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Summary

Members of the SH2 domain family modulate signal transduction by binding to short peptides

containing phosphorylated tyrosines. Each domain displays a distinct preference for the sequence

context of the phosphorylated residue. We have developed a new high-density peptide chip

technology that allows probing the affinity of most SH2 domains for a large fraction of the entire

complement of tyrosine phosphopeptides in the human proteome. Using this technique we have
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experimentally identified thousands of putative SH2- peptide interactions for more than 70

different SH2 domains. By integrating this rich data set with orthogonal context-specific

information, we have assembled an SH2 mediated probabilistic interaction network, which we

make available as a community resource in the PepSpotDB database. A new predicted dynamic

interaction between the SH2 domains of the tyrosine phosphatase SHP2 and the phosphorylated

tyrosine in the ERK activation loop was validated by experiments in living cells.
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Introduction

Post-translational modifications (PTMs) and modular protein domains underlie a dynamic

protein interaction networks and represent one of the key organizing principles in cellular

systems (Pawson, 2004). In particular kinases modulate cell response to growth signals by

adding phosphate groups to short linear sequence motifs in their substrates. These

phosphorylated residues, in turn, serve as docking sites for proteins containing phospho-

binding modules such as the SH2, PTB and BRCT domains (Yaffe, 2002). The SH2 domain

family includes a total of 120 domains in 110 proteins and, as such, represents the largest

class of pTyr recognition domains (Liu et al., 2006). The peptide recognition preference of

each member of this large domain family has been the subject of a number of studies with

genome wide perspective. The pioneering work of Cantley’s group exploited oriented

peptide libraries to characterize the preference for specific residues in the positions flanking

the phosphorylated tyrosine in the targets of 14 SH2 domains (Songyang et al., 1993).

Machida and collaborators used a far western approach and a new strategy termed “reverse

phase protein array” to profile nearly the full complement of the SH2 domain family

(Machida et al., 2007). This strategy allowed to classify SH2 domains according to their

ability to bind classes of phosphorylated proteins, but lacked sufficient resolution to

precisely define recognition specificity and to permit to identify the targets of each SH2

containing protein. Another approach exploited OPAL, a variant of the oriented peptide

library approach, to derive position specific scoring matrices for 76 of the 120 human SH2

domains (Huang et al., 2008). Finally the full complement of human SH2 domains was

arrayed on glass chips and probed with a collection of phospho-tyrosine peptides from the

ErbB receptor family (Jones et al., 2006). This latter strategy offers the advantage of directly

addressing the interactions with specific phosphopeptides from the human proteome and of

being amenable to quantitative analysis. However, the throughput of its present

implementation does not permit screening of the entire human phosphoproteome. These

approaches have represented a considerable advancement in our understanding of the

recognition specificity within this domain family and taken together they have contributed to

characterize approximately two thirds of the SH2 domains.

We have addressed the problem from a different angle by developing and exploiting a new

technology that permits to probe the recognition specificity of each phosphotyrosine binding

domain on a high density peptide chip containing nearly the full complement of tyrosine
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phosphopeptides in the human proteome. In addition we integrate this in vitro experimental

data with orthogonal genome wide datasets to propose an SH2 mediated probabilistic

interaction network taking into account in vitro affinity data and in vivo contextual evidence.

Finally, we have captured from the published literature more than 800 experimental

evidences pertaining to SH2 recognition specificity and we have used this information as a

gold standard to benchmark our predictors.

Our strategy combines harnessing the strengths of a new powerful experimental assay and

integrating its quantitative output with a wide range of orthogonal genome wide context

information. The raw experimental data and the probabilistic network can be accessed and

explored in the context of the SH2 domain interaction curated from literature in a new

publicly available resource: the PepSpot database http://mint.bio.uniroma2.it/PepspotDB/.

Results and Discussion

Phosphotyrosine peptide chips: a nearly complete complement of the human
phosphotyrosine proteome

The SPOT synthesis approach (Frank, 1992) is based on the ability to synthesize a few

thousands oligopeptides in an ordered array on a cellulose membrane. This approach has

been extensively used to study protein interactions when one of the partners can be

represented as a short unconstrained peptide. For this project we have moved forward the

approach by increasing by approximately one order of magnitude the number of peptides

that can be tested in a single experiment (Fig. 1). This is based on the ability to 1) synthesize

several thousand peptides by spatially addressed SPOT synthesis, 2) punch-press the peptide

spots into wells of microtiter plates, 3) release peptides from resulting cellulose-discs and 4)

print them onto aldehyde modified glass surfaces resulting in high density peptide chips

displaying the probes in three identical replicates.

The tyrosine phosphopeptide chip (pTyr-chip) used in this work was initially designed to

represent most of the phospho-proteome known when this project had started. At that time

the PhosphoELM (Diella et al., 2008) and Phosphosite (Hornbeck et al., 2004) databases

contained 2198 tyrosine phosphopeptides. This collection of experimentally determined

phosphopeptides was completed with approximately 4000 additional peptides having a high

probability of being phosphorylated according to the NetPhos predictor (Blom et al., 1999).

Overall 6202 phosphopeptides, thirteen residues long with the pTyr in the middle position,

were printed in triplicates with appropriate controls (Supplementary Table S1). Each pTyr-

chip can be used to profile the recognition specificity of a phospho-tyrosine binding domain

fused to a tag and revealed with an anti tag fluorescent antibody.

Profiling the recognition specificity of the SH2 domain family

The pTyr-chips were used to profile a collection of 99 human SH2 domains fused to GST

(Supplementary Table S2) (Machida et al., 2007). Experimental reproducibility ranged from

0.7 to 0.99 Pearson’s correlation coefficient (PCC), with most results being well over 0.95,

when two replica arrays are compared (intra-chip reproducibility), and of approximately

0.95 in two independent experiments carried out with two different preparations of the same
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domain (inter-chip reproducibility) (see supplementary Figures S1 and supplementary Table

S3).

Among the 99 domains in the collection 26 did not express as a soluble product and 3 gave a

poor signal in the peptide chip assay. Only experiments with replica arrays having a

Pearson’s correlation coefficient higher than 0.7 were considered for further analysis.

Overall 70 domains gave a satisfactory result by this approach. The specificity of 15 of them

had never been described before.

The sequences of the peptides whose binding signal exceeded the average signal by more

than two standard deviations (Z score >2) were aligned and used to draw sequence logos

illustrating the preferred binding motif of each domain (Figure 2). Differently from what has

been recently described for PDZ, SH3 and WW domains (Gfeller et al., 2011) we could not

find evidence for multiple specificities for any of the characterized SH2 domains. The

results of the profiling experiments were used to cluster the domains according to their

preference for phosphotyrosine sequence context (Fig. 3 A). Based on the resulting tree, we

arbitrarily define 17 specificity classes characterized by representative amino acid sequence

Logos (Figure 3 B). In Figure 3 C we have drawn a second tree where SH2 domains are

clustered according to homology in their primary sequence. Specificity class membership is

illustrated by background colors matching the colors in panel A. Although closely related

domains tend to be member of the same class, the correlation between sequence homology

over the whole domain and peptide recognition specificity is overall poor (PCC=0.30, See

supplementary Fig. S2). This is consistent with the results of Machida and collaborators

(Machida et al., 2007) who failed to identify a correlation between domain sequence and

band patterns in far-western type experiments. Attempts to identify diagnostic residues that

would help assigning uncharacterized domains to specificity classes by the MultiHarmony

software (Brandt et al., 2010) have not been successful. The finding that little divergence in

sequence homology can account for relatively large changes in binding specificity is

consistent with the reported observations that a few amino acid changes are sufficient to

induce a specificity shift in peptide recognition modules such as SH2, SH3 and PDZ (Ernst

et al., 2009; Marengere et al., 1994; Panni et al., 2002) and have implications for the

interpretation of the observed rapid evolution of protein interaction networks (Kiemer et al

2007) (Kiemer and Cesareni, 2007).

Liu and collaborators have proposed that non-permissive amino acid residues, opposing

binding, could play a role in shaping SH2 domain recognition specificity (Liu et al., 2010).

We have confirmed that some SH2 ligands dislike specific residues at specific positions

(Supplementary Fig. S3). However, our comprehensive analysis has failed to confirm that

negative selection could play a prominent role in modulating peptide recognition specificity

within the defined specificity classes.

Artificial neural network predictors of SH2 binding

The pTyr-chip used in this work was initially designed to contain most of the human

phosphotyrosine-peptides that were known at the start of this project. However, the recent

developments of mass spectrometry based technology has caused an explosion of

information and the collection of phosphorylated peptides contained in databases (Diella et
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al., 2008; Hornbeck et al., 2004) now significantly exceeds the number of experimentally

verified peptides represented in our array. Thus, in order to be able to offer a resource that

could reliably infer the SH2 ligands of any recently discovered phosphopeptide we

developed artificial neural network (ANN) predictors (NetSH2) for each of the 70 profiled

SH2 domains (see Methods).

To utilize all the information from pTyr-chips, the peptide sequences and normalized log-

ratio intensities were used as input for the ANN. In this way we trained the ANNs to predict

if a given peptide is a weak or a strong binder of a specific SH2 domain. In total 70

predictors were trained with an average Pearson correlation coefficient of 0.4 (Fig. 4). These

predictors have been integrated in the Netphorest community resource (Miller et al., 2008).

Benchmarking the SH2 ANN predictors (NetSH2)

An independent large-scale effort has investigated the substrate specificities of SH2 domains

using oriented peptide libraries (Huang et al., 2008). The results are available in a resource,

termed SMALI (scoring matrix-assisted ligand identification), which uses position specific

scoring matrices (PSSMs) to predict ligands of 76 different SH2 domains. The main

difference between PSSMs and ANNs is that the latter can capture nonlinear correlations

between residues. In order to compare the performance of SMALI to the ANN developed

here, we compiled an independent benchmark data set of the known in vivo ligands of SH2

domains. For this purpose the information from the MINT database (Ceol et al., 2012) was

supplemented with new interactions captured by extensive search and curation of published

information (see Methods). The integrated interaction list (See supplementary Table S4 and

Supplementary Figure S4) was used as the ‘positive’ benchmarking dataset, while the

‘negative’ dataset consisted of phospho-tyrosine peptides from the phospho-ELM database

(Diella et al., 2008) that had not been shown to bind any SH2 domain. After discarding

benchmark peptides that were more than 90% identical to the ANN training data (see

Methods), we evaluated the performance of each predictor based on their receiver operating

characteristic curves, which show sensitivity as function of false-positive rate. We

summarized each curve in a single number, the area under the ROC curve (AROC), which is

a convenient performance measure, since it does not depend on defining a threshold to

separate positive predictions from negative ones. Provided that at least eight positive

example were left, we were able to benchmark 13 ANN and SMALI predictors with an

average AROC of 0.81 and 0.74, respectively (Fig. 4b). Since random performance

corresponds to an AROC of 0.5, both methods perform well in predicting in vivo ligands of

SH2 domains, even though the data used to develop the methods were based on in vitro

screens. However, NetSH2 has a competitive advantage, since it is based on a larger

experimental dataset and exploits a higher-order machine learning, which in part can capture

the complexity in the interaction motifs that guide SH2-ligand binding.

Functional prediction by integration of contextual information

While the artificial neural network predictors NetSH2 accurately capture and model the

actual binding site in a narrow sequence window, they do not take into consideration

evidence of the functional relevance of the inferred SH2 mediated complex in a

physiological context. Thus, we integrated an additional prediction layer to accommodate
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functional information (Linding et al., 2007). To this end we developed a “functional”

confidence score obtained by integrating, by a Naïve Bayes approach, different contextual

evidence. The contextual features that were considered included i) cellular co-localization ii)

tissue co-expression, iii) predicted order/disorder, iv) degree of conservation of the sequence

of the peptide target in related species and v) graph distance between the supposedly

interacting proteins in the human interactome. All the considered features contributed to a

different extent to the performance of the predictor (see supplementary Figure S5). The

efficiency of the Bayesian predictors, as compared with the ANN predictor, was evaluated

by drawing ROC curves and by calculating the Area under the ROC (AROC). Although this

analysis is statistically meaningful only for the few SH2 domains for which the “gold

standard” of bona fide in vivo interactors is sufficiently large, we can conclude that, in

general, the Bayesian predictor performs better or equally well as the experimental score.

The results of this analysis for two different domains are displayed in Figure 4 (panel c, d).

In the case of PIK3R1 and GRB2, the Bayesian predictors clearly outperform the

“experimental” predictors (p-values 0.0006 and 0.1 respectively). Bayesian functional scores

were calculated for all possible SH2 domain-phosphopeptide pairs: a total of 955,010 scores

were stored in PepspotDB, along with the information that was used to calculate the score.

PepspotDB: a database for the storage and analysis of experiments based on peptide chip
technology

The SH2 interactome project yielded a large number of experimental and computationally

derived data points. To cope with the associated data management challenge and facilitate

the fruition of the data and the integration with published information in a single integrated

resource we have developed a new publicly accessible databases, called PepspotDB (http://

mint.bio.uniroma2.it/PepspotDB/home.seam) (See also supplementary Table S6).

PepspotDB contains five main data types: (a) raw and processed experimental data points;

(b) Neural Network predictions; (c) literature curated interactions; (d) Bayesian context

scores. In addition, PepspotDB is tightly integrated with the protein-protein interaction

database MINT (Licata et al., 2012). All the Neural Network binding predictions on a set of

~13,600 phosphopeptides retrieved from the PhosphoSite (Hornbeck et al. 2004) and

Phospho.ELM databases (Diella et al., 2008) are also stored in the PepspotDB. Among the

nearly one million possible combinations of the 70 SH2 containing proteins and 13600

phosphorylated tyrosine peptides, some 10,580 interactions are supported by some signal

observed in the peptide chip experiment and 49,175 are computationally predicted by the

Neural Network algorithm, the overlap being 4,207 interactions. This latter set of domain-

peptide interactions with both experimental and computational support is enriched in

interactions confirmed by published experiments (p-value < 1.11·10−16 by the

hypergeometric test) and can thus be deemed high-confidence.

PepspotDB comes with a rich web application providing a user friendly interface for easy

information retrieval. The information provided with each retrieved interaction includes:

experimental, computational and contextual evidence supporting the interaction, cross-

references to MINT records describing an interaction between the domain containing protein

and the peptide containing protein, and links to published articles reporting the currently
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displayed domain-peptide interaction. Query results can be downloaded in text format for

further analysis. See supplementary material for a more detailed description of the database

and a guide to its use.

Experimental validation by phosphopeptide pull down

In order to validate the prediction based on peptide chip experiments we used 57 synthetic

phosphopeptides linked to magnetic beads to affinity purify ligand proteins from extracts of

HeLa cells stimulated with EGF. To increase the statistical significance of the analysis we

integrated already published data (25 phosphopeptide baits) (Schulze et al., 2005) with new

experiments (32 phosphopeptide baits). This bait collection contains a large fraction of

peptides (Supplementary Table S5) that are phosphorylated on tyrosines upon stimulation of

receptor kinases of the EGFR family. Affinity purified proteins were identified by liquid

chromatography coupled to high-resolution mass spectrometry. The recovered proteins

mostly contain SH2 domains with a few exceptions. Overall these pull down experiments

define a network of 47 proteins linked by 85 interactions (Figure 5A). Differently from

“traditional” protein interaction graphs, many proteins in this graph are represented as

covalently linked nodes, where each node is an independent binding domain (Santonico et

al., 2005). This representation is made possible by the resolution of the interaction

information obtained by this approach and allows to distinguish whether the interactions

engaged by a highly connected protein are mutually exclusive or rather involve different

binding regions and are mutually compatible.

Only 45 of the 125 SH2 containing proteins have ever been identified by LC-MS

experiments in HeLa cells (Blagoev et al., 2004; Wisniewski et al., 2009) (Supplementary

Table S6). For 28 of these we had an SH2 specific neural network predictor that could be

used to rank the SH2 domains according to their preference for the phosphopeptide baits.

Approximately 33% of the interactions determined experimentally were ranked high by the

predictors developed in this work, z-score higher than 2 (red edges in the graph in Figure

5A). To measure the performance of our predictors by a more general approach, we plotted a

receiver operating characteristic curve using the experimentally derived SH2 containing

proteins as positive instances and the remaining as negative ones. The area under the curve

(AROC) was 0.81 with a precision (true/false positives) of approximately 0.11 at a recall of

50% (Figure 3B). However, there are a number of reasons why the performance of our

predictors is underestimated by this analysis. First, some of the interactions that are

predicted by the neural network might have been missed by the affinity purification

experiment because of the low abundance of the corresponding SH2 protein partners. In

addition some of the proteins may bind to the bead-linked phospho-peptide by a domain that

is different from SH2. For instance the protein SHC1 has a second domain (PTB) that binds

phosphopeptides containing the NPxpY motif. Indeed more than 50% of the

phosphopeptides that affinity purified SHC1 contain this or related motifs. Finally some of

the interactions detected by pull down could be indirect. For instance SHC1 and GRB2 form

a relatively stable complex upon EGF induction. The SH2 domain of GRB2 binds peptides

containing a typical pYxN motif. The observation that SHC1 was detected in most of the

pull downs obtained with peptides containing the pYxN GRB2 motif, despite having a

different recognition specificity, suggest that SHC1 binds this phosphopeptide beads via a
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GRB2 bridge. Conversely a SHC1 bridge could explain the indirect binding of GRB2 to

peptides containing a NPxpY motif. These considerations explain the relatively poor

performance of our SHC1 (and to a lesser extent GRB2) SH2 domain predictor.

The EGF dynamic network

Protein interaction networks are typically pictured as static graphs lacking a time dimension.

However, most biological processes are dynamic and protein concentrations and

modifications change in time responding to external or internal molecular cues. For instance,

after addition of growth factors such as EGF the signal is propagated from the receptor on

the membrane to the nucleus via a cascade of modifications, mostly additions and removal

of phosphate groups, which in turn promote the association and dissociation of enzymes and

adaptors containing phosphopeptide binding domains. Olsen and colleagues (Olsen et al.,

2006) have reported the global in vivo phosphorylation dynamics following activation of the

EGF receptor in HeLa cells. Overall they have identified 6600 phosphorylation sites on

2244 proteins containing at least one phosphorylated Ser, Thr or Tyr. Of the 293 phospho-

tyrosine peptides, identified on 243 proteins, 53 change dynamically their phosphorylation

state after incubation with EGF. We have combined this dynamic dataset with our proteome

wide prediction of the SH2 target sites to come up with a description of the dynamic

association and dissociation of proteins following the activation of the tyrosine kinase

signaling cascade.

To this end we downloaded from the HomoMINT database (Chatr-aryamontri et al., 2007;

Persico et al., 2005) all the interactions where one of the partners is a protein participating in

the EGF pathway according to the Reactome database (Vastrik et al., 2007). Only

interactions with a MINT confidence score (Chatr-Aryamontri et al., 2008) higher than 0.4

were considered. This network represents the basal static interactions in the cell. We next

downloaded from the PepSpot database all the interactions between SH2 domain containing

proteins and the tyrosine containing peptides whose phosphorylation varies with time after

EGF stimulation. Interactions with a “final posterior probability” higher than 0.3, according

to the Bayesian model developed here, were taken into consideration. This inferred dynamic

network was superimposed onto the static literature-derived network. For network legibility

all the proteins linked to the network by a single edge were removed. The predicted changes

occurring in the dynamic interactome are illustrated in Figure 6A where the proteins

containing SH2 domains are in orange and the interactions mediated by peptides whose

phosphorylation levels change after EGF stimulation are in red. Five minutes after receptor

stimulation several EGFR peptides are phosphorylated and act as receptors for SH2

containing proteins. Many of these interactions are predicted to vanish at time 20 minutes

while new ones, mediated by peptides that are phosphorylated late, appear. Some of the

inferred interactions such as the ones between the receptor and GRB2, SHC1, PLCG or

PI3K have already plenty of support in the literature. Some others have never been reported

and might represent new functionally important protein links.

We focused on the interactions mediated by the SH2 domains of the phosphatase SHP2/

PTPN11. SHP2 is known to be activated by binding to phosphorylated GAB1 (Holgado-

Madruga et al., 1996). This interaction releases the auto-inhibitory binding between the N-
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terminal SH2 domain and the phosphatase domain and activates the phosphatase enzymatic

activity and via an incompletely understood mechanism promotes a sustained activation of

ERK. Our dynamic network recapitulates the interaction between the SH2 domains of SHP2

and GAB1 but in addition predicts a previously unrecognized interaction between the SH2

domains of SHP2 and the phosphorylated Tyr204 in the activation loop of ERK1/2. The

results of the pull down and co-immunoprecipitation experiments in Figure 6B clearly show

that SHP2 forms a dynamic complex with ERK, starting 5 minutes after incubation with

EGF. After 30 minutes we observe a sharp decrease in the amount of immunoprecipitated

ERK, which parallels the reduction in ERK phosphorylation levels.

The validation of the predicted dynamic interaction of SHP2 with ERK1/2 attests that the

new experimental data presented here, combined with orthogonal genome wide context

information, contributes useful hints of new interactions to be experimentally tested for

functional relevance. The PepSpotDB provides easy access to these data and related

predictions and thus represent a useful resource to shed light on mechanisms that rely on the

formation of complexes mediated by phosphotyrosine-peptides.

Experimental Procedures

Peptide arrays

The thirteenmer phosphotyrosine peptides were selected by combining the 2198 peptides

that were annotated in the PhosphoELM (Diella et al., 2008) and Phosphosite databases

(Hornbeck et al., 2004) at the time we started this project and approximately 4000 additional

peptides from the human proteome that received a high score by the NetPhos predictor

(Blom et al., 1999). Overall 6202 phosphopeptides, thirteen residues long, were synthesized

and printed in triplicate identical arrays with appropriate controls (Supplementary Table S1).

Amino-oxy-acetylated peptides were synthesized on cellulose membranes in a parallel

manner using SPOT synthesis technology according to (Frank, 1992; Wenschuh et al.,

2000). Following side chain deprotection the solid phase bound peptides were transferred

into 96 well microtiter filtration plates (Millipore, Bedford, USA) and treated with 200 μL of

aqueous triethylamine (2.5 % by vol) in order to cleave the peptides from the cellulose

membrane. Peptide-containing triethylamine solution was filtered off and used for quality

control by LC-MS. Subsequently, solvent was removed by evaporation under reduced

pressure. Resulting peptide derivatives (50 nmol) were re-dissolved in 25 μL of printing

solution (70% DMSO, 25% 0.2 M sodium acetate pH 4.5, 5 % glycerol; by vol.) and

transferred into 384-well microtiter plates. Different printing procedures (non-contact

printing vs contact-printing) were tested for production of final peptide chips. The best

results were reached using contact printing with ceramic pin tools (48 in parallel) on

aldehyde modified slides (enhanced surface; Erie Scientific). Printed peptide microarrays

were kept at room temperature for 5 hours, quenched for 1 hour with buffered ethanolamine,

washed extensively with water followed by ethanol, and dried using microarray centrifuge.

Resulting peptide microarrays were stored at 4 °C.
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A large manually curated data set of human SH2 mediated interactions

Since the discovery that SH2 domains mediate binding to peptides containing

phosphorylated tyrosines (Anderson et al., 1990; Moran et al., 1990), several reports

appeared in the literature over the years describing the sequence of peptide ligands for

several SH2 domains. We have made an effort to recapture this valuable information, to

organize it in a computer readable format and to store it in a database. To this end we have

developed a simple text mining approach to recover from the Medline database abstracts

containing the text SH2 and a Y followed by a number in a protein interaction textual

context. The recovered abstracts were examined by expert curators and whenever the

abstract hinted that the manuscript was reporting evidence for an interaction between an

SH2 domain and a specific phosphorylated peptide, the manuscript was read through to

extract the relevant information. Approximately 50 % of the abstracts recovered by text

mining were deemed relevant by the curators.

When this work was in the process, we learned of a similar effort by Gong and collaborators

(Gong et al., 2008). The data curated by this group, including 489 SH2 related articles, is

available in a public database. 141 of the articles in our curation effort were not present in

the PepCyber database while 124 were in common. Among the entries in this latter

collection we found 20 discrepancies in the information extracted by the curators. These

entries were re-examined and the discrepancies fixed. Finally the PepCyber database

contained 365 articles that were not yet curated in our effort. We analyzed these 365 articles

and for 135 of them we couldn’t find any experimental evidence supporting an interaction

between an SH2 domain and a specific phosphorylated peptide. The remaining 230 articles

were re-curated by MINT curators according to the PSI-MI standards and controlled

vocabularies (Hermjakob et al., 2004) (See Vent diagram in supplementary Fig. S4).

Training and benchmarking artificial neural networks (NetSH2)

In order to build predictors to infer if a given peptide is weak or a strong ligand of a

particular SH2 domain, we employed ANNs of the standard three-layer feed forward type

and encoded the amino acids as previously described (Nielsen et al., 2003). Only peptides

with a length of 13 and with the phospho-tyrosine residue centrally placed were taken into

account. To avoid over fitting the data set was homology reduced using CD-HIT (Li and

Godzik, 2006) with default values and 90% sequence identity threshold. These operations

reduced the total data set from 6202 peptides to 3896. For each SH2 domains we normalized

the log-ratio intensity values to range between 0 and 1, where higher numbers correlate with

stronger binding affinity. The data set was divided into four subsets by random partitioning.

We trained an ANN on two subsets, determined the optimal network architecture and

training parameters on the third subset, and obtained an unbiased performance estimate from

the fourth subset. This was repeated in a round-robin fashion to utilize all data for training,

test, and validation. For each test set the number of hidden neurons in the ANN (0, 2, 4, 6,

10, 15, 20, and 30) were optimized according to the Pearson correlation coefficient (PCC).

The reported PCC performance measure of each ANN was based on the independent

validation subsets.
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To validate the performance of developed ANNs we used the data set of known in vivo

ligands of SH2 domains specifically curated for this work (refer to the ‘gold standard’ data

set). This training-independent data set served as the positive instances, while the negatives

were compiled of 1307 phospho-tyrosine peptides from phospho.ELM (Diella et al., 2008)

that have not previously been shown to bind any SH2 domains. In order not to validate on

instances that are identical or highly similar in sequence to what was used to train the ANNs,

we used the BLAST algorithm to discard benchmark peptides that were more than 90%

identical to the training set. To compare the performance of the ANNs with previously

published methods, we ran the benchmark data set through the SMALI method that employs

position specific scoring matrices to predict ligands of SH2 domains (Huang et at., 2008).

We tested each predictor on its respective validation set and calculated the area under the

receiver operating characteristics curve (AROC) for the SH2 domains for which we had at

least eight positive instances in the benchmark data set. To test if the observed performance

of the PSSMs was significantly different from the ANNs, we constructed bootstrap estimates

of the uncertainty associated with each AROC by resampling of the score distributions for

positive and negative examples.

Contextual score ranking interactions according to likelihood of functional significance

The Bayesian model supporting the contextual score is based on a number of independent

genome wide features describing the probability that the peptide is exposed or in a

disordered part of the parent protein, that the SH2 domain protein and its predicted partner

are expressed in the same tissues, that they are close in the protein interaction network and

conserved in evolution. Finally, we have added the neural network score as a property in the

Bayesian inference scheme to give an overall probability of interaction between the SH2

domain and the protein from which the peptide in question was derived.

For each set of possible interactors (SH2 domain containing protein and peptide containing

protein), we retrieved information that could help determine whether that particular

interaction is likely to take place under physiological conditions.

The “tissue-specific expression” data was taken from Su et al. (Su et al., 2004), and the sub-

cellular localization was extracted partly from CellMINT (manuscript in preparation) and

partly from GO annotations. Both these sets of data were scored by counting the number of

co-occurences of organelle terms and dividing by the highest number of occurrences for

either the SH2 domain containing protein or the peptide containing protein, thus obtaining a

score between 0 and 1.

“Structural disorder” was determined using IUPred by running the prediction method on the

full sequences and then cutting out the relevant part (Dosztanyi et al., 2005). A score

between 0 and 1 was obtained by taking the average score of all the residues constituting the

peptide.

“Degree of conservation” of the binding site in related species was evaluated by inspecting it

in multiple alignments of orthologs and paralogs from ENSEMBL (Flicek et al.). The

relevant peptides were cut out of the related sequences and evaluated for binding by the

neural networks. The score contribution for each orthologous sequence with the particular
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domain was calculated by multiplying the neural network score with the overall sequence

distance from the original sequence obtained from a neighbour-joining tree. This procedure

was followed to award binding site conservation in distant sequences more than that in close

sequences. The scores obtained from all the orthologous sequences were added up to

produce a single score for each binding site/SH2 domain combination.

Conservation score = sigma_i(dist_sequence(i) * ANN_sequence(i)), where i runs through

all orthologous sequences in the alignment for that particular peptide. Finally, the “raw

neural network scores” were incorporated in the Bayesian framework as a feature on its

own.

To assess the importance of contextual evidence, we applied the Naïve Bayes algorithm:

This computes the probability of interaction given the evidence (P(I|E)). The components of

this calculation are the probabilities of seeing each piece of evidence given interaction (PEx|

I) and the probability of seeing this evidence in the full set of combinations of domain

containing proteins and peptides P(Ex). In practice, this latter probability is calculated by

evaluating both the probability of the evidence given interaction and the probability of the

evidence given non-interaction (see supplementary Figure S5).

The parameters for the model are determined from a set of known SH2 interactions that was

collected and curated manually, deemed ‘the foreground set’, as well as the full range of

possible combinations of SH2 domain containing protein and peptides (‘the background

set’), assuming that most of these combinations are non-interacting in vivo.

Assembly of the EGF dependent dynamic network

The EGF dependent dynamic network is a graph with a temporal dimension. This is

assembled via the following steps.

We first downloaded from the MINT database all the interactions involving as a partner one

of the proteins that participate in signal transduction in the EGF pathway, as described in the

Reactome pathway database. Only interactions with a MINT confidence score greater than

0.4 were considered. Next we inferred all the possible interactions between SH2 containing

proteins and the peptides described by Olsen et al as phosphorylated in tyrosines following

EGF stimulation.

Phosphotyrosine peptide pull-downs and mass spectrometric analysis

SILAC Cell Culture and Lysis—Adherent human cervix carcinoma cells (HeLa,

ATCC® Number: CCL-2) were SILAC encoded in Dulbecco’s modified Eagle’s medium

deficient in arginine (Arg) and lysine (Lys), and supplemented with 10% dialyzed fetal calf

serum and antibiotics. One cell population was supplied with normal L-Arg and L-Lys

(“Light SILAC”), and the other one with the stable isotope-labeled heavy analogues

13C615N4-L-Arginine and 13C615N2-L-Lysine (“Heavy SILAC”). After five cell

doublings the cells were lyzed in an ice-cold buffer consisting of 1% NP-40, 150 mM NaCl,
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50 mM Tris-HCl, pH 7.5, 1 mM dithiothreitol, protease inhibitor mixture (Roche complete

tablets), and 1 mM sodium ortho-vanadate as tyrosine phosphatase inhibitor. Following

centrifugation at 16,000 × g for 15 min the supernatant was used for peptide affinity

pulldown experiments.

Peptide Synthesis

Peptides were synthesized as pairs in phosphorylated and non-phosphorylated forms on a

solid-phase peptide synthesizer using an amide resin (Intavis, Germany) as previously

described (Hanke and Mann, 2009). Briefly, an amino acid sequence stretch of 13 residues

surrounding the central in vivo tyrosine phosphorylation site that we have previously

identified by mass spectrometry (Olsen et al., 2006) were synthesized with an N-terminal

SerGly-linker and a N-amino modified desthiobiotin moiety for coupling to streptavidin-

coated beads and efficient elution via biotin. The purity of the all synthetic peptides was

confirmed by mass spectrometric analysis.

Peptide Pull-down

Peptide pull-downs were performed automatically on a TECAN pipetting robot using the

peptide pull-down protocol previously described (Schulze et al., 2005). The synthetic

peptides were bound to streptavidin-coated magnetic beads (Dynal MyOne, Invitrogen), and

cell lysate corresponding to 1 mg of protein (~5 mg/ml protein) was added to 75 μl of beads

containing an estimated amount of 2 nmol of synthetic peptide. Heavy SILAC-labeled lysate

was incubated with the phosphorylated version of the peptide, whereas light SILAC-labeled

lysate was added to the non-phosphorylated counterpart. After rotation at 4 °C for four

hours, the beads were washed for at three times by with lysis buffer. Beads from each

peptide pair were combined and bound proteins were eluted using 20 mM biotin. Eluted

proteins were then precipitated by adding 5 volumes of ethanol together with sodium acetate

and 20-μg glycoblue (Ambion).

In-solution Protein Digestion

The precipitated proteins were resuspended in 20 μl of 6 M urea, 2 M thiourea, 20 mM Tris-

HCl, pH 8.0 and reduced by adding 1 μg of dithiothreitol for 30 min, followed by alkylation

of cysteines by incubating with 5-μg iodoacetamide for 20 min. Digestion was started by

adding endoproteinase Lys-C (Wako). After three hours samples were diluted with four

volumes of 50 mM NH4HCO3, and trypsin (Promega) was added for overnight incubation.

Proteases were applied in a ratio of 1:50 to protein material, and all steps were carried out at

room temperature. Digestion was stopped by acidifying with trifluoroacetic acid, and the

samples were loaded onto homemade StageTips packed with reversed-phase-C18 disks,

(Empore, 3M, MN) for desalting, and concentration prior to LC-MS-analysis.

Nanoflow LC-MS/MS

Digested peptide mixtures were separated by online reversed phase nanoscale capillary

liquid chromatography and analyzed by electrospray tandem mass spectrometry.

Experiments were performed with an Easy-nLC nanoflow system (Proxeon Biosystems)

connected to an LTQ-Orbitrap XL or 7T-LTQ-FT Ultra mass spectrometer (Thermo Fisher
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Scientific, Bremen, Germany) equipped with a nanoelectrospray ion source (Proxeon

Biosystems, Odense, Denmark). Binding and chromatographic separation of the peptides

took place in a 15 cm fused silica emitter (75-μm inner diameter) in-house packed with

reversed-phase ReproSil-Pur C18-AQ 3-μm resin (Dr. Maisch GmbH, Ammerbuch-

Entringen, Germany). The mass spectrometer was operated in the data-dependent mode to

automatically switch between high-resolution orbitrap full scans (R=60K at m/z = 400) and

LTQ ion trap CID of the top ten most abundant peptide ions. All full scans were

automatically recalibrated in real time using the lock-mass option.

Peptide and protein identification and quantification

Peptide and proteins were identified by using Mascot and the MaxQuant software suite (Cox

and Mann, 2008) and filtered for an estimated False discovery rate of less than one percent.

All SILAC pairs were quantified by MaxQuant and the corresponding protein ratios were

calculated from the median of all peptide ratios and normalized such that the median of all

peptide ratios (log-transformed) were zero.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

We describe the recognition specificity of 70 SH2 domains.

Recognition specificity diverges faster than sequence.

PepSPOT: a database of protein interactions mediated by SH2 domains.
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Figure 1. Schematic illustration of the strategy to draw an SH2 mediated protein interaction
network
See also supplementary Figure S1 and Supplementary Table S1.
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Figure 2. Sequence logos representing the recognition specificity of the SH2 domain family
For each SH2 domain, the peptides whose binding signal was higher than the average signal

plus two standard deviations were aligned on the phosphorylated tyrosine. These peptides

were used to draw the peptide logos by a Logo drawing tool implemented in the PepSpot

database (see Extended Results in Supplementary materials). Domain Logos of the same

specificity class are framed in identical colors. The Logo total information content is also

indicated in each frame (See also Supplementary Table S2).
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Figure 3. Classification of SH2 domain specificity
To draw the recognition specificity tree in A we computed the amino acid frequency at each

of the13 positions of the SH2 binding peptides to compile a 73 (SH2 domains) × 240 (12

positions × 20 amino acids) matrix describing the domain specificity as amino acid

frequencies at each of the 12 positions. We excluded from the analysis the peptide position

corresponding to the invariant phosphotyrosine. This matrix was used as input for

EPCLUST (http://www.bioinf.ebc.ee/EP/EP/EPCLUST/) to cluster the domains by using the

algorithm “linear coefficient based distance, Pearson centered”. We next chose an arbitrary

Tinti et al. Page 20

Cell Rep. Author manuscript; available in PMC 2014 July 25.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://www.bioinf.ebc.ee/EP/EP/EPCLUST/


branch depth to identify the 17 specificity classes highlighted with different colors in the

figure. B) Amino acid logos for one representative domain for each specificity class. C) The

SH2 domain sequences were aligned with the ClustalW algorithm (4) and the homology tree

was drawn with the FigTree program, (http://tree.bio.ed.ac.uk/software/figtree1). Each

domain name is highlighted with a background color corresponding to the specificity class

in A (See supplementary Table S3).
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Figure 4. Benchmarking NetSH2 predictors
a) Distribution of the Pearson Correlation Coefficients of the 70 NetSH2 predictors. b)

Comparison of the area under the curve (AROC) of thirteen pairs of predictors tested against

a literature curated dataset. Green bars represent the AROC of the SMALI PSSM predictors

while yellow bars are the AROC of the NetSH2 predictors presented here. * denotes a p

value <0.05 (see methods). c, d) Receiver operating characteristic curve obtained by plotting

true positives versus false positives at varying experimental (blue) or Bayesian (red) score

using as gold standard a set of experimentally validated interactions extracted from the

literature. The number of the gold standard interactions for PI3K and GRB2 were 31 and 24

respectively (See supplementary Figure S4 and supplementary Table.
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Figure 5. Comparison between experimentally verified and predicted interactions
A) The graph represents all the interactions detected by pull down experiments. Proteins are

labeled with their gene names. SH2 containing proteins are represented as yellow circles

while proteins containing target phosphopeptides are in green. Proteins containing multiple

SH2 target sites are represented as covalently linked multiple nodes labeled with the

coordinates of the phosphorylated tyrosines. Interactions that are also supported by the

Neural Network predictors (z score >2) are drawn in red. B) Receiver operating

characteristic curve obtained by plotting true positives and false positives at varying neural
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network score. The red curve is obtained by using a ranked list limited to predictions of

interactions with SH2 domains that have ever been identified in HeLa cells. (See also

supplementary Figure S4 and S5 and supplementary Tables S4,S5,S6).
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Figure 6. Dynamic EGF network
The four time-resolved graphs in panel A combine the information about the i) kinetic of

tyrosine peptide phosphorylation following incubation with EGF (Olsen et al., 2006), ii)

protein protein interaction data mined from the literature and iii) the prediction of SH2

phosphopeptide interactions. Edges representing dynamic interactions mediated by SH2

domains are in red while orange and green circles represent proteins containing or not

containing SH2 domains respectively. B) GST fusions of three different SH2 domains

(PI3K, GRB14 and SHP2) were used in pull down experiments after incubation of 500 μg of

a HeLa cell extract preincubated for 5 minutes with EGF. Affinity purified proteins were

analyzed by SDS-PAGE and, after staining with blu coomassie, transferred to membranes

and revealed with anti-phospho ERK antibodies. C) After 16 hours starvation (time 0), HeLa
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cells were induced with EGF for 5, 10 and 30 minutes. Protein extracts were incubated with

the tandem SH2 domains of SHP2 expressed as a GST-fusion protein. The affinity purified

SH2 ligands were resolved by SDS-PAGE and revealed with anti phospho ERK antibody.

D) After starvation, HeLa cells were treated with EGF for 5, 10 and 30 minutes. Cellular

lysates were separated by SDS-PAGE and transferred onto a nitrocellulose membrane. The

blot was incubated with anti phospho ERK and anti ERK antibodies. E) The whole protein

extract (1mg) of HeLa cells treated with EGF, was immunoprecipitated with anti SHP2

antibody. Beads were washed with lysis buffer and the immunoprecipitation (IP) was

revealed with anti phospho ERK and anti SHP2 antibodies. F) HeLa cells were starved (0′

min) or induced for 5, 10 and 30 minutes with EGF. After cell lysis, 1 mg of protein extract

was immunoprecipitated with anti ERK antibody and protein complexes (IP) were separated

by SDS-PAGE and revealed with anti ERK and anti SHP2 antibodies.
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