Dependency network was

generated for each condition independently. The threshold of q-

value less than or equal to 0.05, was used to filter out non-

significant edges in the final network. Custom perl scripts were

written to extract connectivity or degree statistics of networks for

cancer and control samples.

Causal Reasoning
Causal reasoning attempts to explain the putative biological

causes of the observed gene expression changes based on directed

causal relationships. Causal relationships can be represented as

‘causal graphs’, which consist of nodes (gene/biological process),

and directed edges depicting the relationship between connecting

nodes. Biological regulation can also be represented in such causal

graphs in the form of signed edges, with the sign indicating

whether a change in the causal variable affects the second variable

positively or negatively.

In the current study, we have applied causal reasoning method

proposed by Chindelevitch et al. [28], to retrieve the list of

statistically significant upstream hypotheses, which explains

observed gene expression changes in our study dataset. This

method identifies putative upstream hypothesis based on a set of

causal relationships represented as a causal graph, and ranks such

a hypothesis by computing their cumulative score based on nature

of prediction (correct = +1, incorrect = 21, ambiguous = 0) made

by hypothesis in the causal graph. This method also computes

statistical significance of each score and output’s hypotheses that

are statistically significant.

The R-code of causal reasoning method [28] requires three

inputs viz. (i) Causal Network Entities: a tab-delimited file

consisting of information about entities of causal network, in our

study it consisted of the list of genes, which are part of causal

network, (ii) Differentially Expressed Genelist: a tab-delimited file

consisting of two columns (i.e. gene name and direction of

regulation, which is 1 or 21 for up- or down-regulation), (iii)

Causal Network Relationships: a tab-delimited file consisting of

constituting entities (i.e. source gene to target gene) and type of

relationship between entities (type: ‘‘increase’’ or ‘‘decrease’’

describes the causal effect of source on target). The output files

produced by this method are: (i) HypothesisTable.xls (see Text S4):

a tab-delimited file, each row of which is a hypothesis (i.e. an entity

in the graph with a direction of + or 2 and a number of

downstream steps that are taken to predict transcripts) and column

consists of score, the name and number of correct, incorrect, and

not explained transcripts as well as p-values and Bonferroni

corrected p-value [29], [30] as a conservative estimate of

significance under multiple testing correction (ii) XGMML files:

causal sub-graphs of significant hypothesis detected by the method

are generated in xgmml format.

Causal Graph Creation. We have used causal relationship

embedded in KEGG pathways [31] as a source of generating the

causal graph in the current study. KEGG API was leveraged as a

framework for parsing entities and relationships from kgml file of a

pathway. KEGG pathways for human were considered for

collecting information required to construct the causal network.

The kgml file contains entity list (gene/compound etc.) and

relationship information (activation/inhibition/expression etc.).

We have considered ‘activation’ and ‘inhibition’ along with entities

involved in such a relationship for constructing the causal graph.

The final causal graph generated from KEGG pathways consisted

of 11,586 causal relationships.

Post processing of XGMML files and generation of

consolidated Causal Network. The xgmml files generated

by causal reasoning analysis were parsed by custom perl script to

extract critical information about upstream hypothesis and to

create a consolidated causal network. The hypotheses and the

predicted relationships were further subjected to screen to remove

hypotheses not supported by our data and also to remove falsely

predicted causal relationships, which can be identified as ‘I(+/2)’

in Text S5. The correctly predicted relationships can be identified

as ‘C(+/2)’ in Text S5. The hypotheses which were not

differentially expressed were checked for its expression level (i.e.

up/down-regulation) depicted in causal graph and then compared

with its corresponding expression level in our dataset. Any

hypothesis with contradicting direction in expression profile (i.e.

up-regulated in the causal graph and down-regulated in expression

dataset, or vice-versa) was not considered for further analysis.

Thus, the correctly predicted hypotheses will include only those

hypotheses which can be corroborated by integrated expression

dataset used in the current study (i.e. hypothesis depicted as over-

expressed in causal network, should also show over-expression in

expression dataset, or vice-versa).
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The correctly predicted relationships and hypotheses were

considered while creating the consolidated causal network.

Connectivity information along with nature of relationship

(increases/decreases) between hypothesis and downstream genes

were saved in ‘Causal_Net.rel’ (see Text S6). Connectivity statistics

were also computed for all edges in final causal network and saved

in ‘Causal_Net.degree’ (see Text S7).

Literature Mining
Differentially expressed genes were considered for functional

analysis based on information available in published articles

archived in NCBI PubMed database. The NCBI eUtils, in

particular, Esearch and Efetch, were used along with Perl LWP

module, for mining NCBI PubMed database [32]. The scope of

literature search with gene symbol of differentially expressed genes

was expanded by using gene synonym table, queries incorporating

synonyms along with other search terms were then sent to

PubMed using the Esearch utility, followed by retrieval of relevant

records by Efetch utility.

The method uses text-mining rules defined in algorithm, to

classify differentially expressed genes according to the marker type

(therapeutic/diagnostic/prognostic) and relevant cancer hallmarks

(apoptosis/cell-proliferation/angiogenesis/metastasis/inflamma-

tion) reported for the concerned gene in articles published in

NCBI-PubMed. The algorithm computes statistical significance of

search statistics and consolidates literature mining results as report

files. The algorithmic flow of literature mining method used in the

current study is depicted in Fig. 2.

Perl script was written for functional annotation of input gene-

list, based on the text mining of relevant articles retrieved with the

help of NCBI eUtils. The literature mining algorithm implement-

ed in current study consists of following major components:

1. Creation of gene-synonym table.

2. Query formation.

3. Text-mining.

4. Significance analysis of the text-mining result.

Gene synonym table. The tab-delimited ‘gene_info’ file was

downloaded from NCBI ftp site and was used to create gene

synonym table. The entries for human were extracted from the

gene_info file with the help of organism code for human

(Taxonomy id: 9606), and these entries were used to create an

intermediate file, which was further used to create gene synonym

table. The columns of the intermediate file which were used to

generate alternative names for the genes are: (i) ‘gene synonyms’,

(ii) ‘descriptive name’, and (iii) ‘other names’.

The resulting gene synonym table was saved as a tab-delimited

file with two columns viz. gene symbol and synonyms. An entry in

the gene synonym table was in following format:

MMP1 CLG#fibroblast collagenase#interstitial collagena-

se#matrix metalloprotease 1#matrix metalloproteinase 1.

Query formation. The search queries were optimized by

using appropriate search tags [33], for retrieving relevant articles

from PubMed. This optimization was necessary because PubMed

does not support phrase searches. While searching for phrase

consisting of multiple words, PubMed search would return articles

having all words in the phrase spread across different places in

abstract. This default behavior of PubMed can be controlled by

using search tags. The search tag ‘[TIAB]’ (Title/Abstract) was

used after the gene terms and biological concepts like apoptosis or

angiogenesis, which were used for querying PubMed database.

Further, the search tag ‘[MH]’ (MeSH Terms) was applied for

restricting context of search specific to oral cancer by using MeSH

term ‘‘mouth neoplasms[MH]’’ and have used the query term

‘‘neoplasms[MH]’’ for searching articles related to any cancer

type.

The queries used by our method can be broadly divided into

two categories viz.

(a) Global Queries: These queries were used to extract search

global statistics for computing statistical significance of

literature mining results. The global statistics required for

Fisher Exact test includes the total number of articles related

with oral cancer/cancer, and number of articles related to

the functional concept (like apoptosis, metastasis, angiogen-

esis etc.) as well as oral cancer/cancer.

E.g. (cell death[TIAB] OR apoptosis[TIAB] OR apoptotic[-

TIAB] OR anti-apoptosis[TIAB] OR anti-apoptotic[TIAB]) AND

mouth neoplasms[MH].

(b) Gene specific Queries: Gene symbols from the differen-

tially expressed gene-list were translated into corresponding

synonyms with the help of gene synonym table. Gene

specific queries incorporating synonyms, keywords for

concepts and cancer-type (mouth neoplasms or neoplasms)

were sent to PubMed using Esearch utility, followed by

retrieval of relevant records using the Efetch utility. No

restriction was set for the number of articles retrieved per

query, since our objective was to assign annotation based on

consensus among published articles. Since oral cancer is the

focus of this study, the initial attempt of our method was to

query among articles related to oral cancer, and then to

consider articles related to any cancer-types only in

condition of failure to retrieve any information with specific

context to oral cancer. This was done to improve annotation

rate of the input gene-list.

E.g. ((MMP1[TIAB] OR CLG[TIAB] OR fibroblast collage-

nase[TIAB] OR interstitial collagenase[TIAB] OR matrix me-

talloprotease 1[TIAB] OR matrix metalloproteinase 1[TIAB])

AND (((therapeutic[TIAB] OR therapy[TIAB] OR diagnostic[-

TIAB] OR diagnosis[TIAB] OR prognostic[TIAB] OR prognos-

is[TIAB] OR inflammatory[TIAB]) AND (target[TIAB] OR

molecule[TIAB] OR marker[TIAB])) OR (cell[TIAB] AND

(proliferation[TIAB] OR proliferative[TIAB] OR death[TIAB]

OR growth[TIAB] OR immortalization[TIAB] OR migration[-

TIAB])) OR (apoptosis[TIAB] OR apoptotic[TIAB] OR anti-

apoptosis[TIAB] OR anti-apoptotic[TIAB] OR angiogenesis[-

TIAB] OR metastasis[TIAB] OR metastatic[TIAB] OR inflam-

mation[TIAB] OR invasion[TIAB] OR (immune[TIAB] AND

(modulation[TIAB] OR resistance[TIAB] OR destruction[-

TIAB]))))) AND mouth neoplasms[MH].

Text Mining. The relevant articles were retrieved in PubMed

‘XML’ format, which makes information extraction more precise

due to presence of content enclosed within xml tag pairs. Review

articles were not considered for text mining, because it may lead to

extraction of redundant information, which is already captured by

mining of the original research articles referred in those review

articles. The abstract section of articles was considered for text

mining. In an article, the gene name can be used as an acronym

for a concept unrelated to gene and thus can become a source of

false-positive [34], [35]. Our method attempts to resolve ambiguity

caused by an acronym by searching for expanded form of the

acronym in the content preceding an acronym and then

comparing it with synonyms of the acronym retrieved from gene

synonym table. The abstract is excluded from the analysis, if no

match is found in the synonym list.
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Figure 2. Literature Mining Process Flow.
doi:10.1371/journal.pone.0102610.g002
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The abstract section of any article is a gist of the article, which

contains concise information about background, results and

conclusions of the work mentioned in the articles. A lot of

variations can be seen in the structure of abstract section of

research articles. Some articles have separate subsections for

background, results, and conclusions, whereas other articles would

have all these information written under abstract section without

any sub-sectioning. The content of ‘conclusions’ subsection of

articles can be considered as the most informative and less

ambiguous for functional annotation tasks like ours. The content

used for text mining in our method was extracted from the

‘conclusions’ subsection of articles with well-defined subsections in

abstract section. For other articles without sub-sectioned abstract,

our method extracts this information from the last 25% portion of

the abstract section with an assumption based on general

observation that conclusions invariably appear towards the end

of abstract and make up about a quarter of the entire content in

the abstract section.

Perl regular expression was used to detect the presence of

keywords related with marker-types and/or cancer hallmarks in

the content that is extracted from abstract section of the article.

The keyword containing extracted content was divided into units

of single sentence. The parsing of such a single sentence when

compared to the parsing of entire paragraph as a single unit has

been reported to yield higher effectiveness for text-mining based

information extraction [36]. The perl module ‘‘Lingua::EN::Sen-

tence’’ was used for sentence boundary detection, it splits input

textual content into sentences for downstream analysis. Sentences

containing both expanded gene synonyms and keywords related

with marker-type and/or cancer hallmarks were used to assign

annotation to the gene. Case insensitive regular expression

matching was performed to detect sentences containing keywords

of interest and gene synonyms. The keywords used for functional

annotating genes in the current study can be broadly classified

under following two categories:

i. Marker related keywords:

a. Therapeutic marker: a gene was considered as the

therapeutic marker if the gene/synonym containing

sentence have one or more items from the related

keyword-list [therapeutic or therapy].

b. Prognostic marker: a gene was considered as the

prognostic marker if the gene/synonym containing

sentences have one or more items from the related

keyword-list [prognostic or prognosis].

c. Diagnostic marker: a gene was considered as the

diagnostic marker if the gene/synonym containing

sentences have one or more items from the related

keyword-list [diagnostic or diagnosis or predictive or

tumor marker].

ii. Cancer hallmark related keywords:

a. Apoptosis: a gene was considered to be associated with

apoptosis if the gene/synonym containing sentences have

one or more items from the related keyword-list [cell

death or apoptosis or anti-apoptosis or anti-apoptotic].

b. Angiogenesis: a gene was considered to be associated

with angiogenesis if the gene/synonym containing

sentences have one or more items from the related

keyword-list [angiogenesis or angiogenic].

c. Cell proliferation: a gene was considered to be

associated with cell proliferation if the gene/synonym

containing sentences have one or more items from the

related keyword-list [cell growth or proliferation or

proliferative].

d. Metastasis: a gene was considered to be associated with

metastasis if the gene/synonym containing sentences have

one or more items from the related keyword-list [cell

migration or cell motility or invasion or metastasis or

metastases or metastatic]. Although invasion and metas-

tasis characteristically differ in the strict sense, however,

they were grouped together in current study for

interpretational simplicity, and also because both are

associated with worse prognosis and poor survival.

e. Inflammation: a gene was considered to be associated

with inflammation if the gene/synonym containing

sentences have one or more items from the related

keyword-list [inflammation or inflammatory].

For an instance, a sentence with the co-occurrence of ‘matrix

metalloproteinase 19 (synonym of the gene ‘MMP1’) and

‘metastatic’, will assign metastatic function to MMP1.

The text mining results of successfully annotated genes by the

current method were saved as ,gene_symbol._pub.txt files for

validation and future reference. Search statistics were saved in file

named ‘LitMine.matrix’ (see Text S9) and ‘Fisher.in’, which

contains information in a matrix format where rows represent

genes, and columns represent various statistics like number of

PubMed articles assigning apoptosis as a cancer hallmark

functionally related with particular gene.

Significance Analysis (Fisher’s Exact Test). The R

implementation of Fisher’s exact test [37] was used for estimating

statistical significance of the literature mining results. The search

statistics were retrieved from ‘Fisher.in’ file and were used as an

input for Fisher’s exact test computation by ‘fisher.test()’ method.

For every gene in the gene-list, list of p-values corresponding to

various biological concepts mined from literature (markers and

cancer hallmarks) were generated and saved in ‘Fisher.out’ file.

The p-value of less than equal to 0.05 for a concept was considered

to be significantly associated with the concerned gene.

For e.g.: Among research articles published for oral cancer

(53,049 articles in PubMed), 5190 are related with apoptosis. Our

text mining process detected 27 relevant articles published for

BIRC5/survivin in context with oral cancer, and among them 20

articles supported apoptotic role for BIRC5. The 262 contingency

matrix was generated using PubMed search statistics for BIRC5 as

illustrated in Table 2, and was used to compute p-value by Fisher’s

exact test. Fisher’s exact p-value computed for the data in Table 2

is 2.991e-15, which is less than 0.05, implying that the apoptosis is

significantly associated with BIRC5 and this association is not just

due to a random chance.

Integrative Analysis
Results obtained in analytical processes like network analysis,

causal network analysis and literature mining were integrated. In

order to detect the most potential therapeutic target, we

hypothesized that it should be involved in more than one cancer

hallmark (apoptosis, angiogenesis, metastasis, cell-proliferation,

inflammation) and therefore, targeting it would essentially control

cancer cell due to its network statistics and ability to deal with

diverse pathways involved in different cancer hallmarks.

The genes which are significantly associated with at least one

out of five cancer hallmarks were selected. The difference in

connectivity in the dependency network between cancer and

Potential Therapeutic Targets for Oral Cancer
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control condition (denoted by ‘Diff’) was computed, to get estimate

for the topological changes in a gene under two conditions. Genes

with ‘Diff’ value greater than the average of ‘Diff’ values across

selected genes were identified as topologically evolved (TE) genes.

Genes which are either topologically evolved (TE) or are part of

causal network were selected for further processing. The selected

genes were further filtered based on the number of cancer

hallmarks associated with them. Genes which were associated with

at least two cancer hallmarks were considered as potential

therapeutic targets for oral cancer. The target information of

these potential therapeutic targets was further enriched by mining

TTD-Therapeutic Target Database [38].

Results and Discussion

The PCA and power distribution analysis of normalized data

before and after batch correction (Fig. 3) clearly suggested XPN to

perform better than ComBat for removing batch effects in dataset

integrated from the two different studies. The dataset before batch

correction occupies two distinct regions of PCA plot with respect

to the originating study (Fig. 3(a)), which points to the existence of

batch effects in dataset, with similar experimental design (Oral

Cancer vs. Control). Both methods could remove inter-study

heterogeneity among samples from cancer patients; however,

XPN performed better than ComBat with respect to removing

inter-study heterogeneity among samples from control or normal

persons (Fig. 3). Our analysis showed significant improvement of

statistical power in integrated dataset after batch correction by

XPN and Combat (Fig. 3). We have selected normalized, and

batch corrected data by XPN method for the downstream analysis,

because of its ability to better resolve inter-study variability and

improved statistical power.

The batch-corrected dataset by XPN method consisted of

18,927 genes, which were used as an input for differential

expression analysis by limma. Our analysis detected 2,365 genes to

be differentially expressed at a fold change threshold of 1.5 and fdr

corrected p-value threshold of 0.05. Differentially expressed genes

consist of 938 overexpressed genes, which include some of the

highly overexpressed genes like matrix metalloproteinases (MMP-

1/3/10/13), chemokine (C-X-C motif) ligands (IL8, CXCL-10/

11), PTHLH, NELL2, S100A7A, SERPINE1. Analysis detected

1,427 genes to be under-expressed, which include some of highly

under-expressed gene like MAL, cornulin (CRNN), TGM3,

CLCA4, keratins (KRT-3/4/13/76/78), SERPINB11, serine

peptidase inhibitors (SPINK-5/7). Differential expression in our

dataset is represented as a volcano plot (Fig. 4). For the complete

list of the differentially expressed genes in our study, the file –

‘DE_genes.txt’ (see Text S1) can be referred, which is available as

online supplementary material.

The result of differential expression analysis on the integrated

dataset was compared with the differentially expressed gene-list

reported in the studies related with the datasets used in the current

study. Peng et al. reported 24 genes to be differentially expressed

between tumors and normal tissue, at the fdr corrected p value

threshold of 0.05 [14]. At the same level of significance threshold

(corrected p value , = 0.05) our study detected 22 out of these 24

genes to be differentially expressed. We checked the details of two

genes (DEPDC6 and NDUFB9) which our study was not able to

reproduce, and found that these two genes were excluded from the

integrated data matrix because of differences in microarray

platform used in previous studies (the genes which were common

in arrays used in previous studies [13], [14] were included in the

integrated data matrix, for details see Section ‘Direct Data

Integration’). Ambatipudi et al. reported 315 genes to be differen-

tially expressed between tumors and normal tissues [13]. The

integrated dataset generated in our study had 303 genes out of

these 315 genes, and the remaining 12 genes were excluded

because of aforementioned platform difference between the studies

([13], [14]). The differentially expressed gene-list obtained in the

current study has 262 out of these 303 genes (,85% overlap),

which included key genes like SPP1, CA9, HOXC9,

TNFRSF12A, LY6K, INHBA, FST, MFAP5, DHRS2, MAL,

GPX3, LY6K, SERPINE1, GBP5, MMP10, MMP3, PTHLH,

KRT4, ALOX12, EPHX2, and PTGD highlighted by Ambati-

pudi et al. [13]. It was observed that, the genes with consistent

expression profile among source datasets ([13], [14]) were

identified as differentially expressed genes in the current study.

The detailed result of this comparison can be found in the file –

‘Comparison_with_previous_studies.xlsx’ (see Text S2), which is

available as online supplementary material.

The differentially expressed genes were used to generate

dependency network under two conditions, viz. cancer and

control. Dependency network generated for cancer condition

had 1,94,950 significant edges, which were 6.97% of possible

edges, whereas dependency network under control condition

resulted in 1,875 significant edges which was 0.07% of possible

edges. The resultant dependency networks for cancer and control

were compared to identify genes, which undergo marked changes

at a connectivity level in the network. Such genes have a potential

to be used as therapeutic and/or diagnostic markers. Some of the

genes with marked difference in connectivity under two conditions

are TCEAL2, TGIF1, XIST and CBX7. For the detailed list of

network connectivity differences in genes under cancer and control

condition, ‘Connections.txt’ (see Text S3) can be referred, which is

available as online supplementary material.

The differentially expressed genes were used as an input for

causal reasoning analysis with an objective to retrieve potential

upstream hypotheses explaining transcriptional changes involved

in development of oral cancer. Our analysis detected 176

significant hypotheses, explaining 804 causal relationships from

the causal graph constructed. The detailed list of hypotheses and

downstream predicted genes can be found in Text S4 (output file

of causal reasoning analysis) and ‘Causal_Net.summary’ (see Text

S5) (generated by consolidating causal network files produced for

Table 2. A 262 contingency table is built on search statistics for BIRC5.

Total no. of articles
for Oral Cancer

Total no. of articles for BIRC5
AND oral cancer

Not involved in
Apoptosis

47,859 7

Involved in
Apoptosis

5,190 20

doi:10.1371/journal.pone.0102610.t002
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each significant hypothesis detected by analysis), available as

online supplementary material. The consolidated causal network

(Fig. 5) was constructed after filtering out incorrectly predicted

relationships and hypotheses. The consolidated causal network

consisted of 106 hypotheses and 372 causal relationships correctly

predicted by the method. Some of the highly connected genes in

the resulting causal network are from chemokine signaling

pathway (CX3CR1, CXCR2, CCR2, PTK2, NRAS), PI3K-Akt

signaling pathway (FGFR2, KIT, FGFR3, TEK) and other

pathways known to be associated with various cancers. The

synopsis of the consolidated causal network along with its

connectivity statistics can be found in Text S6 and Text S7,

respectively, available as online supplementary material.

The functional annotation of differentially expressed genes was

done by novel literature mining based approach. Our method

successfully annotated 1,014 genes, out of which 841 genes were

detected to be statistically significantly annotated (Fig. 6). The key

findings from text mining analysis of successfully annotated genes

Figure 3. Data Attributes Before and After Batch-Correction. Samples are depicted as colored dots in PCA plots, ‘‘red’’ and ‘‘green’’ colored
dots represents cancer and control samples, respectively, from Ambatipudi et al., 2012, whereas ‘‘blue’’ and ‘‘cyan’’ colored dots represents cancer
and control samples, respectively, from Peng et al., 2011. The plots (a) and (b) are PCA and Power distribution plot for dataset before batch correction.
The plots (c) and (b) are PCA and Power distribution plot for dataset after batch correction by ComBat. The plots (a) and (b) are PCA and Power
distribution plot for dataset after batch correction by XPN.
doi:10.1371/journal.pone.0102610.g003
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were recorded for further reference and manual validation in the

corresponding ,gene_symbol._pub.txt files; these files are

available in ‘Gene_pubs.zip’ (see Text S8), along with other

results files like Text S9, ‘LitMine_All.summary’ (see Text S10)

and ‘LitMine_Significant.summary’ (see Text S11), which are

available as online supplementary material.

Out of all significantly annotated genes, we found 554 genes to

be associated with at-least one of the five cancer hallmarks

considered in the current study. These genes were further

subjected to filtering based on network statistics of dependency

and causal network. Out of 554 genes, we identified 86 genes

meeting various filtering criteria. We manually validated literature

mining results (*_pub.txt files) of these 86 genes, to deal with issues

related with ambiguous annotations. After thorough manual

validation, we identified 30 genes, which can be targeted for

therapeutic intervention in oral cancer (Fig. 7). After analyzing

each of these therapeutic targets based on various criteria like

number of associated cancer hallmarks, network connectivity

statistics, supporting published literatures we identified 8 most

promising therapeutic targets for oral cancer which are adreno-

medullin (ADM), TP53, CTGF, EGFR, CTLA4, LYN, SKI-like

oncogene (SKIL) and CD70. The list of therapeutic targets along

with associated analysis data can be found in ‘OC_Targets.xls’ (see

Text S12) available as online supplementary material.

ADM has been identified as a highly connected gene in the

dependency network with marked difference under cancer and

control condition. Literature mining analysis has identified it to be

significantly associated with four out of the five cancer hallmarks

considered in the current study. ADM is a research target for

various cancers [38], and its significant differential expression in

our study dataset suggests it to be one of the most potential

therapeutic targets for oral cancer. TP53 is a potent tumor

suppressor gene which is known to be under-expressed in various

malignancies, including oral cancer [3]. TP53 was detected in our

study to be significantly under expressed gene, and was found to be

involved in key hallmark events like apoptosis, angiogenesis and

cell proliferation. It was detected to be well connected gene with

marked topological difference in the dependency network under

cancer and control condition. The ability to regulate cancer via

multiple pathways makes TP53 as one of the potential therapeutic

targets for oral cancer. Literature mining analysis and mining of

TTD [38] has identified TP53 as a therapeutic marker for various

cancers including those of oral cavity [3]. Connectivity tissue

growth factor (CTGF) was identified as a therapeutic target by

literature mining analysis and was detected to be significantly

involved in key hallmark events like angiogenesis and cell

proliferation. CTGF shows marked topological difference in the

dependency network under cancer and control condition making

it one of the potential therapeutic targets for oral cancer.

Epidermal growth factor receptor (EGFR) which is incidentally a

successful molecular target for oral cancer [38], has been also

detected as a potential therapeutic target in the current study.

EGFR was identified as well connected gene in dependency and

causal network (Fig. 5), and was detected as a significant

hypothesis by causal reasoning analysis. CTLA4 was another

potential therapeutic target identified in the current study.

Literature mining analysis significantly associated it with apoptosis

and cell-proliferation. CTLA4 has been reported to regulate key

genes involved in carcinogenesis like STAT1, NFATC2, c-Fos, c-

Myc, and/or Bcl-2 [39]. Literature mining analysis and mining of

TTD have identified CTLA4 as a therapeutic marker for various

cancers. CD70 was identified as a potential anti-body based

therapeutic target. Literature mining analysis associated it with the

key hallmark events like apoptosis and cell-proliferation. CD70

was detected to be topologically evolved gene by dependency

network analysis, which has a significant number of connections in

cancer condition, but does not have any connection in control

condition. CD70 is a clinical trial target for various cancers [38].

Figure 4. Volcano Plot. Significantly overexpressed genes are represented as ‘red’ dots and significant underexpressed genes are represented as
‘green’ dots in volcano plot. The names of some of the highly under- and over-expressed genes can be seen at left and right side respectively, of the
volcano plot.
doi:10.1371/journal.pone.0102610.g004
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LYN was identified in dependency network analysis as a

topologically evolved gene, which has a significant number of

connections in cancer condition, but does not have any connection

in control condition. Literature mining analysis has associated it

with apoptosis and cell-proliferation. It is also well connected in

causal network, and was identified as one of the significant

hypotheses. LYN has been reported in various studies to be an

attractive therapeutic target for various cancers, including oral

cancer [40]. SKIL has been identified in our analysis as highly

connected gene in the dependency network with marked

Figure 5. The Consolidated Causal Network. The genes are depicted as nodes of causal network. The hypotheses genes are distinctly
colored as ‘red’ or ‘blue’ representing their over- or under-expression respectively, observed in study dataset. Relationships are depicted as edge or
arrow in causal network. The solid arrow represents ‘activation’ relationship between connected nodes, whereas dashed arrow represents ‘inhibition’
relationship between the connected nodes. The node which has been identified as hypothesis gene, and also downstream gene for some other
hypothesis, has been marked with an extra peripheral surrounding.
doi:10.1371/journal.pone.0102610.g005
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Figure 6. Literature Mining Result Statistics.
doi:10.1371/journal.pone.0102610.g006

Figure 7. List of potential therapeutic targets for oral cancer. The right sign ‘3’ represents significant publication evidence to support
association of concerned target gene with a cancer hallmark mentioned in a concerned column, and ‘ ’ represents absence of such association
between gene and cancer hallmark. The ‘ ’ sign represents significant overexpression of the gene, and ‘ ’ represents significant under-expression of
the gene, observed in oral cancer in study dataset. ‘CausalNet Degree’ is the no. of causally connected genes to the particular target gene. ‘Diff’ is
difference in the no. of connections in dependency network, under cancer and control condition for the concerned target gene. ‘MN’ means that
annotations for the concerned target gene was inferred from articles related with mouth neoplasm or oral cancer, whereas ‘C’ means that
annotations are not specific to oral cancer and were inferred using generic term ‘neoplasms’ or cancer.
doi:10.1371/journal.pone.0102610.g007
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topological difference under cancer and control condition.

Literature mining analysis associated it with apoptosis, cell-

proliferation and metastasis. SKIL was reported to be a novel

therapeutic target for ovarian cancer [41].

The analytical approach presented in the current study shows

the power of direct integration of dataset generated by different

studies to derive statistically significant results. The novel literature

mining approach presented in the current study can be used for

functional annotation of a gene-list produced by high-throughput

studies related with cancer. The literature mining based functional

classification comprehensively reviews published data, and has an

advantage over traditional functional classification methods based

on pathways or gene-sets, which does not represent the current

state of art information since they are generally not updated quite

often.

The current study has identified potential target genes for oral

cancer. Some of the most potential therapeutic targets identified

by our integrated analysis are adrenomedullin (ADM), TP53,

CTGF, EGFR, CTLA4, LYN, SKI-like oncogene (SKIL) and

CD70. The data presented here can also be used for identifying

targets, which are specific to a particular cancer hallmark. The

data presented could facilitate development of effective targeted

therapies for oral cancer.

Supporting Information

Text S1 List of differentially expressed genes. File

contains following columns: (i) ‘‘Entrez GeneID’’REntrez Gen-

eID of differentially expressed gene; (ii) ‘‘Symbol’’RNCBI Gene

Symbol of differentially expressed gene; (iii) ‘‘logFC’’RLog Fold

Change computed by limma; (iv) ‘‘P.Value’’Rp_value computed

by limma; (v) ‘‘adj.P.Val’’Rfdr corrected p_value; (vi) ‘‘KEGG

Pathways’’RList of KEGG pathways mapped to the differentially

expressed gene.

(TXT)

Text S2 Comparison of the current study with the
previous studies. The datasets of two related studies -

‘Ambatipudi et al.’ and ‘Peng et al.’ were used for generating

batch-corrected integrated dataset. The file contains comparison

result of findings of current study with these two studies. File

contains of two sheets Ambatipudi et al.’ and ‘Peng et al.’, in which

differential expression reported in these studies is compared with

findings of the current study.

(XLSX)

Text S3 Connectivity information of genes computed by
dependency network analysis. File contains following

columns: (i) ‘‘Symbol’’RNCBI Gene Symbol; (ii) ‘‘Cancer_con-

nections’’RTotal no. of significant connections in cancer condi-

tion; (iii) ‘‘Control_connections’’RTotal no. of significant connec-

tions in control condition; (iv) ‘‘Connectivity_diff’’R Difference in

no. of connections between cancer and control condition; (v)

‘‘logFC’’RLog Fold Change computed by limma; (vi) ‘‘ad-

j.P.Val’’Rfdr corrected p_value for the gene computed by limma.

(TXT)

Text S4 List of significant hypotheses identified by
Causal Reasoning analysis. Each row is a hypothesis (i.e. an

entity in the graph with a direction of + or 2 and a number of

downstream steps that are taken to predict transcripts). Each

column is a ‘‘score’’. This includes the name, number of correct,

incorrect, and not explained transcripts as well as the correctness

score and p-values defined in the manuscript.

(XLS)

Text S5 Detailed list of hypotheses with corresponding
downstream causally related genes. File contains following

columns: (i) Causal Hypothesis/Gene NameRName of the gene

which has been identified as significant hypothesis by causal

reasoning analysis; (ii) RegulationRRelationship between hypoth-

esis gene and downstream gene, ‘+’ represents activation and ‘2’

represents inhibition; (iii) Downstream Gene(s)RDownstream

gene(s) whose differential expression is predicted by hypothesis

gene; (iv) PredictionR‘C’ represents correctly predicted relation-

ship between hypothesis and downstream gene, whereas ‘I’

represents otherwise. The succeeding +/2 sign represents up2/

down-regulation resp., of the downstream gene(s); (v) Sour-

ceRThe name of Kegg pathway(s) used to infer causal relationship

between hypothesis & related downstream gene(s).

Text S6 Processed list of hypotheses and downstream
genes. File contains following columns: (i) Causal Hypothesis/

Gene NameRName of the gene which has been identified as

significant hypothesis by causal reasoning analysis; (ii) Dif-

f_ExpRThe hypothesis genes which are differentially expressed

in our analysis are marked as ‘DE’ and non-differentially expressed

hypothesis genes are marked as ‘N’; (iii) RegulationRRelationship

between hypothesis gene and downstream gene, ‘+’ represents

activation and ‘2’ represents inhibition; (iv) Downstream Gene(s)

RDownstream gene(s) whose differential expression is predicted

by hypothesis gene; (v) PredictionR‘C’ represents correctly

predicted relationship between hypothesis and downstream gene,

whereas ‘I’ represents otherwise. The succeeding +/2 sign

represents up2/down-regulation resp., of the downstream gene(s);

(vi) SourceRThe name of Kegg pathway(s) used to infer causal

relationship between hypothesis & related downstream gene(s).

Text S7 Connectivity information of genes in Causal
Network. File contains connectivity information of gene(s) in

causal network generated on the basis of causal relationships

mentioned in Text S5. It contains following columns: (i)

SymbolRNCBI gene symbol of a constituting node or gene of

the causal network; (ii) ConnectivityRTotal no. of the neighboring

directly connected genes based on causal relationship.

Text S8 Text mining results of successfully annotated
genes. This is a compressed file, which consist of the text mining

results of successfully annotated genes by our method (available as

,genesymbol. _pub.txt files specific to a particular gene).

*_pub.txt file contains details about relevant articles used for

annotation of concerned gene. It contains following columns: (i)

PubmedIDRPubmed ID of the article; (ii) MarkerRBinary flag

where ‘0’ implies that article does not mention that concerned

gene can be used as a marker, and ‘1’ implies that article supports

the inference that concerned gene can be used as a marker; (iii)

MarkerTypeRComma delimited field, which represent marker

type(s) mentioned for the gene in the article; (iv) CancerHall-

markRBinary flag where ‘0’ implies that article does not mention

that concerned gene is associated with cancer hallmarks, ‘1’

implies that article supports the inference that concerned gene is

associated with cancer hallmarks; (v) HallmarkTypeRComma

delimited field, which represent cancer hallmarks(s) mentioned for

the gene in the article; (vi) RelevantSentenceRList of relevant

sentence(s) from the article used for inferring marker type(s)/

cancer hallmark(s).

(ZIP)
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Text S9 Statistics related with mining of PubMed
articles. File contains search statistics in following main columns:

(i) GeneSymbolRNCBI gene symbol; (ii) DE Information

(columns:LogFC.Adjusted_pvalue) RDifferential expression data

for the concerned gene; (iii) CancerTypeRSource of annotation

for the concerned gene, ‘MN’ means that annotations for this gene

was inferred from articles related with mouth neoplasm or oral

cancer, whereas ‘C’ means that annotations are not specific to oral

cancer and were inferred using generic term ‘neoplasms’ or

cancer; (iv) TotalHitsRTotal no. of articles in PubMed satisfying

the search criteria; (v) QualifiedHitsRNo. of articles which were

considered to be relevant by text mining logic mentioned in the

paper; (vi) Marker (columns:Therapeutic.Diagnostic) RTotal no.

of articles used to infer that a gene can be used as a particular

marker type(s) (therapeutic/prognostic/diagnostic); (vii) Cancer

Hallmark (columns:Angiogenesis.Inflammation)RTotal no. of

articles used to infer that a gene is associated with a particular

cancer hallmark(s).

Text S10 Detailed report of all genes annotated by
literature mining method.

Text S11 Detailed report of significant annotations by
literature mining method.

Text S12 List of potential therapeutic targets for oral
cancer. Contains two sheets ‘TargetList’ and ‘IntegrativeAna-

lysis’. ‘TargetList’ contains list of therapeutic targets for oral

cancer found to be most potential. This sheet contains following

columns: (a) GeneNameRNCBI Gene Symbol; (b) Annotation

SourceRSource of annotation for the concerned gene, ‘MN’

means that annotations for this gene was inferred from articles

related with mouth neoplasm or oral cancer, whereas ‘C’ means

that annotations are not specific to oral cancer and were inferred

using generic term ‘neoplasms’ or cancer; (c) Connections_can-

cerRTotal no. of significant connections in cancer condition

detected by dependency network analysis; (d) Connections_con-

trolRTotal no. of significant connections in control condition

detected by dependency network analysis; (e) DiffRDifference

between connections under cancer and control condition (i.e.

Diff = Connections_cancer2Connections_control); (f) logFCR
Log fold change value obtained from limma/differential expres-

sion analysis; (g) Adjusted p_valueRAdjusted p_value obtained

from limma/differential expression analysis; (h) ApoptosisRRight

mark indicates that gene is associated with apoptosis, and cross

mark indicates otherwise; (i) AngiogenesisRRight mark indicates

that gene is associated with angiogenesis, and cross mark indicates

otherwise; (j) CellProliferationRRight mark indicates that gene is

associated with cell proliferation, and cross mark indicates

otherwise; (k) InflammationRRight mark indicates that gene is

associated with inflammation, and cross mark indicates otherwise;

(l) MetastasisRRight mark indicates that gene is associated with

metastasis, and cross mark indicates otherwise; (m) Therapeutic-

TargetRRight mark indicates that gene is reported to be

therapeutic target, and cross mark indicates otherwise; (n)

CausalHypothesisRRight mark indicates that gene has been

identified as significant hypothesis by causal reasoning, and cross

mark indicates otherwise; (o) CausalNetGeneRRight mark

indicates that gene has been identified as downstream gene by

causal reasoning, and cross mark indicates otherwise; (p)

CausalNetDegreeRTotal no. of the neighboring directly connect-

ed genes based on causal relationship; (q) CausalPathway(s) RThe

name of Kegg pathway(s) used to infer causal relationships in

which gene is involved; (r) TTD-TargetTypeRClassification of

target inferred from TTD database; (s) TTD-TargetDiseasesRList

of disease(s) in which gene plays role of therapeutic target (inferred

from TTD). ‘IntegrativeAnalysis’ contains initial list of candidate

therapeutic target genes along with attributes used for identifying

potential therapeutic genes.

(XLS)
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