
Quality Assessment of Protein NMR Structures

Antonio Rosato1, Roberto Tejero2, and Gaetano T. Montelione3,4,*

1Magnetic Resonance Center and Department of Chemistry, University of Florence, 50019 Sesto
Fiorentino, Italy

2Departamento de Quίmica Fίsica, Universidad de Valencia, Avenida Dr. Moliner 50, 46100
Burjassot, Valencia, Spain

3Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and
Biochemistry, and Northeast Structural Genomic Consortium, Rutgers, The State University of
New Jersey, Piscataway, New Jersey, 08854 USA

4Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School,
Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854 USA

Abstract

Biomolecular NMR structures are now routinely used in biology, chemistry, and bioinformatics.

Methods and metrics for assessing the accuracy and precision of protein NMR structures are

beginning to be standardized across the biological NMR community. These include both

knowledge-based assessment metrics, parameterized from the database of protein structures, and

model vs. data assessment metrics. On line servers are available that provide comprehensive

protein structure quality assessment reports, and efforts are in progress by the world-wide Protein

Data Bank (wwPDB) to develop a biomolecular NMR structure quality assessment pipeline as part

of the structure deposition process. These quality assessment metrics and standards will aid NMR

spectroscopists in determining more accurate structures, and increase the value and utility of these

structures for the broad scientific community.

Introduction

Nuclear Magnetic Resonance (NMR) spectroscopy, along with X-ray diffraction and cryo-

electron microscopy, is one of the three major experimental techniques providing three-

dimensional (3D) structures of biological macromolecules. In addition to its unique role in

characterizing biomolecular dynamics, NMR is routinely used for structure determinations

of small (< 20 kDa) proteins [1-3] and is beginning to be used more routinely for

determining structures of larger (20 – 50 kDa) soluble and membrane proteins (e.g. refs
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[4-7]). NMR-derived structure models can be used interchangeably with models generated

by X-ray crystallography in many biological applications. It is therefore natural that many

quality assessment metrics are common between the two techniques. In addition, there is a

portfolio of metrics that are specific to NMR, which take into account the distinctive

features of the NMR data used in the structure determination process.

In this review, we outline some of the metrics in common use for protein NMR structure

quality assessment. A large part of our review reflects recently published recommendations

of the world-wide Protein Data Base (wwPDB) task forces on validation of biomolecular

structures determined by X-ray crystallography [8] and NMR methods [9].

Knowledge-based measures

Knowledge-based (KB) metrics describe how well the structure model conforms to

expectations with respect to selected features that can be assessed by comparison with the

extensive data base of experimental structures. These include bond length and bond angle

distributions, dihedral angle distributions, atomic packing, hydrogen bond geometries, and

other geometric features. Ideal values or value distributions are derived from statistical

analyses of high-resolution X-ray structures, and are generally consistent with basic

principles of biophysical chemistry.

There has been some debate regarding the use of KB information derived from X-ray crystal

structures of biomolecules in assessing solution NMR structures. There are often differences

in the sample conditions used in determining NMR and X-ray structures, and particular

conformations from the distribution present in solution may be selected by the requirements

of the crystal lattice. Nevertheless, there is no cogent reason to adopt different KB parameter

distributions for assessing solution or solid-state protein NMR structures with respect to

those used to assess structures determined by X-ray crystallography. Problems indicated by

KB assessments can also be mapped onto the 3D structure to identify local hot spots of

structural inaccuracy [10,11].

The most general protein model assessment tools look at residue pair-distribution functions

(e.g. PROSA2 [12]) or distributions of hydrophobic and hydrophilic residues (e.g. Verify3D

[13]) which are characteristic of native protein structures. These analyses are important first

steps in structure validation. However, their value is primarily in identifying severely

incorrect folds [14], which rarely result from NMR structure determinations done with high

restraint densities. These scores may, however, be important when assessing structures

determined from sparse restraint networks. Non-globular protein folds (e.g. coil-coil

structures) may also exhibit poor PROSA2 or Verify3D scores even when the models are

accurate.

Dihedral angle distributions are the most prominent KB statistic used in assessing protein

NMR structures. They are generally reported as Z-scores relative to distributions observed in

high-resolution crystal structures, or across all structures that have been deposited in the

wwPDB. Dihedral angle distributions are generally reported separately for amino-acid

residue backbone and side chains. Backbone ϕ, ψ distributions are generally assessed based

on compliance with the Ramachandran plot. Historically, the program ProCheck [15] has
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been used for this analysis, but recent work using a larger set of X-ray structures determined

at high resolution suggests that more accurate assessments can be made using improved

backbone ϕ, ψ distribution statistics [8,16]. The assessment of side chain dihedral angle

distributions (also referred to as rotamer normality) can be more subtle. Protein side chains

have been observed to largely adopt standard rotamer states (g-, t, g+) even when buried in

the cores of protein crystal structures. While NMR data can in principle determine accurate

side-chain conformations, surface side chains are often dynamically-averaged complicating

the interpretation of the corresponding NMR data.

Several tools have been used to assess core atom packing, including the Molprobity [11]

program for assessment of overpacking, and both the Molprobity and RosettaHoles [17]

programs for assessment of underpacking. Severe atomic overlaps are rarely an issue in

NMR structures, unless there are errors in the restraints, because of the use of lower-distance

bounds. High-energy contacts can occur due to simplified treatments of van der Waals and

hydrogen-bonded interactions, but are generally relieved by energy refinement.

Underpacking, however, may be a more general problem for NMR-derived structures than

generally appreciated, and methods like RosettaHoles [17] should be a key component of

protein NMR structure assessment.

The role of KB-driven energy refinement in determining protein NMR structures, such as

KB potentials or fragment libraries [18,19], is also somewhat controversial. In our opinion

and experience, appropriate protocols for energy refinement, including the use of KB

potentials and fragment libraries, can significantly improve the accuracy of NMR structures

(see e.g., [1,3,20,21]), particularly for larger proteins determined with sparse restraint

networks [4,5]. Approaches based on molecular dynamics can also often provide appreciable

improvements in structure quality [22].

Model vs data measures

Model vs data (MvD) metrics describe how well the NMR structure model matches

experimental data. MvD quality assessments include data that have been used in the

structure generation process and, where feasible, cross-validation using data that have not

been used in structure generation calculations.

NMR Restraint Analysis

The most general form of MvD validation involves comparison of distances and dihedral

angles in models with the corresponding experimental restraints. Table 1 provides a standard

format used to report such restraint violations [9,20], although other formats are also

common in the NMR literature. These metrics provide an overview of global (or average)

restraint violation statistics, as well as information on the most significant outliers. Clusters

of restraint violations in regions of the 3D structure may indicate errors in the local

structure. Methods have been described to convert between restraint formats [20,23,24],

allowing initial restraint lists generated for one structure generation program to be used with

alternative structure generation programs. The NOE completeness score [20,25] is a useful

metric of structural accuracy, assessing the fraction of short distances in the model structure

that are consistent with restraint data set.
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NOESY Data

Restraint analysis has the significant shortcoming that the restraints are themselves

interpretations of NOESY and other NMR data. Accordingly, NMR structure quality

assessment should also include some metrics validating models against uninterpreted

spectral data. In the case of NOESY data, several methods have been developed for back-

calculating NOESY spectral data (e.g. refs [26-28]), although to date none of these has come

into general use. A more rapid, though approximate, approach is to compare models with

unassigned NOESY peak lists. The RPF program [29] quantifies the agreement between the

NOESY peak list, chemical shift assignments, and NMR models by calculating recall,

precision, and F measures, as well as a normalized F-measure (called a Discriminating

Power DP score). The normalized DP score is highly correlated with the accuracy of the

NMR model [30,31].

RDC, Scalar Coupling, Paramagnetic, and SAXS Data

MvD metrics could also include assessment of scalar coupling, residual dipolar coupling

(RDC), chemical shift anisotropy (CSA), paramagnetic resonance enhancement (PRE),

paramagnetic pseudo-contact shift (PCS), solid-state dipolar coupling, and small angle X-

ray or neutron scattering (SAXS or SANS ) data. Several tools for validating structures

against these data are available, including methods for validation of protein structures

against RDC data [32-34], CSA data [35] and SAXS data [36]. Residual dipolar coupling

data provide information about the orientations of internuclear bond vectors with respect to

the molecular orientation tensor, and hence provide long-range information including, for

example, the relative orientations of secondary structure elements, such as helix tilt angles,

which are sometimes inaccurate in protein NMR structures. The most commonly used MvD

metric for these data is the RDC Q-factor [37]. Aromatic RDC's also have been found to

provide an important approach for validating accuracy in core structures of proteins [38].

Free R Factors

In spite of extensive discussions and of various formulations that have been proposed

[25,27-29,37,39], a cross-validation metric analogous to the free R-factor of X-ray

crystallography has not yet been broadly adopted by the biological NMR community. This is

attributable, at least in part, to the sparseness of NMR data, and the need to manually

evaluate each individual peak in NOESY spectra when applying truly quantitative methods.

The RDC free Q-factor [37] is potentially more accessible, as quantifying RDC data is

generally more straight forward than the quantification of large numbers of NOESY peaks.

Chemical Shift Data

Chemical shift data have great potential for NMR structure validation. The most

straightforward validation involves comparing experimental chemical shift data with values

predicted from the 3D model structure [40-47]. Extensive chemical shift data must be

obtained at the onset of any protein structure determination, and chemical shift data often

used indirectly as restraints on dihedral angles [48]. Several recent papers have described

important progress in calculating chemical shifts from molecular models using both

empirical [49-52] and quantum chemical [44,47,53,54] approaches. However, systematic,
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large scale tests using chemical shifts as a standard metric for protein NMR structure

validation are not yet available.

Which parts of the structure should be validated?

Protein NMR structures are generally represented by ensembles of conformers having the

same level of agreement with the experimental data. Different regions of the structure are

often converged to different degrees among conformers. In common practice, a distinction is

made between well-defined and ill-defined (i.e., not-well-defined) regions [9,20]. In single-

domain proteins, the backbone or all-heavy-atom root mean square deviation of coordinates

(RMSD) computed after superposition of all the well-defined regions is taken as a measured

of structure precision. Similarly, the per-residue RMSD is taken as a measure of local

precision. Alternative measures of local or global precision include dihedral angle order

parameters (DAOP) [55-57] and distance variance matrix methods [57-60] ( Fig. 1). Often,

there is a good, albeit qualitative, correlation between local restraint density and local

precision, implying that the ill-defined regions of the structure result from the experimental

data providing insufficient information. This variability can be due to local protein dynamics

(so that locally a single conformation in solution in fact does not exist) or to experimental

factors limiting the information that can be extracted from spectra (e.g., extensive resonance

degeneracy).

The precision of NMR structures indicated by the convergence across the ensemble of NMR

conformers is operational, and does not provide a true representation of the Boltzmann

distribution of conformations actually present in the NMR sample. Indeed, NMR structure

ensembles do not even provide a statistically meaningful description of the true precision of

coordinates given the experimental uncertainties in deriving distance restraints. For

example, fast exchange may give rise to inconsistent restraints, which when simultaneously

satisfied can pin the local conformational distribution into an unrealistically narrow range of

conformations [61].

Because NMR experiments do not provide enough data to characterize them, the

conformations observed in ill-defined regions largely result from of the combination of

random initial conformations with the potential energy functions. Hence, these regions

should not be included in global structure validation. However, even such ill-defined regions

may be restrained to some degree by sparse experimental data, which may be biologically

relevant. Ill-defined regions may also contribute to the back-calculation of NMR

observables (e.g. NOESY peak lists). Hence, in our opinion all atoms for which

experimental data are available (including only chemical shift data) should be included in

the atomic coordinates that are deposited in the PDB, consistent with recommendations of

the wwPDB NMR VTF [9].

Protein structure quality assessment servers

Recently, several on-line servers have become available which integrate both KB and MvD

assessment metrics to provide a comprehensive NMR structure quality assessment report.

Web-based tools described in Table 2 include the CiNG [62,63], Molprobity [11], PSVS

[10,14], Vivaldi [64], and ResProx [43] servers. These, as well as other programs for NMR
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structure quality assessment, have been critically reviewed in a recent publication [57]. The

wwPDB NMR VTF has also recommended metrics and standards for biomolecular structure

quality assessment [8,9], and these guidelines are being used in developing software

pipelines that will generate standardized structure quality reports for all NMR and X-ray

crystal structures submitted to the wwPDB.

Quality measures vs. structure accuracy

Satisfaction of KB metrics is a necessary but not sufficient criteria for validating the

accuracy of protein NMR structures. This conclusion was illustrated by the recent Critical

Assessment of Protein Structure Determination by NMR (CASD-NMR) [1,2], in which

NMR data was publicly released, and the results of automated NOE assignment and

structure generation methods were compared in a blind fashion with manually-refined

protein NMR structures. In many cases, models with excellent energetics were in fact quite

different from the manually-refined “gold standard” structures. However, energetic

considerations can identify inaccurate restraint data, and thus guide the experimentalist to

more accurate interpretations of the raw NMR data in terms of experimental restraints

[20,21].

The CASD-NMR experiment also compared correlations between several KB and MvD

metrics with structural accuracy. In this analysis, the DP score was observed to provide the

highest correlation between submitted models and the manually-refined target structure (Fig.

2). Although the DP score has significant shortcomings to the extent that it uses an

interpreted NOESY peak list rather than raw NOESY spectral data, these results

demonstrate the importance of combining KB and MvD validation scores in structure

quality assessment. For example, the DP score has recently been combined with several KB

scores by linear regression analysis to provide an “equivalent resolution” metric [31,65].

Areas of current research

The trend towards determining larger biomolecular structures using sparse NMR data and

hybrid methods incorporating small angle X-ray scattering, chemical cross links, and other

data, requires increasing use of KB information and potential energy functions in the

structure determination process. Some solid-state NMR structure determinations may also

rely on relatively sparse networks of experimental data. These methods provide less

independent information for use in cross-validation, creating important challenges to the

field in terms of robust structure quality assessment.

Quality assessment considerations for NMR structures of nucleic acids and carbohydrates,

while generally similar to those for proteins, has not yet been extensively investigated.

Methods also need to be developed for generating Boltzmann ensembles of conformers that

best satisfy the experimental data (e.g., [37,66]), rather than fitting all the data to a single

conformer multiple times, as is the common practice. Ensemble-averaging interpretations

are particularly important in highly dynamic regions of a biomolecular structure, and new

methods are needed for quality assessment of the ensembles of models proposed for such

disordered regions.
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Conclusions

A high quality NMR-derived structure should meet minimal standards based on a wide

range of KB and MvD validation assessment metrics. No single metric score is sufficient to

validate a protein NMR structure. Users of biomolecular NMR structures also need to be

informed about which parts of the structure are well-defined by the data, and which are less-

reliably defined in terms of a unique structure. This information can be critical in

interpreting structure-function relationships.

Structure determinations by NMR are often marginally underdetermined, and rely in either

subtle or substantial ways on KB information, including at the very least standard values of

bond lengths and bond angles. Although they are useful for biological studies, and in some

cases quite accurate, the relatively low density of data constituting a typical protein NMR

structure presents challenges to cross validation, using part of the data to generate the

structure and another part of the data to validate the structure. In this regard, chemical shift

data, which are available for most atoms reported in modern biomolecular NMR structures,

hold promise for providing a robust and general approach for data-based protein structure

quality assessments.
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Highlights – Montelione

- Model quality is assessed with Knowledge-Based (KB) and Model-vs-Data (MvD)

metrics

- KB metrics compare structural features with the database of protein structures

- MvD metrics compare NMR-derived models against experimental NMR data

- Assessment requires annotation of well-defined regions the protein structure model

- NMR structure quality assessment provides new opportunities for methods

development
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Fig. 1.
Comparison of DOAP and variance distance matrix results for identifying well-defined atom

sets. (A) NMR structure ensemble superimposition showing residues defined as “well

defined” by the PDBStat DAOP analysis [20] and those identified as “well defined” by the

FindCore [20,58,59] variance matrix analysis for protein SgR42 (PDB_id 2jz2). Residues

identified as “well defined” by both methods are shown in dark blue, those identified as

“well defined” by variance matrix but not by DAOP in light blue, and those identified as

“well defined’ by DAOP but not by variance matrix in green. Residues that identified as “ill

defined” by both methods are shown in yellow. The backbone atoms of the corresponding

X-ray crystal structure (PDB id 3c4s) are shown in red. (B) Expansion showing atom-

specific “well defined” (dark blue) and “ill defined” (yellow) designations for the sidechains

of residues Phe20, Phe36, and Phe47 in protein SgR42. This image demonstrates the value

of atom-specific designations of well-defined regions of a protein NMR structure. Adopted

from ref [20].
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Fig. 2.
Correlation between accuracy measures (backbone RMSD to the reference structure and

GDT_TS score) and the DP-score. These results demonstrate the discriminating power of

the DP score in distinguishing accurate from less-accurate protein NMR models. The

horizontal and vertical lines indicate empirical thresholds for accurate structure models.

Adopted from ref [30].
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Table 1

Summary of KB and MvS structural statistics for bacterial protein Alr2454. This analysis was generated by

the PSVS protein nmr structure quality assessment server [10, 14]. These results are adopted from ref. [67].

Alr2454
a

Completeness of resonance assignments
b
:

        Backbone (%) 99.4

        Side chain (%) 98.3

        Aromatic (%) 96.6

        Stereospecific methyl (%) 100

Conformationally-restricting restraints
c
:

    Distance restraints

        Total 2478

        intra-residue (i = j) 688

        sequential (i-j| = 1) 619

        medium range (1 < |i - j| < 5) 462

        long range (|i - j| ≥ 5) 709

    Dihedral angle restraints 162

    Hydrogen bond restraints 0

    Disulfide bond restraints 0

    No. of restraints per residue 25.5

    No. of long range restraints per residue 6.8

Residual restraint violations
c
:

    Average no. of distance violations per structure:

        0.1 - 0.2 Å 8.75

        0.2 - 0.5 Å 1.85

        > 0.5 Å 0

        Largest distance violation (Å) 0.35

    Average no. of dihedral angle violations per structure:

        1 - 10° 8.75

        ° 10° 0

        Largest dihedral angle violation (°) 3.8

NOE Completeness Score 0.692

Model Quality
c
:

        RMSD backbone atoms (Å)
d 0.6

        RMSD heavy atoms (Å)
d 0.9

        RMSD bond lengths (Å) 0.018

        RMSD bond angles (°) 1.1

    MolProbity Ramachandran statistics
c,d

        most favored regions (%) 96.8

        allowed regions (%) 3.1
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Alr2454
a

        disallowed regions (%) 0.1

    Global quality scores (Raw / Z-score)
c

        Verify3D 0.40 −0.96

        ProsaII 0.66 0.04

        ProCheck (phi-psi)
d −0.15 −0.28

        ProCheck (all)
d −0.03 −0.18

        MolProbity clash score 12.51 −0.62

    RPF Scorese

        Recall / Precision 0.976 0.934

        F-measure / DP-score 0.955 0.817

Model Contents:

    Ordered residue range
d 1-100

    Total no. of residues 108

BMRB accession number: 17965

PDB ID: 2LJW 
a

a
Structural statistics computed for an ensemble of 20 structures.

b
Computed using AVS software [68] from the expected number of assignable resonances, excluding: highly exchangeable protons (N-terminal and

Lys amino groups, Arg guanido groups, hydroxyls of Ser, Thr, Tyr), carboxyls of Asp and Glu, non-protonated aromatic carbons, and the C-
terminal His6 tag. Methyl protons are counted as a single assignable resonance.

c
Calculated using PSVS 1.4 [10]. Ramachandran statistics were calculated by Molprobity [11]. Average distance violations were calculated using

the sum over r−6 for degenerate protons and stereochemically-distinct protons lacking stereospecific assignments.

d
Based on “well defined” residue ranges [S(phi) + S(psi) > 1.8].

Curr Opin Struct Biol. Author manuscript; available in PMC 2014 October 01.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Rosato et al. Page 19

Table 2

Web accessible servers providing Knowledge-Based (KB) and/or Model vs Data (MvD) protein NMR

structure quality assessment reports.

Server url Validation statistics provided

CING [62]v.1.0:
Common Interface for
NMR Structure
Generation

http://nmr.cmbi.ru.nl/cing/Home.html KB: Bond lengths and bond angles, backbone Ramachandran
distributions, peptide omegas, packing, sidechain rotomer normalilty,
disulfides, salt-bridges, chemical shift validations. Provides residue-
specific ROC scores [69]. Uses DSSP [70,71], WHATIF [72],
PROCHECK [15,73], and BMRB chemical shift validation.

MvD: DOAP analysis. Restraint violation analysis, redundancy and
duplicated restraints, back calculation of chemical shift from structure.
Uses SHIFTX [49] and VASCO [74].

Molprobity [11] http://molprobity.biochem.duke.edu/ KB: Backbone Ramachandran distributions, peptide omegas, packing,
H-bond satisfaction, sidechain rotomer normalilty.

MvD: RDC analysis with RDCvis[75].

PSVS [10,14] v.1.5.
Protein Structure
Validation Software
suite.

http://psvs.nesg.org/ KB: Bond lengths and bond angles, backbone Ramachandran
distributions, peptide omegas, packing, sidechain rotomer normality,
chemical shift validation and completeness using AVS [68]. Provides Z
scores relative to high-resolution crystal strutures for ProsaII [12],
Verify3D [13], Procheck_bb [15,73], Procheck_all [15,73], and
MolProbity [11]. Also uses DSSP [70,71], PDBStat [20], , LACS [76],
and PDB Clash score (deposit.rcsb.org/validate).

MvD: DAOP or Variance Matrix analysis. Restraint violation analysis,
redundancy and duplicated restraints, NOE completeness, NOE DP
scores, RDC Q scores, and GLM-RMSD [31] “equivalent resolution”
score. Provides mapping of Ramachanran outliers and RPF violations
onto 3D structure. Also uses PDBStat [20], FindCore [20,58,59], and
RPF [29,30] software.

ResProx [43] Resolution
by Proxy

http://www.resprox.ca/ KB: Assesses “equivalent resolution” based on 25 protein features
including backbone Ramachandran distributions, peptide omegas, H-
bond geometry, over and underpacking. Uses Vader [40], PROSESS
[42], Molprobity [11], RosettaHoles [17], and GeNMR [41] software.

KB: Bond lengths and bond angles, peptide omegas, chemical shift
validations, backbone Ramachandran distributions, CING [62] ROC
scores. Uses WHATIF [72], CING [62], and VASCO [74].

Vivaldi [64] v.1:
Visualization and
validation of
biomacromolecular
NMR structures from the
PDB

http://www.ebi.ac.uk/pdbe/vivaldi/ MvD: DAOP and Variance Matrix analysis. Restraint violation and RDC
analysis. Uses NMRCore [77]
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