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Once upon a time, several engineers, biologists and clinicians realized that a lot of

information in biomedicine was partitioned into ‘silos’ that do not

intercommunicate. These silos were a side effect of the existence of different

disciplines required to, for example, develop new drugs.

The engineers decided to dispose of the silos, and to put the information in

axiomatic form to facilitate automatic reasoning over multiple data sources. They

also decided to do this in a very open way so that effort was not duplicated. This

seemed to be a very reasonable step and was welcomed by all.

After much axiomatization, the engineers found that there were still issues. There

was a lack of agreement on many seemingly uncomplicated ‘facts’. They had to

employ curators to resolve the issues, and then it was said that the curators were

‘losing the plot’. They also found that there were not only ‘discipline silos’, but

also ‘intra-discipline silos’. The ‘intra-discipline silos’ were the partitions between

the different evidences and between the assertions developed from the evidences

and from earlier assertions, which were based on even earlier assertions, and so on.

There were not only webs of disagreement, but also chains of error. And they found

that connecting facts from various silos was not so uncomplicated after all, even

after axiomatization. Why was this? Because the results of scientific experiments

are not axioms, even if they may be treated in this way to perform isolated “bits of

tasks” (T. W. Clark) (Fig. 1).

This illustrates the challenge that scientists and clinical practitioners face: the world contains

a vast array of complex and diverse data, but locating and connecting the information are

difficult [1–3], and deriving definitive knowledge from the data to guide research and/or for

clinical practice is even harder. Many barriers that make it difficult to progress in this field

were recently discussed at a scientific meeting held in Barcelona from 3 July 2012 to 4 July

2012 [4] under the general title ‘Beyond Omics Revolutions: Integrative Knowledge

Management for Empowered Healthcare and Research’. The meeting focused on six topics:

‘dealing with biomedical knowledge explosion for better healthcare: identifying actionable

knowledge items at the point of care’; ‘exploiting patient information to enrich basic

biomedical research’; ‘standards for clinical-omics integration: the semantic challenge’;

‘new information technology (IT) is supporting massive biomedical data management’;

‘systems medicine: making systems biology translational’; and ‘integrative knowledge

management for improving drug R&D’. The main ideas and conclusions arising from this

event are presented below.
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Translating research findings into ‘actionable’ knowledge in the clinical

setting

New biomedical discoveries emerge at an ever-increasing rate, but their translation into

health care typically occurs slowly or not at all. There is a lack of sufficient systems that can

astutely identify, clarify and hand on these advances to the relevant practitioners, in usable

formats. For example, thousands of biomarkers exist, comprising a few truly useful ones

amongst many others that are less useful or nonactionable. Valuable new biomarkers

(diagnostic, prognostic or therapeutic) are therefore not being advanced effectively into

health care. The decision of which ones to progress with is simply too onerous, given the

cost of modern clinical trials and a deficiency of incentives and expertise amongst

researchers who would be best placed to advance markers into development. Hence, when

this translation does occur, it is usually because of a major ‘pull’ from the clinical world,

rather than a ‘push’ from researchers.

Clearly then, there is a need for methods and systems that can reliably and routinely identify

and connect the most informative, reliable and useful information (not least biomarkers)

generated by the research community. Efforts to better structure scientific knowledge, for

instance, by means of nanopublications [5] or the Investigation Study Assay (ISA) commons

[6], could provide key components of this solution. But the challenge is magnified by the

fact that the relevant information is spread not only across research resources (e.g. literature,

patents, laboratory reports, market data, medical reports and biobanks), but also in realms

with less professional rigour such as social networks and patient communities (e.g. wikis,

blogs and other social media platforms). Progress will therefore necessitate addressing

cross-language and cross-jargon barriers, as well as all the traditional targets of

interoperability such as standards for data syntax and semantics.

Beyond connecting and integrating research findings, there lies the challenge of

understanding this information. Education is important here, and indeed, it has been

proposed that a lack of appropriate training explains the slow uptake of companion

diagnostics into clinical practice [7]. Tackling this will require robust guidelines on how to

use pharmacogenomic information and also the provision accompanying pharmacokinetic,

metabolic and drug interaction knowledge derived from the latest biomedical research. Thus,

it is arguable that researchers have a responsibility to make their clinically relevant findings

more understandable to the healthcare sector, perhaps in the form of user-friendly web

portals or other software [8, 9]. Electronic health record (EHR) developers, computerized

physician order entry designers and clinical decision support system (CDSS) creators and

vendors likewise need to be involved in delivering additional content for such portals and in

connecting such platforms to the intended end users.

Considering all the above issues, as well as the key challenges of data interpretation, some

experts concluded that the overall challenge is one of ‘knowledge engineering’ (KE), rather

than simply a need for better informatics, research or medical practice. Hence, it may be

difficult to make real progress with biomedical researchers and clinical practitioners alone;

there is a need for a new group of multidisciplinary engineers [10]. This goes back to the

tradition of KE for health, a field that stemmed from artificial intelligence research in the
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1990s [11]. However, in contrast to previous KE approaches that aimed to organize all the

data to reveal absolute knowledge (which is a flawed concept, as illustrated above), there is

a need for a far more pragmatic approach – ‘KE 2.0’ – to identify and make directly useful

the very limited set of data and knowledge items that are both reliably proven and clinically

actionable. The aim would be to explicitly address the two core information problems faced

by clinicians: (i) having too much existing and new data and (ii) not having time or

resources to discern reliably from uncertain and erroneous information.

As shown in Supplementary Table S1, there are now many international projects that aim to

integrate various types of data related to specific diseases or their pharmacological

treatments. In general, however, these are not using the KE 2.0 approach, but developing

new methodologies and tools for data integration and exploitation or novel strategies for

massive data storage and handling. But as these types of projects make progress in

consolidating and unifying the relevant data, KE 2.0 approaches can begin to be explored.

However, for this to succeed, the data must be of suitable quality and breadth.

Data quantity and quality

Petabytes of potentially useful biomedical data are not captured in a structured format and/or

made available for use by others in many situations. These include molecular ‘omics’

profiles (genomes, transcriptomes, proteomes, epigenomes, etc.), exposure to environmental

chemicals exposomes, phenotype data (e.g. as recorded in clinical settings) and dynamic

data (e.g. measurements at different points in time or space), all of which could contribute to

improved research and health care. For instance, in the research world, primary data from

high-throughput studies on a large number of subjects (e.g. genome-wide association

studies) [12] typically never leave the laboratory in which they were generated; in the

healthcare world, molecular profiles of individual patient, sometimes recorded per time

period, are starting to be recorded but are then poorly exploited [13]. It is clear that simply

handling this diversity and scale of data is a challenge in itself, but that should motivate

focusing more effort on the problem, rather than providing a reason for allowing the data to

be lost.

Many considerations relate to the quality, completeness, reliability and reproducibility of

primary data and the knowledge derived from them. Relevant judgements may well be

context dependent, for example, whether a biopsy from a heterogeneous tumour might be

considered usefully representative of the whole tumour. Contextual metadata (data about the

data) are therefore important, but such information is often not properly collected or

recorded. This is directly related to current discussions about the reproducibility of research

findings and the comparability of different analytical procedures. Approaches that allow

consistent and repeated analysis of data sets are becoming necessary (e.g. Galaxy and

GenePatterns). Questions about reproducibility concern both the data (how they were

produced) and the knowledge gleaned from the data (how it was derived). Important studies

of statistical and experimental design problems in contemporary scientific publications were

recently reported [14, 15].
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One notable problem in applying KE to biomedical research data is the nature of the

knowledge being engineered. Specifically, active as opposed to consolidated scientific

knowledge consists of assertions supported by evidence. What we consider knowledge is a

snapshot of the consensus of the scientific community on a particular subject at a given time,

but this active knowledge is subjected to continuous re-evaluation where new findings

change our perspective, and ‘facts’ may be refuted after some years. Essentially, no

knowledge is truly absolute. A particular complication here is that of human bias or error

underlying citation distortion, not least in review articles. An example is provided by a

recent review in which a role for inclusion body myositis in the aetiopathology of

Alzheimer’s disease was suggested. Following the chain of assertions to the underlying

evidence, it was found that in some cases, there was no such grounding evidence, and in

other cases, its meaning had been distorted or the results misapplied or misconstrued [16].

These issues contribute to the existence of intradiscipline ‘silos’, which disconnect facts and

assertions from the underlying evidence. In other cases, there are discrepancies between data

collected from different sources. This clearly argues the need for more information

accessibility and structure and less reliance on subjective human opinion. But this itself must

be balanced against the risk of proposing too many hypotheses from extensive and high-

throughput data, which could easily lead to spurious associations.

In this context, ongoing multiparty curation efforts from different initiatives are useful as a

way to identify and organize relevant information, but they represent very costly and time-

consuming tasks. Efforts on harmonization and standardization, as well as the development

of software for supporting curation tasks, are therefore needed to improve and assist curators

in their work.

An important point to emphasize is that very different levels of evidence are needed for

CDSSs compared with what is required for research grade knowledge discovery. Medical

reasoning may be represented by epistemological models, which are amenable to partial

automation [17, 18], and in all cases, the data should be generated or chosen to fit a purpose.

Researchers, for example, must design their experiments and simulations to record as much

detailed information as possible to facilitate a comprehensive exploration of the biomedical

question. By contrast, clinicians must carefully define healthcare questionnaires and register

only the salient medical variables pertaining to their patients to aid in clinical decision-

making. Ideally, however, to avoid silos of data, both groups should always also consider

the possible or likely reuse of their data. As part of this, data provenance should be carefully

recorded to make possible the retrieval of the original sources and to ensure its reliability

and reproducibility, which will undoubtedly have an effect on the generation of useful

predictions [19].

Time constraints at the Barcelona meeting precluded extending this discussion into areas of

ethical and legal frameworks, but further information can be found elsewhere [20, 21]. It

should also be noted that the European Parliament is currently discussing a data protection

directive that will underpin a new legal framework [22].
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Standards to facilitate translation

Increasingly, genomic information is likely to be relevant to health care, and as such, it

should ideally be stored within medical records. An example of current use would be that of

personalized drug dosing. Some pharmacogenomic tests are now being used in routine

clinical practice; however, they are vastly underused. Key biological data on individuals

should be encapsulated in its native format in clinical data structures, with ‘bubbled-up’

items being associated with phenotypic data using clinical data standards. This then

generates the question as to what standards are required to allow the efficient translation of

key research findings into clinical practice and what IT paradigms will be needed to support

biomedical data management. Controlled vocabularies and ontologies for the integration of

diverse and heterogeneous biomedical information can provide part of the answer.

Fortunately, several current initiatives support the development of ontologies to describe

different aspects of biology and biomedicine (e.g. the National Center for Biomedical

Ontology [23], the Open Biological and Biomedical Ontologies [24] and the Ricordo project

[25]). But yet more needs to be done. For instance, it is difficult to reconcile medical records

with disease descriptions associated with public molecular data. This is due to the inherent

complexity of diseases and the way they have been traditionally classified and described.

Also, disease descriptions are heterogeneous and often dynamic, as in the case of mental

illness [26].

Beyond ‘standards’ perhaps, there is actually an equal need for ‘understandards’. In other

words, efforts that aim to deliver the standardization capabilities required for KE 2.0, not

just standards for semantic integration irrespective of common understanding. We need to

make sure that in the next generation of in cerebro and in silico reasoning strategies, it is

understood what is ‘meant’ by any node and edge in a network of associations. To resolve

the issue that the more expressive a standard is the less interoperable it is, constraining the

standards is crucial, and also enables capturing similarities whilst preserving disparities.

More specifically, health data semantics and context cannot be faithfully represented using

flat structures (e.g. a list of entries), rather a compositional language is required that

meaningfully connects various data entries.

Furthermore, health data standards need to accommodate unstructured data and text (e.g.

clinicians’ narrative), whilst having links to structured data entries. A lifetime

comprehensive recording of personal health information including omics data is certainly

desirable. This arguably calls for a new model of data stewardship: the Independent Health

Record Banks (IHRB) vision [27], which would support the implementation of lifelong,

cross-institutional and interoperable EHRs. This would constitute an escape from fixation

with legacy systems’. As long as healthcare providers are also record keepers, we will

continue to have poor archives, proprietary based and isolated in silos, with most of the data

semantics not represented explicitly, making it hard or impossible for CDSSs to be really

effective. Instead, it is proposed that there should be a limited number of independent and

regulated third parties specialized in sustaining the individual lifetime EHR, continuously

curating the record and running various analyses to prepare the right info-structure for

CDSSs. These tasks require unique specialization and a new kind of archive, which should
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provide the most complete and coherent information framework to support the health of the

individual.

Fostering literacy in health information management

The challenge of improving biomedical knowledge management goes hand in hand with the

need for suitable education and training for all the relevant stakeholders: patients, clinicians,

researchers, regulators and policymakers. In particular, clinicians need more support to

improve their ability to interpret and use research findings, and researchers must learn how

to take actionable findings closer to clinicians. Concomitantly, researchers need to better

comprehend the problems raised in clinical practice that can be solved in the laboratory or

by intensive use of IT. This reinforces the need for forums of interaction with the active

participation of biomedical researchers, bioinformaticians and physicians with experience in

clinical research. Hence, we should move from a one-size-fits-all education to that of

stratified medicine and from this towards a truly individualized clinical exercise, following

the paradigm shift towards the concept of predictive, preventive, personalized and

participatory medicine (P4) [28]. Finally, the active participation of citizens, via blogs and

other social networks, provides a way to improve the general level of health literacy and

thereby to empower all individuals regarding their role in the healthcare system.

Outcomes of the debates

The experts who took part in the aforementioned debates in Barcelona also offer the

following consensus statements:

1. There is an urgent need to promote communication and collaboration between

experts from different disciplines in order to overcome current information silos

and to set up integrated knowledge frameworks required for better managing health

problems. In this regard, patients’ voices also have to be considered.

2. The current rate of growth of data exceeds that of computational power (e.g.

throughput of sequencing instruments will grow faster than the capacity of

computers, and this can become a limitation for the spread of next-generation

sequencing data use in medical practice). It should be considered malpractice to

fund data generation without an adequate data exploitation and stewardship plan.

Research funding must seriously consider the need for data storage and analysis,

which may be comparable to the effort needed for data generation. When data are

generated on human subjects, the stewardship of those data might be handled

within each subject’s EHR, if a cross-institutional and lifelong record is available.

3. Efforts should be made to improve the methodological and technological

background to allow the integrative analysis of complex information (KE 2.0), with

the aim of clarifying and delivering clinically actionable information and

supporting computational predictions to facilitate the prevention and treatment of

diseases.

4. Maximizing data sharing should be an imperative. Not all healthcare data need to

be protected under a controlled access regime and not all research needs to be in
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open access. Most current barriers for data sharing and reuse are not technical but

social. In this respect, we acknowledge novel initiatives (e.g. altmetrics [29]) that

seek to go beyond the classical narrative as the only source of scientific knowledge

to be taken into account.

5. It is important to address language and jargon barriers to connect the worlds of

traditional scientific reporting (peer-reviewed articles) and web sources (patients’

blogs, twitter) as sources for knowledge discovery.

6. To facilitate the effective reuse of information, elements of provenance and context

along with basic assertions have to be captured from text, databases and EHR

systems.

7. The current classification of diseases is largely based on signs and symptoms and in

general does not take into account current and evolving knowledge of the

molecular pathways that lead to any particular illness. A disease classification

based on the molecular biology or the genomics of the diseases would help in the

identification of relevant therapeutic interventions.

8. Proper guidelines are needed to help clinicians understand how the results of

available genetic tests should be used to optimize patient care, rather than whether

tests should be ordered. Here, researchers have a role in preparing these guidelines.

Disease- and/or domain-specific ‘knowledge portals’ could provide a key part of

the overall solution, facilitating and driving analysis of data, regulating and

tracking data access and providing an optimal balance and scale in terms of the

centralization-federation challenge.

9. Citizens (including health professionals) must be enabled, individually and

cooperatively, to access, understand, appraise and apply information that will

facilitate the use of genome-based information for the benefit of individuals and

their communities. In addition, citizens and patients must be consulted with regard

to ‘donating their data’.

10. All clinical and research data related to an individual’s health should be stored in,

or linked to, a single lifelong personal (electronic) health record, which would

overcome current institutional borders. The development of IHRB may be a way of

implementing this vision.

In summary, medicine is an increasingly data-intensive discipline, with a growing need to

link individual patient health records to rapidly changing research knowledge for better

differential diagnosis, prognosis and prediction of treatment response. Equally, biomedical

research will gain enormously from the integrative analysis of clinical and multi-omics

information (Fig. 2). Capitalization on these opportunities must be guided by a precise

understanding of the many complex issues related to the integration of large amounts of

diverse information. Partly this involves overcoming barriers between different disciplines,

such as biology, medicine and computer sciences, implying a key role for ‘knowledge

engineers’.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

This review is based on the debates held in Barcelona from 3 July 2012 to 4 July 2012 with the active participation
of all authors. The debates were organized by B-Debate (an initiative of Biocat and Obra Social ‘La Caixa’) and
Universitat Pompeu Fabra (Barcelona). The event was held within the framework of the European INBIO-
MEDvision project (funded by the EU Seventh Framework Programme for Research and Technological
Development (FP7) under grant agreement no. 270107). In addition, we received support from EU FP7 project no.
200754 (GEN2PHEN) and the Innovative Medicines Initiative Joint Undertaking under grant agreement no. 115002
(eTOX) and no. 115191 (Open PHACTS), resources of which are composed of financial contribution from the EU
FP7 and in kind contributions from companies of the European Federation of Pharmaceutical Industries and
Associations. L.I.F received support from Instituto de Salud Carlos III Fondo Europeo de Desarollo Regional
(CP10/00524).

References

1. Ruttenberg A, Clark T, Bug W, et al. Advancing translational research with the Semantic Web.
BMC Bioinformatics. 2007; 8(Suppl 3):S2. [PubMed: 17493285]

2. Antezana E, Kuiper M, Mironov V. Biological knowledge management: the emerging role of the
Semantic Web technologies. Brief Bioinform. 2009; 10:392–407. [PubMed: 19457869]

3. Butte AJ. Translational Bioinformatics: coming of age. J Am Med Inform Assoc. 2008; 15:709–714.
[PubMed: 18755990]

4. B-Debates. [Accessed July 10, 2013] http://www.bdebate.org/debat/beyond-omics-revolutions-
integrative-knowledge-management.

5. Mons B, van Haagen H, Chichester C, et al. The value of data. Nat Genet. 2011; 43:281–283.
[PubMed: 21445068]

6. Sansone SA, Rocca-Serra P, Field D, et al. Toward interoperable bioscience data. Nat Genet. 20l2;
44:121–126. [PubMed: 22281772]

7. Wilffert B, Swen J, Mulder H, Touw D, Maitland-Van der Zee AH, Deneer V. From evidence based
medicine to mechanism based medicine. Reviewing the role of pharmacogenetics. Int J Clin Pharm.
2011; 33:3–9. [PubMed: 21365387]

8. Gottlieb A, Stein GY, Oron Y, Ruppin E, Sharan R. INDI: a computational framework for inferring
drug interactions and their associated recommendations. Mol Syst Biol. 2012; 8:592. [PubMed:
22806140]

9. Preissner S, Kroll K, Dunkel M, et al. Super CYP: a comprehensive database on Cytochrome P450
enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010;
38:D237–D243. [PubMed: 19934256]

10. Beck T, Gollapudi S, Brunak S, et al. Knowledge engineering for health: a new discipline required
to bridge the “ICT gap” between research and healthcare. Hum Mutat. 2012; 33:797–802.
[PubMed: 22392843]

11. Warner, HR.; Sorenson, DK.; Bouhaddou, O. Knowledge Engineering in Health Informatics. New
York: Springer-Verlag; 1997.

12. Hardy J, Singleton A. Genomewide association studies and human disease. N Engl J Med. 2009;
360:1759–1768. [PubMed: 19369657]

13. Chen R, Mias GI, Li-Pook-Than J, et al. Personal Omics Profiling Reveals Dynamic Molecular and
Medical Phenotypes. Cell. 2012; 148:1293–1307. [PubMed: 22424236]

14. Fernandes-Taylor S, Hyun JK, Reeder RN, Harris AHS. Common statistical and research design
problems in manuscripts submitted to high-impact medical journals. BMC Res Notes. 2011; 4:304.
[PubMed: 21854631]

15. Prinz F, Schlange T, Asadullah K. Believe it or not: how much can we rely on published data on
potential drug targets. Nat Rev Drag Discov. 2011; 10:712.

Cases et al. Page 9

J Intern Med. Author manuscript; available in PMC 2014 July 25.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://www.bdebate.org/debat/beyond-omics-revolutions-integrative-knowledge-management
http://www.bdebate.org/debat/beyond-omics-revolutions-integrative-knowledge-management


16. Greenberg SA. How citation distortions create unfounded authority: analysis of a citation network.
BMJ. 2009; 339:b2680. [PubMed: 19622839]

17. Sparkes A, Aubrey W, Byrne E, et al. Towards Robot Scientists for autonomous scientific
discovery. Autom Exp. 2010; 2:1. [PubMed: 20119518]

18. Riva A, Nuzzo A, Stefanelli M, Bellazzi R. An automated reasoning framework for translational
research. J Biomed inform. 2010; 43:419–427. [PubMed: 19931420]

19. Ekins S, Waller CL, Bradley MP, Clark AM, Williams AJ. Four disruptive strategies for removing
drug discovery bottlenecks. Drug Discov Today. 2013; 18:265–271. [PubMed: 23098820]

20. Hudson KL. Genomics, Health Care, and Society. N Engl J Med. 2011; 365:1033–1041. [PubMed:
21916641]

21. Jensen PB, Jensen LJ, Brunak S. Mining electronic health records: towards better research
applications and clinical care. Nat Genet. 2012; 13:395–405.

22. European Parliament - Data protection. [Accessed July 10, 2013] http://ec.europa.eu/justice/data-
protection/index_en.htm.

23. National Center for Biomedical Ontology. [Accessed July 10, 2013] http://www.bioontology.org/.

24. Open Biological and Biomedical Ontologies. [Accessed July 10, 2013] http://
www.obofoundry.org/.

25. Ricordo project. [Accessed July 10, 2013] http://www.ricordo.eu/.

26. Tabares-Seisdedos R, Dumont N, Baudot A, et al. No paradox, no progress: inverse cancer
comorbidity in people with other complex diseases. Lancet Oncol. 2011; 12:604–608. [PubMed:
21498115]

27. Independent Health Record Banks. [Accessed July 10, 2013] http://
www.independenthealthrecordbanks.blogspot.co.il/.

28. Hood L, Friend SH. Predictive, personalized, preventive, participatory (P4) cancer medicine. Nat
Rev Clin Oncol. 2011; 8:184–187. [PubMed: 21364692]

29. Almetrics. [Accessed July 10, 2013] http://altmetrics.org/manifesto/.

Cases et al. Page 10

J Intern Med. Author manuscript; available in PMC 2014 July 25.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://ec.europa.eu/justice/data-protection/index_en.htm
http://ec.europa.eu/justice/data-protection/index_en.htm
http://www.bioontology.org/
http://www.obofoundry.org/
http://www.obofoundry.org/
http://www.ricordo.eu/
http://www.independenthealthrecordbanks.blogspot.co.il/
http://www.independenthealthrecordbanks.blogspot.co.il/
http://altmetrics.org/manifesto/


Fig. 1.
Interdiscipline and intradiscipline knowledge ‘silos’ to be overcome. The ‘intradiscipline

silos’ are the partitions between the different evidences and between the assertions

developed from the evidences and from earlier assertions.
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Fig. 2.
Translational and integrative approaches in biomedical informatics.
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