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Abstract
Extensive methodological research has been conducted to improve gene expression summary methods. However,
in addition to quantitative gene expression summaries, most platforms, including all those examined in the
MicroArray Quality Control project, provide a qualitative detection call result for each gene on the platform.
These detection call algorithms are intended to render an assessment of whether or not each transcript is reliably
measured. In this paper, we review uses of these qualitative detection call results in the analysis of microarray
data. We also review the detection call algorithms for two widely used gene expression microarray platforms,
Affymetrix GeneChips and Illumina BeadArrays, and more clearly formalize the mathematical notation for the
Illumina BeadArray detection call algorithm. Both algorithms result in a P-value which is then used for determining
the qualitative detection calls.We examined the performance of these detection call algorithms and default param-
eters by applying the methods to two spike-in datasets. We show that the default parameters for qualitative
detection calls yield few absent calls for high spike-in concentrations. When genes of interest are expected to be
present at very low concentrations, spike-in datasets can be useful for appropriately adjusting the tuning parameters
for qualitative detection calls.
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INTRODUCTION
After hybridization, washing, and scanning a

microarray, a gene expression summary method is

applied to the normalized intensities. These gene

expression summaries are subsequently analyzed

using statistical methods for performing gene-level

class comparisons, deriving a phenotypic classifier,

and in clustering applications. Commercially pro-

duced arrays provide software for calculating gene

expression summaries, such as the MAS5 method

for Affymetrix GeneChips [1]. Most research seeking

to improve output from gene expression platforms

has therefore focused on developing improved

gene expression summary methods, some examples

include the robust multiarray average (RMA) [2],

GC-RMA [3] or the Model Based Expression

Index (MBEI) [4] methods. However, a question

frequently asked of a microarray experiment is,

‘Is the gene present in the given sample?’ Most

platforms, including all those examined in the

MicroArray Quality Control project, provide a qual-

itative detection call result for each gene on the plat-

form [5]. These detection call algorithms are

intended to render an assessment of whether or not

each transcript is reliably measured. Since inclusion

of transcripts not reliably measured in statistical anal-

yses yields results not easily interpreted, a frequent

use of the results from detection call algorithms is for

dimension reduction or filtering [5–11]. Interest-

ingly, there is no consistent filtering method being

applied. Some filter genes called Absent on all arrays

[6, 9]; others have recommended filtering by fraction
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present, which can be filtering out probe sets not

called Present among at least 50% of the samples in

one treatment group for small sample sizes, or for

larger experiments, filtering out probe sets not

called Present among at least 25% of the samples in

one treatment group [8]. Regardless, filtering on

detection call has been demonstrated to increase

both the number of differentially expressed genes

detected [6] and reduce the number of false positive

findings [7, 8, 10]. Moreover, even when performing

cross-platform comparisons, cross-platform correla-

tion increased as the percent present call filter was

increased [12].

Aside from filtering, detection call results have

been used in a variety of other ways. Detection

calls have been used for estimating the percent of

genes present in a given hybridization, which is

commonly used as a quality control measure [9–11,

13–18]. When evaluating replicate arrays, call con-

cordance has been used as a measure of reproduci-

bility, defined for two replicate hybridizations as the

sum of probe sets called Absent, Marginally Present,

or Present on both arrays [13]. In a study comparing

two different microarray platforms, to obtain one

detection call result per gene for each platform,

Fisher’s method for combining P-values was applied

to the detection call P-values from five samples

hybridized to both platforms. Thereafter, the

number of concordantly present and absent genes

on both platforms served as a measure of cross-

platform reproducibility [19]. In another study that

compared the equivalence between use of standard

poly(RNA) and total RNA as the starting template

for subsequent cDNA reactions, detection call con-

cordance among the hybridized microarrays was

examined as the primary outcome [20].

Detection call P-values have also been used to

weight gene expression values when clustering sam-

ples [21]. Specifically, for five different expression

summary algorithms, the investigators examined

whether using weighted or unweighted Pearson’s

correlation in agglomerative hierarchical clustering,

with the weights defined as 1-Detection Call

P-value, improved the performance. They found

that inclusion of detection call P-value weights

improved the performance of the clustering result

for MBEI, Probe Profiler, and RMA expression

summaries.

Others have used detection call results in class

comparisons and class predictions. For example,

investigators identified estrogen-regulated genes by

calculating a confidence score for each gene, of

which one of the four components was a score

based on the percent of samples having a present

call for the given gene [22]. A similar method was

used for identifying genes regulated by selective

estrogen receptor modulators [23]. Detection call

results have also been directly used in deriving

a phenotypic classifier, which had better accuracy

than a classifier derived using the gene expres-

sion summaries and the Prediction Analysis for

Microarray algorithm [24]. These authors concluded

that detection calls are especially useful for deriving

a classifier when the study includes arrays of multiple

chip formats, because the detection calls do not

require any specific normalization.

In this paper, we review the detection call

algorithms for two widely used gene expression

microarray platforms, Affymetrix GeneChips and

Illumina BeadArrays. Both algorithms result in a

P-value which is then used for determining the

detection call rate. Because two possible errors can

be made when declaring a gene to be present or

absent using these detection call algorithms,

namely, one can declare a gene to be present when

in fact it is absent (Type I Error) or declare a gene to

be absent when in fact it is present (Type II Error),

we examined the performance of these detection call

algorithms using two low level spike-in datasets.

DETECTIONCALLALGORITHMS
Affymetrix detection call algorithm
An Affymetrix GeneChip is characterized as being

composed of several perfect match (PM) and their

corresponding mismatch (MM) probes that interro-

gate for a single gene. The PM is the exact comple-

mentary sequence of the target genetic sequence,

composed of 25 base pairs. Each PM probe has

a corresponding MM probe, which has the same

sequence with exception that the middle base

(13th) position is complementary to that in the PM

[25]. The underlying idea behind the MM probes is

to account for background. The set of PM/MM

pairs that interrogate for a specific gene is called a

probe set. As part of the output for an Affymetrix

GeneChip, the GeneChip Operating Software

includes a column labeled ‘Detection call’ that

indicates whether the probe set is present (P), mar-

ginally present (M) or absent (A) in the given sample.

The original detection call algorithm was

based on a decision tree, applied to two
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GeneChip outputs: the number of times the PM

intensity exceeded the MM intensity for a given

probe set and the average log(PM/MM) signal

[25]. Some investigators noted deficiencies with the

first rendition of the detection call algorithm and

proposed an alternative detection call algorithm

based on a permutation test [26], which was imple-

mented in the dChip user-developed software [27].

With the release of Affymetrix’s Microarray Suite

Software (MAS) version 5 came the current imple-

mentation of Affymetrix’s detection call algorithm

[28]. It is based on a hypothesis test using the PM

and MM intensities for the probe set and presumes

the MM intensities are accurate estimates of gene-

specific background. The Affymetrix detection call

algorithm declares a probe set to be present, margin-

ally present, or absent by using the Wilcoxon signed-

rank test in the following manner [28]. First, probe

pairs that have saturated MMs (intensity �46 000)

are discarded. Additionally, probe pairs where PM

and MM are within � of each other are discarded.

If all probe pairs for a probe set are saturated, the

probe set is automatically labeled as ‘Present’ and

the Detection call P-value set to 0. Thereafter,

for probe set i, using each of its remaining probe

pairs j, a discrimination score Rij ¼ ðPMij �MMijÞ=
ðPMij þMMijÞ is calculated and the Wilcoxon

Signed Rank test is conducted for the probe set

with the null and alternative hypotheses specified as

H0: medianðRijÞ ¼�

HA: medianðRijÞ >� ðcorresponds to testing the

gene is presentÞ

where the default value for � is 0.015, which was

empirically selected from a Latin Square experiment

but is a user-adjustable parameter [28].

The decision rule used to declare genes as present,

absent, or marginally present are based upon the

resulting P-values using the following thresholds:

if P<�1 then the probe set is declared present;

if �1 <P<�2 the probe set if declared marginally

present; if P>�2 the probe set is declared absent.

The original defaults set �1¼ 0.04 and �2¼ 0.06;

current defaults in the GeneChip Operating

Software are �1¼ 0.05 and �2¼ 0.065.

Illumina detection call algorithm
The Illumina gene expression platform is a bead-

based microarray technology whereby for each

gene interrogated, a 50 nt length oligo interrogating

a specific gene is attached to a bead, and multiple

beads (�30) of the same type are randomly included

on the array as a means to more precisely measure

that gene’s expression [29]. For each hybridized

BeadArray, the output from the Illumina Genome-

Studio software includes for each beadtype a column

labeled ‘Detection.Pval’ [30]. In calculating the

Illumina detection P-value, let i index the hybridized

BeadArrays (samples), g index beadtypes or genes,

and big represent expression for beadtype g for the

ith BeadArray. Illumina includes control features on

each BeadArray, such as negative control beadtypes

which are randomly permuted sequences known not

to exist in the given organism’s genome. Let the N
negative control beadtypes be represented by bnegig ,

such that the mean of the negative control beadtypes

for BeadArray i can be given by

�̂
neg
i ¼

1

N

XN
i¼1

bnegig

Similarly, the standard deviation (�̂
neg
i ) of the nega-

tive control beadtypes for BeadArray i is calculated.

Thereafter, a z-score is calculated for each gene on

BeadArray i as

Zig ¼
big � �̂

neg
i

�̂
neg
i

These g z-scores are then ranked using a specialized

function

Rig ¼

0 ifZig < min
g2neg

Zig
� �

rank Zig
� �

if min
g2neg

Zig
� �

� Zig � max
g2neg

Zig
� �

N ifZig > max
g2neg

Zig
� �

8>>><
>>>:

Thereafter, the detection call P-value for gene g on

BeadArray i is given by

DPVig ¼ 1�
Rig

N
:

Although the Illumina BeadStudio and Genome-

Studio software does not provide a qualitative detec-

tion call, it has been recommended that an alpha

level such as 0.05 or 0.01 can be used for making

Present/Absent calls [31].

METHODS
Affymetrix low level spike-in dataset
Previously, the detection call algorithm and its user-

specified parameters were applied to a Latin Square

experiment where genes were spiked in at concen-

trations of 0, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64,
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128, 256, 512 and 1024 pM and hybridized to

HG-U133A GeneChips. Here we examine the per-

formance of the detection call algorithm on a low-

level spike-in experiment using HG-U133 Plus 2.0

arrays. Twelve HG-U133 Plus 2.0 arrays were hybri-

dized using a Latin Square design wherein 26 tran-

scripts were spiked into a common background

sample, derived from the human cell line HeLa

(ATCC CCL-2), at known concentrations. Specifi-

cally, four different groups containing six to seven

transcripts each were spiked into the background

prior to hybridization where the concentrations

were 0, 0.75, 1.5 or 3.0 pM. The concentrations

for each group is provided in Table 1; the list of

probe sets corresponding to the transcripts spiked

into each group are provided in Supplementary

Table S1. The dataset is available from NCBI’s

Gene Expression Omnibus [32] accession number

GSE17968 (http://www.ncbi.nlm.nih.gov/geo/

query/acc.cgi?acc=GSE17968).

The Affymetrix detection call algorithm was

applied using the GCOS defaults of �1¼ 0.05 and

�2¼ 0.065 and the detection calls for the probe sets

listed in Supplementary Table S1 were extracted.

The present/marginally present/absent call frequen-

cies for each spike-in concentration was calculated.

Moreover, because the distribution of P-values

for the 0 spike-in concentration (the null con-

dition) should follow a uniform distribution, a

Kolmogorov-Smirnov test was performed to test

the hypothesis that the P-value distribution for the

0 spike-in concentration was uniform.

Illumina spike-in dataset
A spike-in dataset from a previously published study

was used to investigate methods for background esti-

mation, bead-level summarization, and differential

expression analysis for Illumina BeadArray data

[33]. These data were subsequently used for identify-

ing an appropriate variance-stabilizing transformation

[34]. However, the investigators did not examine

the sensitivity and specificity of the detection call

P-values, so we have re-analyzed the Dunning

spike-in dataset here. Briefly, transcripts correspond-

ing to 33 beadtypes were spiked into the back-

ground sample and hybridized to Mouse-6 version

BeadChips. All transcripts were spiked at the

same concentration for any given BeadArray, with

concentrations 0, 0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30,

100, 300 and 1000 pM. The detection P-values from

BeadStudio were provided as supplementary material

in the original paper. To obtain a qualitative detec-

tion call, the Illumina recommended thresholds

of �1¼ 0.01 and �2¼ 0.05 were applied to the

Illumina detection P-values for declaring a beadtype

as present, marginally present, or absent. According

to statistical theory, under the conditions of the null

hypothesis, that is, for the 0 pM spikes, the detection

call P-values should follow a Uniform [0,1] distribu-

tion. Therefore, the Kolmogorov-Smirnov test was

applied to the detection call P-values for the 0 pM

spikes. Since Illumina does provide a qualitative

detection call but merely suggests an alpha level,

a classification tree was fit predicting 0 pM versus

non-zero spike-in concentration using the detection

call P-value as the sole independent variable, to iden-

tify the optimal cutpoint for making present/

absent calls.

As a comparison to the algorithmic-based

Illumina detection call method, we additionally

applied a two-sample t-test comparing mean bead-

level expression for each beadtype to the mean

expression of the negative control bead-level data.

Among the negative control beads outlier beads

were defined as those having an intensity exceeding

the median intensityþ 3�median absolute devia-

tion and were removed from the detection call

analysis. Again, letting i index the hybridized Bead-

Arrays, g index beadtypes, k index the bead-level

data within each beadtype such that bigk represents

the bead-level expression for bead k within beadtype

g for the ith BeadArray. For negative control bead-

types the bead-level expression is represented by bnegigk .

For each beadtype g on BeadArrays i, a two-sample

Table 1: For the Affymetrix low-level spike-in dataset,
the CEL file and concentration of spike (pM) for tran-
scripts in each Spike group

Spike group

GeneChip J K L M

3823p_P11a.cel 0 0.75 1.5 3
3823p_P11b.cel 0 0.75 1.5 3
3823p_P11c.cel 0 0.75 1.5 3
3823p_P12a.cel 3 0 0.75 1.5
3823p_P12b.cel 3 0 0.75 1.5
3823p_P12c.cel 3 0 0.75 1.5
3823p_P13a.cel 1.5 3 0 0.75
3823p_P13b.cel 1.5 3 0 0.75
3823p_P13c.cel 1.5 3 0 0.75
3823p_P14a.cel 0.75 1.5 3 0
3823p_P14b.cel 0.75 1.5 3 0
3823p_P14c.cel 0.75 1.5 3 0
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t-test was applied to statistically compare its mean

bead-level expression ð1=K�K
k¼1bigkÞ to the mean

bead-level expression among the negative control

beadtypes ð1=ð�G
g¼1�K

k¼11Þ�G
g¼1�K

k¼1b
neg
igk Þ resulting

in one P-value per beadtype (pig). Bead-level data

can be analyzed using the beadarray package [35]

in the R programming environment [36].

RESULTS
Affymetrix low level spike-in dataset
The frequencies and percent of detection calls for

each spike-in concentration (Table 2) reveals that

the Affymetrix algorithm had a 2.6–5.1% error rate

for the 0, 1.5 and 3 pM concentrations and a 15.4%

error rate for the 0.75 pM concentration, for an

overall error rate of 6.73%. A classification tree pre-

dicting 0 versus non-zero spike concentration using

the detection call P-values selected 0.08429 as the

optimal P-value cutpoint for declaring a probe set

present/absent. Application of this cutpoint for

declaring the spike-in probe sets either present or

absent resulted in a 4.1% error rate (Table 3).

Boxplots of the detection call P-values by spike-in

concentration revealed that the distribution of

P-values for the null condition seem to depart

from a uniform distribution (Figure 1). This was con-

firmed by application of the Kolmogorov-Smirnov

test which resulted in a P¼ 0.0498, indicating the

P-values were not uniformly distributed.

The sensitivity of the detection call result was

investigated in a number of ways. First, we note

that none of the probe-level intensities for any of

the spiked-in probe sets were saturated and only

6 of the 3432 spiked-in probe pairs among the

12 GeneChips were discarded for the PM and MM

being within � of one another. Including these probe

pairs and re-performing the Wilcoxon signed rank

test resulted in slightly different P-values for these six

probe sets but no change in the detection call, there-

fore, the filtering procedure did not affect the detec-

tion call results. Probes within a probe set are ordered

by their probe interrogation position with the _at1

probe being most 50 and the _at11 probe being the

most 30. Therefore, if the RNA was degraded, probe

intensities are expected to vary systematically by

probe interrogation position [37]. To investigate

whether there was a dependence of Rij on probe

position j, for each spiked-in probe set we plotted

the Rij values against probe position j for all 12

GeneChips (data not shown, figures freely available

upon request). We did not observe any dependence

of Rij on j. Researchers recently identified that inten-

sities of probes containing multiple runs of guanines

were discordant with respect to intensities of neigh-

boring probes within the same probe set [38], a find-

ing that was subsequently empirically confirmed by

Figure 1: Boxplots of detection call P-values by
spike-in concentration for Affymetrix low level spike-in
dataset. Dashed line represents �1¼0.05 while the
dotted line represents �2¼ 0.065.

Table 2: Frequency and percent of detection calls by
spike-in concentration for the Affymetrix low level
spike-in dataset

Spike
concentration

Absent Marginally
present

Present

0pM 74 (94.9%) 0 4 (5.1%)
0.75pM 10 (12.8%) 2 (2.6%) 66 (84.6%)
1.5pM 1 (1.3%) 1 (1.3%) 76 (97.4%)
3pM 2 (2.6%) 1 (1.3%) 75 (96.2%)

Table 3: Results from decision rule applied to the
detection call P-values

Spike-in concentration

0pM Non-zero
concentration

Absent 71 6
Present 7 228
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an analysis of 6685 Affymetrix GeneChip CEL files

[39]. Therefore, to investigate whether runs of

guanine were associated with the Rij, for each

probe sequence the maximum guanine run length

was obtained. Among the probe sequences associated

with the 26 spiked-in probe sets, there were 91, 127,

49, 12, 6 and 1 probe sequences having maximum

guanine runs of length 1, 2, 3, 4, 5 and 6. No probe

sequence had a guanine run greater than length 6.

Thereafter, for each hybridized GeneChip the Rij’s

for probes associated with the spiked-in probe sets

were plotted against the maximum guanine run

length (data not shown, figures freely available

upon request). No association between Rij and max-

imum guanine run length was observed for these

probe sets. Finally, we note that replicate hybridiza-

tions yielded consistent results (Supplementary

Material, Figures 1-4).

Illumina spike-in dataset
The frequencies of detection calls for each spike-in

concentration reveals that the Illumina algorithm had

a 4.5% error rate for the 0 pM concentration when

using �¼ 0.01 and a 7.6% error rate with using

�¼ 0.05 (Table 4). However, 93.9, 92.4, 79.5 and

28.8% of transcripts spiked at 0.01, 0.03, 0.1 and

0.3 pM concentrations were declared Absent at

the �¼ 0.01 level. These percents slightly decline

when the �-level was adjusted to 0.05. Boxplots

of the Illumina detection call P-values by spike-in

concentration appear in Figure 2 (left panel). As seen

in Table 4 and the left panel of Figure 2, none of

the transcripts spiked in at 3 pM or greater were

called absent and 2.3% of transcripts spiked in

at 1 pM were called absent when using �¼ 0.05.

Therefore, the Illumina detection call algorithm

accompanied by the recommended qualitative thres-

holds performs well when the transcript is either

truly absent or present at a concentration at

1–3 pM or greater. However, the assay had low

sensitivity at the spike-in concentrations of 0.01,

0.03, 0.1 and 0.3 pM.

When using the two-sample t-test and comparing

mean bead-level expression for each beadtype to the

mean bead-level expression among all negative

control beadtypes, there were more transcripts

called present for the 0 pM spiked transcripts

compared to the Illumina Detection method, but

fewer absent calls for non-zero spiked transcripts

(Table 5). In fact, for the 0.1 pM concentration,

half as many beadtypes were declared absent using

the two sample t-test compared to using the default

Illumina detection call methodology. Boxplots of

the t-test P-values by spike-in concentration appear

in Figure 2 (right panel). These detection call

P-values were consistent among replicate hybridiza-

tions as well (Supplementary Material Figures 5–10).

Again, as seen in Table 5 and the right panel of

Figure 2 none of the transcripts spiked in at 3 pM

or greater were called absent and 0.8% of transcripts

spiked in at 1 pM were called absent when using

�¼ 0.05. Therefore, both methods are able to iden-

tify transcripts spiked-in at high concentrations as

present.

CONCLUSION
In this article, we reviewed various uses of detec-

tion call results in microarray experiments. We also

reviewed the detection call algorithms for two

widely used commercial platforms, the Affymetrix

GeneChip and Illumina BeadArray. We then applied

the two detection call algorithms to two spike-in

datasets for evaluating the performance of the

default/recommended parameters. We conclude

that the default settings are likely to work well in

applications where genes of interest are expected to

be present at 1 pM concentration or higher. Genes

present in low abundance, such as some transcription

factors, may be routinely labeled as absent when

using the Illumina detection call algorithm since

Table 4: Using the Illumina detection method,
frequency and percent of detection calls by spike-in
concentration for the Illumina spike-in dataset using
Illumina recommended thresholds of �¼ 0.01 and
�¼ 0.05

Spike
concentration

a¼ 0.01 a¼ 0.05

Absent Present Absent Present

0pM 126 (95.5%) 6 (4.5%) 122 (92.4%) 10 (7.6%)
0.01pM 124 (93.9%) 8 (6.1%) 122 (92.4%) 10 (7.6%)
0.03pM 122 (92.4%) 10 (7.6%) 117 (88.6%) 15 (11.4%)
0.1pM 105 (79.5%) 27 (20.5%) 87 (65.9%) 45 (34.1%)
0.3 pM 38 (28.8%) 94 (71.2%) 23 (17.4%) 109 (82.6%)
1pM 6 (4.5%) 126 (95.5%) 3 (2.3%) 129 (97.7%)
3pM 0 132 (100%) 0 132 (100%)
10pM 0 132 (100%) 0 132 (100%)
30pM 0 132 (100%) 0 132 (100%)
100pM 0 132 (100%) 0 132 (100%)
300pM 0 132 (100%) 0 132 (100%)
1000pM 0 132 (100%) 0 132 (100%)
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the assay had low sensitivity for the 0.01, 0.03, 0.1

and 0.3 pM spike-in concentrations. Since both plat-

forms include user-adjustable parameters, particularly

the �-level used in making a qualitative statement of

whether a given transcript is present or absent, we

recommend that the tuning parameters be adjusted

depending upon whether the investigator wishes to

filter out all transcripts truly absent, thereby poten-

tially removing some low level transcripts that are

truly present, versus retaining as many transcripts

that may be present. Consideration of how to appro-

priately adjust the tuning parameters can be derived

from application of supervised learning methods,

such as classification trees, to detection call P-values

in a low-level spike-in experiment.

Key Points

� The default parameters for qualitative detection calls yield few
absent calls for high spike-in concentrations.

� When genes of interest are expected to be present at very low
concentrations, spike-in datasets can be useful for appropriately
adjusting the tuning parameters for qualitative detection calls.

� Alternative, statistically-based detection call methods such as a
two-sample t-test comparing gene intensities to negative control
intensities may result in improved performance compared to ad
hoc detection call algorithms.

Figure 2: Left panel: Boxplots of Illumina BeadStudio detection call P-values by spike-in concentration for the
Illumina spike-in dataset. Dashed line represents �¼ 0.01 while the dotted line represents �¼ 0.05. Right panel:
Boxplots of P-values from two-sample t-test comparing mean bead-level expression to negative control expression
by spike-in concentration for the Illumina spike-in dataset. Dashed line represents �¼ 0.01 while the dotted line
represents �¼ 0.05.
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