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Abstract

Background—Reduced sleep duration has been increasingly reported to predict obesity. 

However, timing and regularity of sleep may also be important. In this study, the cross-sectional 

association between objectively measured sleep patterns and obesity was assessed in two large 

cohorts of older individuals.

Methods—Wrist actigraphy was performed in 3053 men (mean age: 76.4 years) participating in 

the Osteoporotic Fractures in Men Study (MrOS) and 2985 women (mean age: 83.5 years) 

participating in the Study of Osteoporotic Fractures (SOF). Timing and regularity of sleep patterns 

were assessed across nights, as well as daytime napping.

Results—Greater night-to-night variability in sleep duration and daytime napping were 

associated with obesity independent of mean nocturnal sleep duration in both men and women. 

Each 1 hour increase in the variability of nocturnal sleep duration increased the odds of obesity 

1.63-fold (95% CI [1.31-2.02]) among men and 1.22-fold (95% CI [1.01-1.47]) among women. 

Each 1 hour increase in napping increased the odds of obesity 1.23-fold (95%CI [1.12-1.37]) in 

men and 1.29-fold (95%CI [1.17-1.41]) in women. In contrast, associations between later sleep 

timing and night-to-night variability in sleep timing with obesity were less consistent.
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Conclusions—In both older men and women, variability in nightly sleep duration and daytime 

napping were associated with obesity independent of mean sleep duration. These findings suggest 

that characteristics of sleep beyond mean sleep duration may play a role in weight homeostasis, 

highlighting the complex relationship between sleep and metabolism.
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Introduction

Obesity is one of the most significant health problems in the United States today. From the 

late 1970s to 2010, the prevalence of obesity has more than doubled to greater than 35% 

among U.S. adults today.1,2 Though much of the focus of the ‘obesity epidemic’ has 

centered on young adults and children, this secular rise in obesity has also impacted older 

populations. Among those over the age of 60, the prevalence of obesity was 36.6% in men 

and 42.3% in women in a national survey from 2009-2010.1 Given the limitations in 

efficacy of currently available preventative and treatment strategies for obesity, increasing 

attention has been paid to novel obesity risk factors. Objectively measured short sleep has 

been associated with obesity in many populations including older adults.3 However, the 

importance of other aspects of sleep patterns, such as timing of sleep, regularity of sleep, 

and daytime napping remain relatively unexplored. A recent study of young adults found 

that individuals with later bedtimes consumed more calories, and were heavier.4 Another 

study in children found that a variable sleep schedule acts synergistically with short sleep to 

increase obesity risk.5 Thus far, these facets of sleep have not been evaluated in an older 

population. While daytime napping has been shown to increase risk of mortality in older 

adults,6 whether napping is associated with obesity has not yet been explored. In this 

analysis, we evaluated the relationships between obesity with three aspects of sleep: sleep 

variability, sleep timing, and daytime napping with the three separate hypotheses that those 

with a variable sleep schedule, those with later sleep times, and those with more time spent 

napping will be more likely to be obese and these associations will persist after accounting 

for potential differences in sleep duration.

Methods

Study Population

Men were participants in the prospective Osteoporotic Fractures in Men Study (MrOS). 

During the baseline examination from 2000 to 2002, 5994 community-dwelling men 65 

years or older were enrolled at 6 clinical centers in the United States: Birmingham, 

Alabama; Minneapolis, Minnesota; Palo Alto, California; Pittsburgh, Pennsylvania; 

Portland, Oregon; and San Diego, California. The MrOS Sleep Study, an ancillary study of 

the parent MrOS cohort, was conducted between December 2003 and March 2005 and 

recruited 3135 of these participants for a comprehensive sleep assessment. Of these, 3053 

had adequate actigraphy data as well as body mass index measured.
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Women were participants in the prospective Study of Osteoporotic Fractures (SOF). During 

the baseline examination from 1986 to 1988, 9704 community-dwelling white women 65 

years or older were enrolled from population-based listings in 4 areas of the United States: 

Baltimore, Maryland; Minneapolis, Minnesota; Pittsburgh, Pennsylvania; and Portland, 

Oregon. An additional 662 African-American women were enrolled between 1997 and 

1998. Assessment of sleep occurred during the 8th examination in this cohort which took 

place from January 2002 to April 2004. A total of 4727 women (84% of survivors) 

participated, of whom 3676 had a clinical visit and 2985 had adequate actigraphy data and 

body mass index measured.

For both studies, individuals were not eligible to participate if they reported bilateral hip 

replacement or required the assistance of another person in ambulation at the baseline 

examination. Details of the cohorts have been previously published.7-9 The protocol for 

MrOS and SOF were approved by the institutional review boards at all of the participating 

institutions. All participants provided written informed consent.

Sleep Patterns

Data on sleep habits were obtained using wrist actigraphy (Sleepwatch-O, Ambulatory 

Monitoring, Inc., Ardsley NY) in both cohorts. The actigraph, which measures movement 

using a piezoelectric biomorph-ceramic cantilevered beam, was worn on the wrist of the 

non-dominant hand. Subjects were asked to wear the actigraph a minimum of 5 consecutive 

24-hour periods in MrOS and 3 consecutive 24-hour periods in SOF. Data were collected 

continuously and stored in 1-minute epochs. The digital integration mode of analysis for this 

device, which has been validated against polysomnography in these cohorts,10,11 was used 

to distinguish sleep from wake. Action W-2 software (Ambulatory Monitoring, Inc.) was 

used to analyze the raw data,12 and the University of California San Diego (UCSD) scoring 

algorithm was used to determine sleep/wake status.13

While wearing the actigraph, participants completed sleep diaries which included time into 

and time out of bed and times the actigraph was removed. This information was used in 

editing the actigraphy data files to set intervals for when the participant got into bed, got out 

of bed, or took any naps as well as to delete time when the actigraph was removed from 

analyses. A standardized protocol to account for inaccurate or missing diaries was utilized 

and this protocol has been shown to provide consistent results across scorers.14 Sleep onset 

was defined as the beginning of the first 20-minute continuous block of sleep after the time 

marked as getting in bed while sleep offset was defined as the last minute scored as sleep 

before time out of bed.

Mean nightly sleep duration was defined as the total minutes scored as sleep between sleep 

onset and sleep offset averaged over all nights of recording. Sleep timing was assessed by 

identifying the clock time halfway between the beginning and end of the sleep period for 

each night, termed the sleep midpoint. This midpoint time was averaged across all nights to 

obtain mean sleep midpoint, which has previously been shown to correlate with dim light 

melatonin onset, a physiologic marker of circadian phase, in a free-living population.15 

Variability in nightly sleep duration and timing was assessed using the standard deviation in 

the nightly sleep duration and sleep midpoint respectively across all nights of recording. 
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Only subjects with at least two nights of data were included in these variability analyses. 

Nap time was defined as minutes scored as sleep using the UCSD sleep/wake scoring 

algorithm in blocks of at least 5 minutes occurring outside of the main sleep interval. 

Episodes of shorter duration during the day were assumed to represent quiet wakefulness. 

Mean nap time was averaged across all days of recording.

Obesity

Body weight was measured with a standard balance beam or digital scale, height with a 

wall-mounted Harpenden stadiometer (Holtain, England), and these measurements were 

used to calculate body mass index (BMI). Obesity was defined as a BMI ≥ 30 kg/m2.

Covariates

All participants completed questionnaires, which included items about demographics, 

medical history, physical activity, smoking and alcohol use. Caffeine consumption was 

estimated based on self-report of the average daily number of cups of caffeinated coffee and 

tea, or cans of caffeinated soda consumed.16 Participants were asked to bring in all current 

medications used within the preceding 30 days. All prescription medications were entered 

into an electronic database and each medication was matched to its ingredient(s) based on 

the Iowa Drug Information Service (IDIS) Drug Vocabulary (College of Pharmacy, 

University of Iowa, Iowa City, IA).17 The Geriatric Depression Scale (GDS) was used to 

assess depressive symptoms, and the standard cutoff of six or more symptoms was used to 

define depression.18 In MrOS, level of activity was assessed using the Physical Activity 

Scale for the Elderly (PASE),19 while in SOF, physical activity was assessed by asking 

women if they walked for exercise. Cognitive function was assessed using the Modified 

Mini-Mental State (3MS) examination in MrOS and the Mini-Mental State Examination 

(MMSE) in SOF.20,21 Participants completed the Medical Outcomes Study 12-item Short 

Form (SF-12), which included a question about self-reported health status compared to 

others of similar age (categorized as excellent/good versus fair/poor/very poor).22

In-home sleep studies using unattended polysomnography (Safiro unit; Compumedics, 

Melbourne, Australia) were performed in the MrOS cohort. The recording montage included 

C3/A2 and C4/A1 electroencephalography, bilateral electrooculography, submental 

electromyography, thoracic and abdominal respiratory effort, airflow (nasal-oral 

thermocouple and nasal pressure), finger pulse oximetry, electrocardiography, body 

position, and bilateral leg movements. Sleep staging was done using standard criteria.23 

Apneas were defined as a complete or almost complete cessation of airflow for more than 10 

seconds. Hypopneas were defined as a > 30% reduction in amplitude of either respiratory 

effort or airflow for more than 10 seconds associated with a ≥ 4% oxygen desaturation. The 

apnea hypopnea index (AHI) was computed as the number of apneas and hypopneas per 

hour of recorded sleep. Although sleep studies were conducted in a subsample of SOF as 

well, the proportion of women with polysomnography data was < 15% so adjustment for 

sleep apnea severity was not performed in this cohort.
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Statistical Analyses

Each cohort was analyzed separately but in parallel fashion. Baseline characteristics were 

summarized by quartile of the sleep measure (mean sleep timing, variability in sleep 

duration, variability in sleep timing, and daytime napping) and differences were compared 

using analysis of variance for normally distributed continuous data, Kruskal-Wallis tests for 

continuous skewed data, and chi-square tests for homogeneity for categorical data.

The independent relationships between sleep measures (mean timing of sleep, variability in 

sleep duration, variability in sleep timing, and daytime napping) with body mass index and 

obesity risk were assessed with multivariable adjusted linear and logistic regression models. 

Three sets of nested models were used for these analyses. The first adjusted for age, race, 

and site only; the second additionally included habits, co-morbidities, and medications; and 

the third also included mean nocturnal sleep duration. In addition, in MrOS, further 

adjustment was made for sleep apnea severity as assessed by AHI. Covariates were selected 

based on being associated with both sleep duration and obesity in prior studies. Covariates 

included study site, age, race (Caucasian vs. non-Caucasian), level of education (< 12 years, 

12-16 years, > 16 years), history of diabetes, stroke, coronary artery disease (angina, 

myocardial infarction, or coronary revascularization procedure), or congestive heart failure, 

use of antidepressants, use of benzodiazepines, smoking status (never, past, current), alcohol 

consumption (0-2 drinks/week, 3-13 drinks/week, ≥ 14 drinks/week), caffeine consumption 

(continuous), depression (GDS score ≥ 6), level of physical activity (continuous in MrOS 

and dichotomous in SOF), cognitive function (continuous 3MS score in MrOS and MMSE 

score in SOF), self-reported health status (dichotomized as those reporting good or 

excellent), and mean nocturnal sleep duration.

Evidence for effect modification by mean nocturnal sleep duration on the relationship 

between sleep duration variability and daytime napping with obesity risk was assessed by 

stratifying the cohorts into four nocturnal sleep duration categories (≤ 5 hrs, >5 to <7 hrs, 7 

to <8 hrs, and ≥ 8 hrs) based on our prior analyses of these cohorts.3 Statistical significance 

of the interactions were assessed by testing the significance of an interaction term 

(categorical average sleep duration * average napping time or sleep duration variability, F 

test with 3 degrees of freedom) when added to the multivariable model.

All analyses were performed using SAS statistical software (version 9.2, SAS Institute, Inc., 

Cary, North Carolina).

Results

A total of 3053 men (mean age 76.4 y) and 2985 women (mean age 83.5 y) had actigraphic 

data of sufficient quality to be included in these analyses (98% and 93% of the sample 

studied respectively). The mean ± SD number of days of usable actigraphy data was 5.2 ± 

0.9 in the male cohort and 4.1 ± 0.8 in the female cohort. The mean BMI in the male cohort 

was 27.2 ± 3.8 kg/m2 with an obesity prevalence of 20.4%. Among women, the mean BMI 

was 27.0 ± 5.0 kg/m2 and obesity prevalence was 24.8%.
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The distribution of demographics, social habits, medications, co-morbidities, mood and 

cognitive function by the key sleep measures – variability in sleep duration, midpoint of 

sleep timing, variability in sleep timing, and nap time – are displayed in Supplementary 

Tables 1-4 respectively. High variability in nightly sleep duration was associated in both 

men and women with minority race, higher rates of diabetes, coronary artery disease, and 

heart failure, greater use of antidepressants, reduced cognitive function, reduced self-

reported health status, and lower mean nightly sleep duration. Later sleep timing was 

associated in both men and women with minority race, higher rate of diabetes, greater use of 

antidepressants and benzodiazepines, reduced self-reported health status, less exercise, and 

lower mean nightly sleep duration. High variability of sleep timing was associated in both 

men and women with minority race, higher rates of diabetes and heart failure, greater use of 

antidepressants, reduced cognitive function, reduced self-reported health status, and lower 

mean nightly sleep duration. Increased time napping was associated in both men and women 

with older age, higher rates of diabetes, stroke, heart failure, and depression, greater use of 

antidepressants, lower use of alcohol and caffeine, reduced cognitive function, reduced self-

reported health status, and less exercise. In addition, greater napping was associated with 

reduced mean nightly sleep duration in women.

Figures 1-4 display the multivariable adjusted association between BMI and each of the four 

sleep measures (sleep duration variability, sleep timing, sleep timing variability, and 

daytime napping). With increasing variability in sleep duration and daytime napping, there 

was a consistent increase in mean BMI in both men and women with highly significant tests 

for trend (p ≤ 0.0001 for all four analyses). The association between BMI and sleep timing 

and variability in timing was less robust. Mean BMI was greatest in the quartile with latest 

sleep midpoint in both men and women but while the test for trend was highly significant in 

women, the relationship was much weaker in men. In contrast, with regards to the sleep 

midpoint variability, there was a clear linear dose-response relationship with increasing 

variability in timing associated with increased BMI in men (p<0.0001) but no evidence of a 

relationship in women.

All four sleep measures (variability in sleep duration, daytime napping, sleep midpoint, and 

variability in sleep midpoint) were associated with an increased likelihood of obesity in 

analyses adjusted for age, demographic characteristics, co-morbidities, and medication use 

(Table 1). After further adjustment for mean nocturnal sleep duration, greater sleep duration 

variability and daytime napping remained significantly associated with obesity in both 

cohorts. Each hour increase in nocturnal sleep duration variability was associated with a 

63% increase in obesity odds among men and 22% increase in obesity odds among women, 

while each additional hour spent napping was associated with 23% and 29% increases in 

obesity odds among men and women respectively. The results for sleep timing were less 

consistent. Neither sleep midpoint nor variability in sleep midpoint was significantly 

associated with obesity after adjusting for nocturnal sleep duration among men in MrOS. In 

contrast, later sleep timing and greater variability in sleep timing remained associated with 

obesity in the fully-adjusted analyses among women in the SOF cohort.

Findings were not substantially impacted by accounting for sleep apnea. After further 

adjustment for AHI in MrOS, each hour increase in variability of nocturnal sleep duration 
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was associated with an obesity odds ratio of 1.50 [95% CI: 1.20-1.89], each hour increase in 

sleep midpoint with an odds ratio of 1.03 [0.93-1.14], each hour increase in sleep midpoint 

variability with an odds ratio of 1.30 [0.98-1.72], and each hour increase in napping with an 

odds ratio of 1.25 [1.13-1.40].

Formal tests for interaction found no evidence for effect modification of the sleep duration 

variability – obesity relationship by mean nocturnal sleep duration in either the MrOS or 

SOF cohorts. In contrast, the impact of daytime napping on obesity risk did appear to differ 

by mean nocturnal sleep duration (Table 2). A similar pattern was seen in both cohorts such 

that additional napping appeared to have no effect on obesity risk among those with 

nocturnal sleep duration ≤ 5 hours, the greatest impact in those sleeping >5 to <8 hours, and 

an intermediate effect in those sleeping ≥ 8 hours at night. This interaction was statistically 

significant among women in SOF and of borderline significance among men in MrOS.

Discussion

An increasing body of literature implicates poor sleep as an independent risk factor for 

obesity, with evidence coming from longitudinal cohorts as well as small interventional 

studies.24-26 While the focus of most of this work has been on duration of sleep, the aspects 

of sleep most relevant to obesity risk are unclear. In this work, we identified both high 

variability in night-to-night sleep duration as well as increased time napping during the day 

to be strongly associated with obesity independent of mean nightly sleep duration. The 

evidence for an independent association between obesity and both later sleep timing and 

high variability in sleep timing was less robust. However, there did appear to be a consistent 

relationship between greater levels of obesity and later sleep times in women.

Our work has many strengths. We utilized actigraphy as an objective marker of sleep rather 

than reliance on self-report. We studied an older age group that limits the influence of 

socioeconomic factors such as work schedule or child care responsibilities on sleep habits. 

While medical co-morbidities may influence sleep patterns, we attempted to control for the 

most influential co-morbidities (depression, heart disease, diabetes, and stroke) as well as 

medication use. Finally, by testing our hypotheses in two separate cohorts, we were able to 

assess the robustness of the identified associations.

Differences in findings between the two cohorts should not be attributed solely to 

differences in gender as other differences exist between the two cohorts. For example, the 

men in MrOS were on average 7 years younger than the women in SOF. In addition, the 

differing protocols resulted in more days of recording in the MrOS cohort which may have 

led to better assessments of night-to-night variability. Nevertheless, while potential 

differences in the relationship between timing of sleep and obesity were apparent between 

the two cohorts, the association of daytime napping and sleep duration variability with 

obesity was strikingly similar. In addition, the pattern of interaction between daytime 

napping and nocturnal sleep duration on obesity risk was strikingly similar between the two 

cohorts such that the impact of napping was greatest in those with average nocturnal sleep 

durations and least in those with short nocturnal sleep durations.
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It should be noted that our results are consistent with cross-sectional findings from a cohort 

of schoolchildren where irregular sleep schedules were also associated with increased 

obesity risk independent of mean sleep duration.5 However, it should be noted that this does 

not necessarily imply that individuals who are chronically sleep deprived should not extend 

their sleep when provided the opportunity. A study of Hong Kong schoolchildren found the 

impact of reduced sleep during school nights on obesity risk was mitigated by catch up sleep 

on weekends and holidays.27 Thus the beneficial impact of increasing average sleep duration 

may outweigh any adverse impact of irregularity.

There are a number of potential explanations for the associations identified in this analysis. 

High night-to-night variability in sleep duration may identify individuals who are repeatedly 

in a state of sleep debt due to insufficient sleep on some nights and then compensate for this 

with catch-up sleep on subsequent nights. This pattern is commonly seen in individuals who 

work or go to school full time who limit sleep on work/school days and then compensate on 

weekends. Such individuals may be exposed to the weight-promoting effects of insufficient 

sleep on the days following curtailed sleep with no compensatory weight loss on days 

following compensatory sleep. In support of this hypothesis, children who avoid catch-up 

sleep on the weekends have greater levels of physical activity.28 Of note, the difference 

between weekday and weekend sleep duration was only 8 minutes in MrOS and 3 minutes in 

SOF suggesting that night-to-night variability in sleep duration in our cohorts was likely due 

to factors other than work.

Irregularity of sleep-wake habits may also lead to, or be a marker of, irregularity in eating 

patterns. Individuals who do not wake up at the same time every day are likely to have more 

variability in when and whether or not they eat breakfast. Irregular eating patterns have been 

associated with metabolic syndrome,29 while both snacking between meals and skipping 

breakfast have been found to predict increased weight gain.30-33 Greater night to night 

variability in sleep duration, sleep timing, and daytime napping could also all represent a 

more irregular sleep-wake rhythm. This may reflect a weaker circadian output from the 

master clock in the suprachiasmatic nucleus but could also represent greater dyssynchrony 

between daily activities and the underlying circadian rhythm. In either case, this circadian 

dysregulation may lead to metabolic consequences given the close relationship between the 

molecular clock and metabolic processes. Circadian dysfunction induced through genetic or 

environmental manipulation has been shown in animal models to induce metabolic 

alterations leading to obesity.34-36 In humans, shiftworking has been associated with 

increased obesity.37 In addition, in younger populations, circadian dyssynchrony is 

commonly induced by work/school schedules and is referred to as social jetlag. Social jetlag 

is associated with poorer health including a greater risk of overweight/obesity independent 

of short sleep duration.38,39

A delayed circadian phase as evidenced by a later sleep timing may influence obesity risk by 

increasing the relative proportion of calories eaten at night as opposed to in the morning. 

Those with later sleep times are more likely to skip breakfast and snack after dinner.4 In a 

diabetic population, later sleep midpoint on weekends was associated with a greater 

proportion of calories eaten at dinner, which in turn predicted worse glycemic control.40 
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Night eating syndrome is an extreme form of obesity associated with nocturnal snacking and 

night eating symptoms have been found to correlate with an evening chronotype.41,42

Another possibility is that irregular sleep patterns may simply serve as a marker for a chaotic 

lifestyle associated with less regular mealtimes, greater proportion of meals eaten outside of 

the house, and less regular opportunities to exercise. Further research on the correlation in 

patterns of sleep, eating, and exercise behaviors is needed in naturalistic settings.

Clearly some of the postulated mechanisms support a causal role of irregular sleep patterns 

(e.g., via dampening of the intrinsic circadian oscillator) on obesity risk while others suggest 

it is only a marker (e.g., predicting a chaotic lifestyle) for the true causal risk factor. Further 

research to understand the biological mechanisms for the identified associations are needed 

to better assess the potential for interventions targeting the regularization of sleep patterns to 

be used to combat obesity.

The strong findings regarding daytime napping reveal the complexity of the sleep – obesity 

relationship in that reduced nocturnal sleep is associated with obesity while increased 

diurnal sleep is associated with obesity. This apparent contradiction may again reflect an 

irregular sleep schedule with either a weakened circadian rhythm or greater desynchrony of 

the circadian rhythm. The interaction analyses suggests a complex relationship where 

daytime napping may be beneficial (or at least not harmful) in those whose nocturnal sleep 

is substantially restricted in that napping in such a situation allows for a more normal 

amount of total sleep in a 24-hour period. However, in those obtaining sufficient sleep at 

night, daytime napping is more strongly associated with obesity. In this situation, the 

adverse effects of napping on daytime eating or exercise behaviors are no longer 

counteracted by any beneficial impact of further increases in 24-hour sleep time. Since 

actigraphy is not well validated to detect daytime naps, it is also possible that the association 

between obesity and daytime naps may actually reflect periods of quiet wakefulness and 

lower levels of physical activity. In order to limit this bias, only periods of more than 5 

consecutive minutes scored as sleep were considered as naps. However, other factors not 

considered in this work, such as timing of the naps may also impact the impact of napping 

on weight and obesity risk.

Because this work was cross-sectional, reverse causation cannot be excluded as a possible 

explanation for our findings. Obesity has been associated with an increase in sleep 

pressure,43,44 and thus it is possible that the abnormal sleep patterns observed are a result 

rather than cause of increased adiposity. In addition, residual confounding may be possible. 

For example, the measures of physical activity available in these cohorts, particularly SOF, 

were relatively inexact. Nevertheless, interventional studies in animals suggest circadian 

disruption can lead to alterations in carbohydrate metabolism and weight supporting 

irregular sleep as a causal risk factor for obesity.45

Prior work highlighting the relevance of regular sleep patterns for metabolic health has 

focused on children.5 Our work suggests that regularity of sleep is important in older 

individuals as well. This population has less external constraints on sleep scheduling due to 

work/school requirements and so is at greater risk for irregular sleep patterns. This age 
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group is also at greater risk of obesity complications such as diabetes and cardiovascular 

disease. Thus, future research on the development of sleep interventions as a means to 

prevent or treat obesity should include older individuals.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Body Mass Index by Sleep Measures
Mean body mass index (BMI) plotted by quartile of sleep measure among men in MrOS and 

women in SOF cohorts adjusting for age, site, race, education, history of diabetes, stroke, 

coronary artery disease, heart failure, antidepressant use, benzodiazepine use, smoking, 

alcohol, caffeine, exercise, depression, cognitive function, self-reported health, and mean 

nocturnal sleep duration. The association with sleep duration variability is shown in Panel 

1a, sleep midpoint in Panel 1b, sleep midpoint variability in Panel 1c, and time spent 

napping in Panel 1d. P-values are based on a test of trend.
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Table 1

Odds Ratios for Association between Obesity and Sleep Measures

Model 1 Model 2 Model 3

MrOS Men

Sleep Duration Variability (per hr) 1.77 (1.44-2.17) 1.71 (1.39-2.12) 1.63 (1.31-2.02)

Sleep Midpoint (per hr) 1.13 (1.03-1.23) 1.10 (1.01-1.21) 1.04 (0.94-1.14)

Sleep Midpoint Variability (per hr) 1.73 (1.36-2.20) 1.66 (1.29-2.13) 1.28 (0.98-1.66)

Daytime Napping (per hr) 1.31 (1.20-1.44) 1.25 (1.13-1.38) 1.23 (1.12-1.37)

SOF Women

Sleep Duration Variability (per hr) 1.38 (1.17-1.63) 1.30 (1.08-1.56) 1.22 (1.01-1.47)

Sleep Midpoint (per hr) 1.18 (1.09-1.28) 1.16 (1.06-1.27) 1.11 (1.01-1.22)

Sleep Midpoint Variability (per hr) 1.60 (1.28-1.98) 1.54 (1.21-1.96) 1.32 (1.03-1.69)

Daytime Napping (per hr) 1.35 (1.24-1.46) 1.31 (1.19-1.44) 1.29 (1.17-1.41)

Model 1 adjusted for age, race and site.

Model 2 adjusted for Model 1 plus alcohol, smoking, caffeine, education, history of diabetes, stroke, coronary artery disease, congestive heart 
failure, use of antidepressants, use of benzodiazepines, exercise, cognitive function, depression, and self-reported health status.

Model 3 adjusted for Model 2 plus mean nightly sleep duration.
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Table 2

Odds Ratios for Association between Obesity and Daytime Napping by Nocturnal Sleep Duration.

Daytime Napping (per hr) Mean Nocturnal Sleep Duration Interaction p-value

≤ 5 hrs >5 to <7 hrs 7 to <8 hrs ≥ 8 hrs

MrOS Men 0.99 (0.78-1.25) 1.29 (1.12-1.48) 1.38 (1.09-1.75) 1.22 (0.79-1.87) 0.097

SOF Women 0.98 (0.75-1.27) 1.48 (1.28-1.71) 1.23 (1.03-1.48) 1.23 (0.94-1.62) 0.008

All models adjusted for age, race, site, alcohol, smoking, caffeine, education, history of diabetes, stroke, coronary artery disease, congestive heart 
failure, use of antidepressants, use of benzodiazepines, exercise, cognitive function, depression, and self-reported health status. p-value is test for 
interaction across sleep duration categories.
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