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This paper uses diffeomorphometry methods to quantify the order in which statistically significant morphometric
change occurs in three medial temporal lobe regions, the amygdala, entorhinal cortex (ERC), and hippocampus
among subjects with symptomatic and preclinical Alzheimer's disease (AD). Magnetic resonance imaging scans
were examined in subjects who were cognitively normal at baseline, some of whom subsequently developed clin-
ical symptoms of AD. The imagesweremapped to a common template, using shape-based diffeomorphometry. The
multidimensional shapemarkers indexed through the temporal lobe structures weremodeled using a changepoint
model with explicit parameters, specifying the number of years preceding clinical symptom onset. Our model as-
sumes that the atrophy rate of a considered brain structure increases years before detectable symptoms.
The results demonstrate that the atrophy changepoint in the ERC occurs first, indicating significant change
8–10 years prior to onset, followed by the hippocampus, 2–4 years prior to onset, followed by the amygdala,
3 years prior to onset. The ERC is significant bilaterally, in both our local and global measures, with estimates of
ERC surface area loss of 2.4% (left side) and 1.6% (right side) annually. The same changepoint model for ERC volume
gives 3.0% and 2.7% on the left and right sides, respectively. Understanding the order in which changes in the brain
occur during preclinical AD may assist in the design of intervention trials aimed at slowing the evolution of the
disease.
© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Brain imaging and MRI studies have substantially advanced our
knowledge of regional brain atrophy in Alzheimer's disease (AD). Mag-
netic resonance imaging (MRI) measures are an indirect reflection of
the neuronal injury that occurs in the brain as the AD pathophysiological
process evolves. In the initial stages of AD, atrophy on MRI appears to
have a predilection for the brain regions with heavy deposits of neurofi-
brillary tangles (Braak and Braak, 1991; Arnold et al., 1991; Price and
Morris, 1999). Consistent with this pattern, the volume of the entorhinal
cortex, the hippocampus and other medial temporal lobe structures has
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ctions between structures.
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been shown todiscriminate betweenpatientswithADdementia and con-
trols, and between subjects with mild cognitive impairment (MCI) and
controls, and to be associated with time to progress from MCI to AD de-
mentia (Kantarci and Jack, 2003; Atiya et al., 2003). Longitudinal MRI
data in cognitively normal individuals who have progressed to mild im-
pairment (i.e., preclinical AD) is limited but suggests that volumetricmea-
sures of medial temporal lobe regions may predict progression from
normal cognition to mild impairment. Differences in atrophy rate of the
entorhinal cortex (Jack et al., 2004;Miller et al., 2013a), the hippocampus
or subvolumes of the hippocampus (Jack et al., 2004; Apostolova et al.,
2010) and ventricular volume (Carlson et al., 2008) have been demon-
strated during preclinical AD. It has also been demonstrated that baseline
measures of the hippocampus and amygdala in controls predict subse-
quent development of MCI (den Heijer et al., 2006), with hippocampus
shape differences being reported among controls who subsequently
developed cognitive impairment (Rusinek et al., 2003; Chiang et al.,
2009; Csernansky et al., 2005; den Heijer et al., 2006; Thambisetty et al.,
2010).

Methods of statistical analysis based on diffeomorphometry for
studying normal age-related changes in subcortical nuclei and in a
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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number of other diseases have already been enlightening (Qiu et al.,
2010; Qiu et al., 2009a; Csernansky et al., 1998; Csernansky et al.,
2000; Wang et al., 2007; Ashburner et al., 2003; Thompson et al.,
2004; Younes et al., 2012; Tang et al., 2013). This study follows our pre-
vious study in the same subject population (Miller et al., 2013a) in
which we used diffeomorphometry to measure subregional atrophy in
three structures of the temporal lobe, entorhinal cortex (ERC), hippo-
campus and amygdala and demonstrated statistically significant chang-
es in brain structures during preclinical AD. These prior results are
consistent with histopathological findings that suggest that these re-
gions are affected during the earliest phase of AD (Arriagada et al.,
1992; Herzog and Kemper, 1980; Scott et al., 1991; Scott et al., 1992;
Tsuchiya and Kosaka, 1990). This approach allows for a fine-scale,
high-dimensional, analysis of non-uniform change patterns in the struc-
tures, and complements coarser low-dimensional measures, like struc-
ture volume.

The study described here focuses on the temporal order of atrophy of
the same three structures. The diffeomorphometry pipeline follows our
general pattern (Younes et al., 2012; Tang et al., 2013; Miller et al.,
2013a), first involving an initial coarse rigid alignment phase followed
by a high-dimensional template-matching phase. This registers all
shape morphometry to a single template coordinate system, which is
centered to the population, producing a high-dimensional representa-
tion of the data in a coordinate system in which each coordinate is di-
rectly comparable across the population. The statistical analysis uses
multivariate models including a nonlinear component defining a
changepoint in atrophy over time, with significance assessed while tak-
ing multiple comparisons into account. The introduction of the
changepoint model offers the opportunity to quantify the temporal or-
dering of morphometric changes among these temporal lobe structures
in preclinical AD (i.e., the ERC, hippocampus and amygdala), which we
have already found to be discriminating in these groups of temporal
lobe structures in preclinical AD (Miller et al., 2013a). No modeling of
the order in years preceding clinical onset has yet been explicitly
modeled or demonstrated to our knowledge.
2. Subjects and data acquisition

2.1. Study design

The overall study (known as the BIOCARD study), is a longitudinal
characterization of individuals funded jointly by the National Institutes
on Aging (NIA) and Mental Health (NIMH). All BIOCARD subjects were
cognitively normal when recruited with mean age at baseline of
57.1 years. Scans were acquired during the period 1995–2005. A total
of 805 scans have been collected during the 10-year period. The partic-
ipants have now been followed for up to 18 years.

A total of 354 individuals were initially enrolled in the study. Re-
cruitment was conducted by the staff of the Geriatric Psychiatry branch
of the Intramural Programof theNIMH, beginning in 1995 and ending in
2005. Subjects were recruited via printed advertisements, articles in
local or national media, informational lectures, or word-of-mouth. The
study was designed to recruit and follow a cohort of cognitively normal
individualswhowere primarily inmiddle age. By design, approximately
three-quarters of the participants had a first-degree relative with de-
mentia of the Alzheimer type. The overarching goal was to identify var-
iables among cognitively normal individuals that could predict the
subsequent development ofmild tomoderate symptoms of AD. Subjects
were administered a comprehensive neuropsychological battery annu-
ally. MRI scans, cerebrospinal fluid (CSF), and blood specimenswere ob-
tained every 2 years. The studywas initiated at the Clinical Center of the
National Institutes of Health (NIH) in 1995, andwas stopped in 2005. In
2009, our research teamwas funded to re-establish the cohort, continue
the annual clinical and cognitive assessments, collect blood, and evalu-
ate the previously acquired MRI scans, CSF and blood specimens.
At baseline, all participants completed a comprehensive evaluation
at the NIH. This evaluation consisted of a physical and neurological ex-
amination, an electrocardiogram, standard laboratory studies (e.g.,
complete blood count, vitamin B12, thyroid function), and neuropsy-
chological testing. Individuals were excluded from participation if they
were cognitively impaired, as determined by cognitive testing, or had
significant medical problems such as severe cerebrovascular disease,
epilepsy or alcohol or drug abuse. Five subjects did not meet the entry
criteria andwere excluded at baseline, leaving a total of 349 participants
followed over time.

2.2. MRI assessments

MRI scans were obtained on 335 participants at baseline. An addi-
tional 470 scans were obtained in subsequent years for a total of 805
scans. The mean interval between scan acquisitions on follow-up was
2.02 years. The MRI scans acquired at the NIH were obtained using a
standard multi-modal protocol using GE 1.5 T scanner. The scanning
protocol included localizer scans, axial FSE sequence (TR = 4250 ms,
TE = 108 ms, FOV = 512 × 512, thickness/gap = 5.0/0.0 mm, flip
angle = 90°, 28 slices), axial FLAIR sequence (TR = 9002 ms, TE =
157.5 ms, FOV = 256 × 256, thickness/gap = 5.0/0.0 mm, flip
angle = 90°, 28 slices), coronal SPGR (spoiled gradient echo) sequence
(TR = 24 ms, TE = 2 ms, FOV = 256 × 256, thickness/gap = 2.0/
0.0 mm, flip angle = 20°, 124 slices), sagittal SPGR sequence (TR =
24 ms, TE = 3 ms, FOV = 256 × 256, thickness/gap 1.5/0.0 mm, flip
angle = 45°, 124 slices).

2.3. Clinical and cognitive assessments

The clinical and cognitive assessments of the participants have
been described elsewhere (Soldan et al., 2013). The cognitive assess-
ment consisted of a neuropsychological battery covering all major
cognitive domains (i.e., memory, executive function, language,
spatial ability, attention and processing speed). A clinical assessment
was also conducted annually. Since the study has been conducted
by the current research team, this has included the following: a
physical and neurological examination, record of medication use, be-
havioral and mood assessments (Cummings et al., 1994; Yesavage
et al., 1982), family history of dementia, history of symptom onset,
and a clinical dementia rating (CDR), based on a semi-structured in-
terview (Hughes et al., 1982; Morris, 1993). The clinical assessments
given at the NIH covered similar domains. The diagnostic procedures
in this study are comparable to those used in the Alzheimer's disease
research centers program, funded by the National Institute on Aging.
This involves a two-step process by which a decision is first made
about whether the subject is normal, mildly impaired or demented
(based on the clinical history, medical, neurologic and psychiatric
evaluations and the cognitive testing), and then (if the subject
is judged not to be normal) the likely cause(s) of the cognitive im-
pairment is determined. This same diagnostic process was applied
retrospectively to participants who had become cognitively im-
paired while the study was being conducted at the NIH, but who
(by the time the study had been re-established) were either
moderate-to-severely impaired or were no longer living. It should
be noted that the estimated age-of-onset of clinical symptoms,
which is the primary outcome in these analyses, was established on
the basis of clinical information elicited during the CDR interview
by the clinician who evaluated the subject (or on the basis of clinical
notes in the record), and re-confirmed during the consensus
conference.

2.4. MRI scans available for analysis

Some subjects were removed from the analysis for uncertain diag-
nostic (impairment not categorized as MCI) and several scans had to
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be removed because they contained significant artifacts that prevented
structure segmentation. The dataset used in this study includes MRI
scans from 296 subjects, of which 230 individuals remained cognitively
normal and 66 developed cognitive impairment and were diagnosed
with MCI (of these, 17 subsequently progressed to AD dementia). The
average number of scans per subject is 2.2 among the 230 controls
and 2.5 among the 66 who progressed to MCI or AD dementia, for a
total number of 661 scans overall used in this study. Table 1 summarizes
demographic data for the subjects that were the focus of our analyses.

It should be noted that our dataset differs from the oneused inMiller
et al. (2013a), which only used controls and preclinical subjects, in that
all of theMRI scans available for the subjects described abovewere used
in these analyses, since the goalwas to estimate two slopes, one prior to
the changepoint and one after the changepoint. Controls and subjects
with preclinical AD (i.e., those whowere cognitively normal at baseline
but subsequently progressed to MCI or AD dementia) contribute to the
estimation of the slope before the changepoint. Post-changepoint MRI
scans contribute to the estimation of the slope after the changepoint,
(which our data show is steeper than the pre-changepoint slope). For
the post-changepoint slope to be reliably estimated, we used all of the
post-changepoint MRI scans available, including those for subjects
whose estimated age of onset was at or before ‘baseline'. In the rest of
this paper, we refer to the group of all patients who exhibit signs of cog-
nitive impairment as the MCI/AD, or “cognitively impaired” group,
whether this diagnosis was made during the first NIH study, or later
as part of the extended study.

3. Methods

3.1. Surface based diffeomorphometry

The approach used for the computation of shape coordinates via
diffeomorphometry has been described inMiller et al. (2013a) and is re-
peated here based on the application of geodesic positioning ofmorpho-
metric markers to template coordinates (Miller et al., 2013b). The ROI-
based diffeomorphometry (Qiu et al., 2010; Qiu et al., 2009a;
Csernansky et al., 1998; Csernansky et al., 2000; Wang et al., 2007;
Ashburner et al., 2003; Thompson et al., 2004; Younes et al., 2014;
Miller et al., 2013a) for the entorhinal cortex, amygdala and hippocam-
pus has three steps: (i) segmentation of the target structures, (ii) gener-
ation of a single template coordinate system from the population of
baseline scans, and (iii) mapping of the template onto each of the target
segmented structures. The first step is the segmentation of the struc-
tures based on the ROI large deformation diffeomorphic metric map-
ping (ROI-LDDMM) procedure described previously (Csernansky et al.,
1998; Munn et al., 2007; Miller et al., 2013a), in which subcubes are an-
alyzed for each structure with local landmarks used for initial coarse
alignment before the high-dimensional LDDMM positioning is applied.
This step was performed without information about the diagnostic sta-
tus of the subjects.

To generate shape biomarkers indexed to a common template coor-
dinate system, we follow a previously published method (Younes et al.,
2014;Miller et al., 2013a) inwhich surfaces are rigidly aligned (rotation,
translation), with right subvolumes flipped before alignment to ensure
all structures could be compared. From rigidly aligned volumes, a tem-
plate shape was generated from the entire population. For this, the ob-
served surfaces are modeled as random deformations of the unknown
to be estimated template (Ma et al., 2010),with the template coordinate
system centered to the population generated by performing surface
Table 1
Participant characteristics at baseline and follow-up stratified by outcome status.

Variable Control group (N = 230) MCI or AD befor
Age at entry, mean number of years (SD) 55.3 (9.8) 66 (7.5)
Gender, females (%) 61% 53%
registration iteratively. The resulting templates for the amygdala, ento-
rhinal cortex and hippocampus become the coordinate systems that are
referenced for our p-values and our changepoint estimation.

Thehigh-dimensional shape descriptors indexed to template coordi-
nates are generated by computing a diffeomorphic correspondence be-
tween the template and each surface using LDDMM surface registration
(Vaillant and Glaunes, 2005; Vaillant et al., 2007). The algorithm com-
putes a smooth, invertible mapping φ of the triangulated surface tem-
plate Stemp onto the target surfaces Starget. The mapping minimizes a
fidelity criterionmeasuring the distance between themapped template
φ·Stemp and the target, defined as a norm between surfaces, and is pe-
nalized by a geodesic transformation energy enforcing smoothness.

Our shape marker measures the extent to which area is locally in-
creased or reducedwhenmapping each subject surface to the template.
This measure is directly computable from the registration of triangulat-
ed surfaces as the ratio of the total area of the deformed triangles con-
taining a given vertex to their original total area on the template,
which we express in logarithmic scale. This results, for each subject, in
one marker per vertex in the template surface. For computational effi-
ciency, we sub-discretize this measure by averaging it over small seg-
ments computed on the surface template. These segments are
obtained by spectral clustering (Reuter, 2010) of the surface, a method
which only relies on the surface geometry. This is achieved by comput-
ing the first k eigenvectors of the Laplace–Beltrami operator
associated with the surface, where k is the intended number of seg-
ments, associating with each vertex a k-dimensional vector formed
with the values of the eigenvectors evaluated at this point. These
vectors are then used in a standard k-means algorithm to provide the
k desired segments. The segments that were used in our analyses are
provided in Fig. 1. Their number is adjusted so that they cover an area
of 50 mm2 on average, yielding 15 segments on the amygdala, 29 seg-
ments on the hippocampus and 10 segments on the ERC. Complemen-
tary to the shape markers, our single-dimensional volumetric measure
is the logarithm of the total volume of each structure.

3.2. Statistical analysis via the morphometric changepoint model

Weanalyze the shapemarkerswith amodel describing a change in a
linear atrophy rate happening some number, Δ, of years before the esti-
mated age of clinical onset, forming a morphometry changepoint before
clinical symptom onset time. We assume linear models for the absolute
volume and atrophy as a function of age, with a change of slope at
changepoint. In mathematical terms, if a is the age and t is the time of
clinical onset, themodel takes the form a→α+βa beforemorphometry
changepoint, a≤ t− Δ, and becomes a→ α+ βa+ β′(a− t− Δ) subse-
quent to the changepoint. For the controls, the onset time of clinical
symptom is (if it ever occurs) beyond the end of the study and the asso-
ciatedmodel retains the same linear rate over the considered time peri-
od. This model, which is depicted in Fig. 2, can be related to the
sigmoidal model introduced in Jack et al. (2013), in which biomarkers
smoothly transition from a low-abnormality plateau to a high-
abnormality one in an S-shaped curve. Under Jack's model, almost no
patient from our dataset would have reached the high-abnormality pla-
teau at scan times, and we therefore expect to observe themwhile they
are either in the low-abnormality plateau, or in the transition phase,
which justifies using a model with two regimes only. Note that our
model does not include a second changepoint at clinical onset time.
Since there is no reason for structure atrophy to switch regime at the
very time the disease becomes detectable by clinical tests, we do not
e 2005 (N = 15) MCI or AD after 2005 (N = 51) Combined MCI/AD (N = 66)
62.4 (11.4) 63.3 (10.8)
49% 50%



Fig. 3. Log-likelihood as a function of changepoint for the amygdala (top), the hippocam-
pus (middle) and the entorhinal cortex (bottom), with left structure on the leftcolumn
and right on the right one. The left hippocampus is not significant and is only provided
here for completeness. Likelihoods are averaged over all segments constituting the sur-
face. The red curve is the likelihood obtained on the original sample, andthe blue one is av-
eraged over bootstrap resampling. Both curves are offset so that their minimum value is
zero, to simplify visualization.

Fig. 1. Parcellation of the three structures using spectral clustering. The average segment
size is 50 mm 2 . Amygdala: 15 segments, hippocampus: 29 segments, ERC: 10 segments.
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expect any direct causal effect of clinical onset on the morphometry. Of
course, the two-piece model we consider allows for both structural
changepoint and clinical onset time to coincide (i.e., Δ = 0).

The analysis includes gender and log-intracranial volumes as covar-
iates, and uses a randomeffectmodel to account for inter-subject versus
intra-subject shape variation (see details in Appendix A).We test for the
null hypothesis of constant-rate atrophy in the whole cohort versus the
alternate changepoint model and compute statistics at each subregion
of the segmented template surface, as delineated in Fig. 1, returning p-
values corrected for multiple comparisons using permutation testing
(Nichols and Hayasaka, 2003). Permutation testing applied to multiple
hypotheses associated with subregions of the structures provides a
unique p-value for rejecting the compound null that all individual
nulls are true, i.e., that the onset model applies to none of the regions
in the segmented structure. Assuming that the compound null is
rejected, the method also provides an estimate of the set of significant
regions, which is conservative in the sense that the probability of mak-
ing a single false detection is small (5% in our results). This is usually re-
ferred to as controlling the family-wise error rate (FWER) at the 5%
level. In addition to the permutation testing, we used a resampling
method (bootstrap) to assess the accuracy of the estimated onset
time, allowing us to provide an indication of the standard deviation of
our estimated changepoint. More details on our implementation of per-
mutation testing and bootstrap validation are provided in Appendix A.
4. Results

The curves in Fig. 3 show the log-likelihood calculation for the seg-
mentmorphometry markers as a function of the parameter Δ (the plot-
ted log-likelihoods are obtained by maximizing over every model
parameter except Δ). The changepoint estimator is the maximizer of
this curve. The top rows in Fig. 3 show the left and right sides of the
amygdala, the middle row shows those of the hippocampus, and the
bottom row shows those of the ERC. The curves for the amygdala and
the hippocampus are highest at around 2 years before clinical onset,
while the likelihood for the ERC is largest at around 10 years before
onset. The bootstrap-estimated standard deviations of these sample es-
timates lie between 1 and 3 years as reported in Table 2.
Fig. 2. Schematic illustration of the changepoint model. The atrophy regime changes at
changepoint, several years before clinical onset.
Table 2 also provides the p-values associated with the changepoint
model for the ERC, amygdala, and hippocampus. The segment-
averagedmeasures in the right hemisphere show significant differences
between the groups as follows: the ERC is significant (p=0.004) with a
changepoint at around 8.5 years (±2.8). The hippocampus ismarginally
significantly different (p= 0.024), with a changepoint estimated at 3.6
(±1.4) years prior to symptom onset, and the amygdala is strongly sig-
nificant (p= 0.0015), with a changepoint at 2.7 (±1.9) years before
onset. For the left hemisphere, the significant differences are as follows:
(1) the entorhinal cortex demonstrates a significant difference
(pb 0.0001) 8.6 (±1.5) years prior to symptomonset, and (2) the amyg-
dala shows significant differences (p= 0.006) 2.5 (±1.4) years prior to
symptom onset. The left hippocampus shows no significance. The vol-
ume measures are significant for the amygdala (left: p= 0.003, right:
p=0.006), significant on the left side (p=0.017) for the hippocampus,
and not significant on the right (p= 0.27). Volume is significant for the
ERC (left: pb 0.0001, right: p= 0.0007).

Figs. 4–6 provide predicted atrophy curves with changepoint esti-
mated from our model for all diseased subjects. The morphometric
measure is the amount of surface area variation relative to the tem-
plates, and is expressed in percentages, with 100% meaning no differ-
ence from the template. To simplify visualization, all curves are
plotted using the same covariate values (gender and intracranial vol-
ume) for all subjects, taken equal to their population averages. Since
there is one such curve per segment, they are also averaged over all seg-
ments in each structure. The evolution starts with a nearly horizontal
line, which coincideswith the one associatedwith controls, then chang-
es to a steeper slope at changepoint. The smoothness of the transition is
due to averaging, since changepoints are not identical for each segment.



Table 2
Differences in estimated onset of morphometric change in relationship to symptom onset for the amygdala, entorhinal cortex and hippocampus. The p-value, corrected for multiple com-
parisons, is obtained for each structure via permutation tests, as described in the Methods section (the lowest detectable p-value is 10−4). The reported onset time for each structure is
estimated via bootstrap (the standard deviation between parentheses measuring its accuracy).

Side Amygdala volume Amygdala segment Hippocampus volume Hippocampus segment ERC volume ERC segment
Left p-Value 0.003 0.006 0.017 0.13 0.0001 0.0001

Avg. Δ (std.) 2.8 (2.3) 2.5 (1.4) 3.1 (1.9) 2.6 (1.0) 7.5 (2.5) 8.6 (1.5)
Right p-Value 0.006 0.0015 0.27 0.024 0.0007 0.004

Avg. Δ (std.) 2.5 (3.3) 2.7 (1.9) 4.0 (3.8) 3.6 (1.4) 9.9 (3.0) 8.5 (2.8)

Fig. 4. Amygdala: left and right; blue: controls; green: before changepoint; magenta: be-
fore clinical onset; black: after clinical onset. The y -axis shows the surface area percentage
around each vertex expressed relative to original template coordinates averaged over all
segments. Top row: controlswith their associated regression line. Middle row: cognitively
impaired subjects. Third row: cognitively impaired subjects with time axis shifted by clin-
ical onset. All values are corrected for random effects.
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Themiddle row in Figs. 4–6 plots these curves against subject age, while
the bottom row provides the same curves shifted by clinical onset age,
which enables comparison (the slopes are the same in both cases,
even though the unshifted curves appear steeper; this is due to the
rescaling of the horizontal axis for shifted curves). These plots also visu-
alize the actual morphometric measure (still averaged over segments)
for all cognitively impaired cases, represented as dots colored according
to whether the scan is taken before changepoint, between changepoint
and clinical onset, or after clinical onset. Since the estimated
changepoint for the ERC is around 9 years before clinical symptom
onset, only a few scans of preclinical cases predate it (the pre-
changepoint line is primarily estimated based on control subjects).
The transition appears more clearly with the amygdala for which the
two regimes are observed,with a quasi-horizontal line followedby a de-
creasing one after changepoint. The same goes for the right hippocam-
pus. The top row of Figs. 4–6 represents the controls, together with
the regression line that is associated with them (identical to the regime
before changepoint).

Fig. 7 maps the value of the surface atrophy rate (per year) that was
detected on segments for which the onset model was found significant
at 5% FWER. These atrophy rates are defined as 100(exp(β)− 1) before
changepoint and 100(exp(β+ β′)− 1) after changepoint (see details in
Appendix A). Table 3 provides the numerical values of the after-
changepoint rates for each structure and side, with β and β′ replaced
by their average values over all segments. In this table, we have applied
the changepoint model to a reduced cohort containing subjects with
three scans or more (81 controls and 30 cognitively impaired), to im-
prove accuracy. For the left ERC, one finds 2.4% after changepoint and
0.1% before. On the right side, the rate is 1.6% after and 0.2% before.
For the amygdala, the left side gives 3.6% after and 0.1% before, and
the right side is 4.6% after and 0.2% before. Finally, the left hippocampus
shows a 1.2% atrophy rate after changepoint, and a 0.2% rate before. The
right side gives 2.7% after and 0.2% before. The onset model, on the re-
duced cohort, was found significant in all cases. Table 3 also provides at-
rophy rates in terms of global volume, for which only the right
hippocampus was found non-significant. Note that surface atrophy
rates and volume atrophy rates are not directly comparable, although
one can expect the former to be roughly 2/3 of the latter, which is con-
sistent with what we observe in our results.

5. Discussion

The high-dimensional morphometry model indicates that, during
preclinical AD, changes in the shape of the entorhinal cortex precede
those in the hippocampus and the amygdala. In general, the high-
dimensional diffeomorphometry-based markers are more significant
than the volume markers in signaling the changepoint time. This is
the first time to our knowledge that diffeomorphometry has been
coupled to changepoint models to examine differences in atrophy
rates among brain structures preceding clinical symptom onset.

The finding of localized ERC change preceding the changepoint in
the other two temporal lobe structures is consistent with previous
MRI reports of ERC volume change duringMCI. For example, a differen-
tial rate of change in the ERC, compared to the hippocampus, has previ-
ously been reported among individuals with MCI who subsequently
progressed to AD dementia (Du et al., 2001, 2006; Dickerson et al.,
2001; Jagust et al., 2006; Du et al., 2006; Jack et al., 2010). The finding
of significant differences in morphometry change in the amygdala is
consistent with morphometry reported in symptomatic AD, such as
the volume (Poulin et al., 2011) and shape analysis (Cavedo et al.,
2011; Qiu et al., 2009b). Alterations in the entorhinal cortex and hippo-
campus are consistent with changes in memory performance reported
during preclinical AD. Psychiatric symptomatology (such as apathy
and irritability) have been reported in MCI cases that subsequently
progressed to dementia, and it has been suggested that this may, in
part, result from pathological changes in the amygdala. Further study
is needed to directly link the ordering of these clinical features with re-
spect to one another, and to the brain changes reported here.

Evidence of morphometry changes occurring approximately
10 years prior to symptom onset is also consistentwith current hypoth-
eses about the long prodromal phase of AD (Jack et al., 2013). This study
adds additional evidence to support the hypothesis that there are signif-
icant changes in the brain many years before symptom onset. It is hy-
pothesized that early therapeutic intervention will have the best
prospect formodifying disease progression and confer the greatest ben-
efit to patients in the early stages of AD. Understanding the order in



Fig. 5. Hippocampus: left and right; blue: controls; green: before changepoint; magenta:
before clinical onset; black: after clinical onset. The y -axis shows the surface area percent-
age around each vertex expressed relative to original template coordinates averaged over
all segments. Top row: controls with their associated regression line. Middle row: cogni-
tively impaired subjects. Third row: cognitively impaired subjects with time axis shifted
by clinical onset. All values are corrected for random effects.

Fig. 6. ERC: left and right; blue: controls; green: before changepoint;magenta: before clin-
ical onset; black: after clinical onset. The y -axis shows the surface area percentage around
each vertex expressed relative to original template coordinates averaged over all seg-
ments. Top row: controls with their associated regression line. Middle row: cognitively
impaired subjects. Third row: cognitively impaired subjects with time axis shifted by clin-
ical onset. All values are corrected for random effects.

Fig. 7. Significant pattern of atrophy rate change. Left panel: seen from patient left side;
right panel: seen from patient right side. The structures visualized in the left panel are
the amygdala, hippocampus and ERC from left to right, and their order is reversed on
the right panel. Color represents rate change coefficient, in percentages, after changepoint
when significant. Deep blue color (0%) indicates non-significance for the corrected p -
value.
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which changes in the brain occur during preclinical AD may therefore
assist in the design of intervention trials aimed at slowing the evolution
of the disease.

It is important to acknowledge the challenges of estimating age of
symptomonset.Whilewe used a semi-standardized instrument admin-
istered to both the subject and an informant, with specific targeted
questions to assess onset of symptoms, known as the Clinical Dementia
Rating Scale (Morris et al., 1993), the determination was ultimately
based on the judgment of skilled clinicians. It should be noted, however,
that we have recently published data on CSF changes in relation to
symptom onset in this cohort (Moghekar et al., 2013), suggesting that
this measure is biologically meaningful.

Several issues must be entertained in considering the validity of our
statistical analyses. First, the number of available scans can vary among
subjects (i.e., there are missing data) and our p-value computation re-
quires the assumption that this censoring is independent of the group
variables. This is a reasonable assumption, since most subjects
were not cognitively impaired when the scans were taken. This as-
sumption is partially confirmed by the fact that there is no significant
difference between the numbers of scans per subject in the two
groups (p= 0.063), although this p-value is small enough to be a
concern. If we limit the analysis to subjects that had two scans or
more (resp. three scans or more), however, this p-value becomes
p= 0.28 (resp. p= 0.59), and the results that are obtained in these
cases show very few differences compared to the ones obtained for
the main study. These results are included in Table 4 for comparison
with Table 2.

The second issue is whether the changepoint that is observed is ac-
tually related to the disease, or whether it may be confounded with a
normal changepoint occurring also in controls (so that our significant
p-values would reflect the inadequacy of the model for controls, rather
than the existence of a disease-related changepoint). To examine this
possibility, we extended our analysis to include a “normal changepoint”,
obtained by analyzing the control population, and used this changepoint
to define an additional covariate in our previous analysis. Doing so did not
impact our conclusion, yielding very minor changes in the obtained p-
values (data not shown).

It should be acknowledged that the boundaries between normal
aging and the earliest symptomatic phase of AD are difficult to define.
Studies in both animal models and humans demonstrate that there
are significant cognitive and neurobiological changes with aging, in
the absence of disease (see Samson and Barnes, 2013 for a review). Ad-
ditionally, AD pathophysiological processes are evident in a subset of
older adults who are cognitively normal (Sperling et al., 2011). Studies,
such as ours, in which cognitively normal individuals are followed for
many years (with some remaining normal and some developing MCI
and AD dementia) are one of the best ways currently available of
disentangling changes related to aging from those that are a harbinger
of disease.



Table 3
Estimated atrophy rates per year, estimated over subjectswith three scans ormore (81 controls, 30MCI/AD) for total volume and segments (averaged over all segments) on each structure
(NS: non-significant).

Side Amygdala volume Amygdala segments Hippocampus volume Hippocampus segments ERC volume ERC segments
Left Before −0.3% −0.1% −0.35% −0.2% −0.3% −0.1%

After −4.2% −3.6% −1.6% −1.2% −3.0% −2.4%
Right Before −0.45% −0.2% −0.4% −0.2% −0.45% −0.2%

After −5.0% −4.6% −1.7% (NS) −2.7% −2.7% −1.6%
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Appendix A

A1. Statistical details

A1.1. Shape variables at each vertex
Denote by akj the age of subject k at their jth scan and by tk the time

of clinical onset of the disease for the same subject. This time is only de-
fined for subjects in the MCI/AD group, and we let gk be the associated
indicator variable, equal to one for subjects in this group and to zero
for controls. We also let ck denote the intracranial volume and dk the
gender of subject k (zero for males, one for females). For the jth scan
of subject k, shape markers are computed at each vertex coordinate
and averaged over each template segment (shown in Fig. 1); they
are denoted by yqk j, where q is the segment index. In the case of vol-
ume, then the log-volume is used as a one-dimensional shape
marker.

A1.2. Changepoint onset model
We now describe the changepoint model introducing the explicit

role of the ordering parameter Δ in the atrophy model signaling in
years the changepoint time preceding clinical symptom time. For this
we use the changepoint model with linear atrophy turning on Δ years
before clinical symptom

yqk j ¼ αq þ βqak j þ β
0

qgkðak j−tk þ ΔqÞHðak j−tk þ ΔqÞ:
þγqck þ δqdk þ ϵqk j

in which H is the Heaviside function, such that H(t)=1 if tN 0 and
H(t) = 0 otherwise. The noise, εqk j, includes random effects and decom-
poses as

εqk j ¼ ηqk þ ζq
k j

in which all variables η and ζwith distinct indices are assumed to be
independent, ηqk∼Nð0;ρ2

qÞ and ζq
k j∼Nð0;σ2

qÞ. The model parameters are
αq;βq;β

0
q;Δ

q;σ2
q andρ

2
q (q indexing the shape coordinates). They are es-

timated by maximum likelihood.
Via the transition function, the model implies a first-order

changepoint from atrophy rate βq to βq þ β
0
q at age a = tk − Δq, i.e.,

Δq years before cognitive onset. Controls, for which gk = 0, remain in
the first regime over the observation time. Recall that the vertex-
indexed shape variables describe the relative value of surface area
around a given point at logarithmic scale, where the template is the ref-
erence. As a consequence, our model can be interpreted as

• Before changepoint:
(local surface area) = (template local surface area) × (correction

based on covariates) × exp(βq⋅ age)
• After changepoint:
(local surface area) = (template local surface area) × (correction

based on covariates) × ((βq+ β'
q) ⋅ age − βq ⋅ (age at changepoint))

In other words, β
0
q≠0 implies a multiplicative factor of expðβ0

qÞ per
year in surface area post changepoint. This is atrophy as soon as β

0
q is

negative, as found in our results.
We can interpret tk− Δq as a structural, or anatomical, phenotype

onset time. In the following, we will test the null hypothesis β
0
q ¼ 0,

which corresponds to the disease having no effect on the shape
coordinate q. When this hypothesis is rejected with significant p-value
(corrected for multiple comparisons), we can compute a
consensus estimator, defined as the average of all estimated Δq over co-
ordinates q.

A1.3. Estimation procedure
The following computation is made independently for each shape

coordinate q that we temporarily drop from the notation. We compute
a maximum likelihood estimator for fixed values of Δ, taken from a dis-
crete interval over the timeframe of interest, which is −2 to 13 years,
with half-year increments. The computation with fixed Δ uses the EM
algorithm (Dempster et al., 1977) to estimate the remaining parame-
ters, treating the random effects ηk as hidden variables. The EM algo-
rithm alternates, until stabilization, an E-step, in which the log-
likelihood is averaged using the conditional distribution given observed
variables, and an M-step, in which this conditionally averaged likeli-
hood is maximized with respect to the model parameters. More details
follow.



Table 4
Differences in estimated onset ofmorphometric change in relationshipwith symptom onset for the amygdala, entorhinal cortex and hippocampus, for the cohort reduced to patientswith
two scans or more (136 controls and 46 impaired) and with three scans or more (81 controls and 30 impaired). The results are very similar to those obtained with the complete cohort in
Table 2.

Side Amygdala volume Amygdala segments Hippocampus volume Hippocampus segments ERC volume ERC segments
Left p-Value ≥ 2 0.002 0.0009 0.024 0.15 0.0001 0.0005

≥ 3 0.0001 0.0003 0.015 0.02 0.0005 0.0001
Avg. Δ (std.) ≥ 2 3.1 (2.3) 2.4 (1.4) 2.8 (1.6) 2.4 (1.1) 7.4 (3.2) 8.5 (2.0)

≥ 3 2.3 (2.1) 2.5 (1.2) 2.2 (1.5) 2.4 (1.1) 5.5 (3.5) 6.8 (2.3)
Right p-Value ≥ 2 0.006 0.0015 0.25 0.07 0.002 0.013

≥ 3 0.0005 0.007 0.18 0.003 0.005 0.01
Avg. Δ (std.) ≥ 2 2.8 (3.6) 3.4 (2.1) 3.0 (3.9) 2.8 (1.3) 9.9 (3.2) 8.0 (3.2)

≥ 3 2.2 (3.5) 3.1 (2.0) 3.2 (4.6) 2.2 (1.2) 9.7 (3.2) 7.9 (3.2)
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E-step: Since we are working with fixed Δ, introduce for conve-
nience the variable

ukj ¼ gkðak j−tk þ ΔÞHðak j−tk þ ΔÞ

so that the model can be written as

yk j ¼ α þ βak j þ β0ukj þ γck þ dk þ ηk þ ζk j

(recall that several variables, including ukj, depend on the shape coordi-
nate, q, even though this dependency is not made explicit). The joint
log-likelihood is then given by

ℓ ¼ − 1
2σ2 ∑

n

k¼1
∑
nk

j¼1
ðyk j−α−βak j−β

0
ukj−γck−δdk−ηkÞ

2
:

− 1
2ρ2 ∑

n

k¼1
η2k–

N
2
logσ2−n

2
logρ2

where n is the number of subjects, nk the number of scans for subject k
and N is the total number of scans. Let rkj denote the residual (ykj− α−
βakj− β′ukj− γck− δdk− ηk). Conditional to observed variables y, a, u,
c, and d, the hidden variable ηk follows a Gaussian distribution with
mean and variance

mk ¼
ρ2

σ2 þ nkρ
2 ð∑

nk

j¼1
rk jÞ

2

; τ2k ¼ ρ2σ2

nkρ
2 þ σ2 :

From this, it follows that the conditional likelihood is, up to an addi-
tive constant:

ℓcond ¼ − 1
2σ2 ∑

n

k¼1
∑
nk

j¼1
ðyk j−mk−α−βak j−β

0
ukj−γck−δdkÞ

2
:

− 1
2σ2 ∑

n

k¼1
nkτ

2
k−

1
2ρ2 ∑

n

k¼1
ðτ2k þm2

kÞ−
n
2
logρ2−N

2
logσ2

M-step: This likelihood is optimized with respect to the parame-
ters in the M-step: α, β, β′, γ, δ' are updated via linear regression of
the shape variables ykj −mk against the other variables, which is ob-
tained via standard least squares. The parameters σ2 and ρ2 are then
derived via

σ2 ¼ 1
N
∑
n

k¼1
∑
nk

j¼1
ðyk j−mk−α−βak j−β

0
uk j−γck−δdkÞ

2
:

þ 1
N
∑
n

k¼1
nkτ

2
k

and

ρ2 ¼ 1
n
∑
n

k¼1
ðτ2k þm2

kÞ:

These values are then plugged back into the E-step for another iter-
ation of the EM algorithm, which is run until stabilization.
At the end of the algorithm, the likelihood of the observed variables
is obtained by integrating with respect to the random effects. It is, still
up to constant additive factors, and using the same notation for mk

and τ2k , given by the following expression: L ¼ − 1
2σ2 ∑n

k¼1ðð∑nk
j¼1 rk j Þ

2

−m2
kÞ− N

2 logσ
2− n

2 logρ
2 þ 1

2∑
n
k¼1 logτ

2
k . Remembering that we were

workingwith fixed shape coordinate q and fixed Δ, this likelihood is ac-
tually a function of both q and Δ. Denote it by Lq(Δ). This likelihood is
then optimized in Δ by computing it over a finite number of values,
yielding an optimal Δq, associated with parameters ðαq; βq;β

0
q;γq; δq;

σq;ρqÞ. The optimal likelihood, Lq(Δq), will be used below to assess
model significance.

Note that the optimization under the null hypothesis (β
0
q ¼ 0Þ

follows exactly the same approach, using the EM algorithm, except
that, since the model under the null does not depend on Δ, there is
no final optimization loop with respect to this parameter. This com-
putation returns a likelihood under the null, that we will denote by
Lq0.

A1.4. Tests for significance
Our tests are based on the likelihood ratio statistic, which is comput-

ed independently for each shape coordinate, q, and is given, with our
previous notation, by

Sq ¼ LqðΔqÞ−Lq0:

A global statistic is then defined by Smax ¼ max
q

Sq . To compute p-
values, we use permutation tests, randomizing the model residuals,
which are defined by

λq
k j ¼ yqk j−αq− βqak j−γ ck− dk

where the parameters are estimated under the null hypothesis.
Permutations operate over subjects, i.e., on the index k, so that scans

that were associated to the same subject remain together. Let λq;π
k j . De-

note the residuals after applying a permutation π. We apply the estima-
tion scheme developed in the previous section after replacingyqk j byλ

q;π
k j ,

computing new likelihood ratios Sπq , and global statistic Sπmax. We repeat
this for a large number, say M, of random permutations, and compare
the obtained statistics to the one associated to the original λq

k j , i.e.,
Sidmax for π= identity. If ν is the number of permutations π for which
the value of Sπmax excess Sidmax, the associated p-value is given by

p ¼ ν þ 1
M þ 1

:

We used M = 10,000 in our experiments, making p = 0.0001 the
smallest detectable p-value.

Variables q for which Sidq is found larger that the 95th percentile of
the values of Sπmax that were observed via permutations are considered
as significantly affected by group difference. These variables are detect-
ed at a 5% family-wise error rate (FWER), which means that the proba-
bility of making one or more false detections among them is less than
5%.
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As a final remark in this section,wemention that, since one of the is-
sues of the EM algorithm is that its solution may depend on the initial-
ization, we always initialize the estimation scheme for the alternate
hypothesis with the one found with the null hypothesis. This ensures
the positivity of the log–likelihood ratio statistics.

A1.5. Accuracy assessment via bootstrap
To evaluate the accuracy of the changepoint estimate, we performed

a resampling procedure (bootstrap). Each resample step draws subjects
from the original dataset with replacement, in order to obtain a new
dataset with the same size. A new summary onset time, say Δ*, is esti-
mated from this dataset. By repeating this procedure a large number
of times, one obtains bootstrap estimates of the mean and standard de-
viation of the estimator. This measures the accuracy of our results, and
should not be confused with a population standard deviation of the
onset time, since we estimate only one Δ for the whole cohort and can-
not assess its variability across subjects (the small number of scans per
subject make the computation of individual changepoints impossible).
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