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Abstract

Various types of data sources have been used to recognize user intent for volitional control of

powered artificial legs. However, there is still a debate on what exact data sources are necessary

for accurately and responsively recognizing the user's intended tasks. Motivated by this widely

interested question, in this study we aimed to (1) investigate the usefulness of different data

sources commonly suggested for user intent recognition and (2) determine an informative set of

data sources for volitional control of prosthetic legs. The studied data sources included eight

surface electromyography (EMG) signals from the residual thigh muscles of transfemoral (TF)

amputees, ground reaction forces/moments from a prosthetic pylon, and kinematic measurements

from the residual thigh and prosthetic knee. We then ranked included data sources based on the

usefulness for user intent recognition and selected a reduced number of data sources that ensured

accurate recognition of the user's intended task by using three source selection algorithms. The

results showed that EMG signals and ground reaction forces/moments were more informative than

prosthesis kinematics. Nine to eleven of all the initial data sources were sufficient to maintain 95%

accuracy for recognizing the studied seven tasks without missing additional task transitions in real

time. The selected data sources produced consistent system performance across two experimental

days for four recruited TF amputee subjects, indicating the potential robustness of the selected

data sources. Finally, based on the study results, we suggested a protocol for determining the

informative data sources and sensor configurations for future development of volitional control of

powered artificial legs.
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I. Introduction

Limb loss is a physically and emotionally devastating event that renders people less mobile

and at risk for loss of independence. It has been estimated that 664,000 persons have been

living with major limb loss in the U.S. in 2005 [1], with lower limb amputations occurring

much more frequently than upper limb amputations. With the increasing incidence of
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dysvascular amputations, the number of lower limb amputations in the U.S. is expected to

increase to 58,000 per year by 2030 [2, 3]. Therefore, there is a pressing need to restore as

much function as possible to the large and increasing population of lower limb amputees.

Recent advances in powered artificial legs [4-6] have allowed lower limb amputees to

efficiently perform activities that are difficult or impossible when wearing passive devices

(e.g. climbing a staircase). However, smoothly switching tasks (e.g. from level-ground

walking to stair ascent) has been difficult for patients wearing powered prostheses. This is

due to the lack of a user interface that can identify the user's intent. Because the control

parameters in current powered artificial legs are modulated by the user's performing tasks

[4], an intent-recognition interface is essential for natural and easy use.

Several approaches to intent recognition for powered artificial legs have been explored.

These include manual approaches, such as use of a remote key fob [7] or performance of

extra body motions [8]; or more automated approaches, such as echo control [9], intent

recognition based on intrinsic mechanical feedback [10], or intent recognition based on

EMG signals recorded from the residual limb [5, 11-13]. To date, manual approaches have

proven cumbersome and sometimes unreliable. As for more automated approaches, echo

control [9, 14] has been adopted to allow for smooth gait initiations and terminations. This

approach requires the user to don and doff an instrumented orthosis on the unimpaired leg.

A preliminary intent-recognition system based on mechanical feedback from a powered

prosthesis [10] has been shown to identify gait initiations, terminations, and transitions

between sitting and standing of one TF amputee. The study reported 100% accuracy in

recognizing task transitions with 500ms delay and 3 false identifications in a 570s trial

period. Two recent studies [11, 12] of intent-recognition systems based on EMG signals

recorded from residual muscles demonstrated accurate decoding of the intended motion of

the missing knee and ankle based on EMG signals recorded from TF amputees in a seated

position. However, the performance of these designs during locomotion has not been

reported. Au et al. [5] used EMG signals from residual shank muscles to identify locomotion

modes of one transtibial amputee; however, their approach can only separate two

locomotion modes. Huang et al. developed a phase-dependent EMG pattern recognition

strategy [13] that can identify seven locomotion modes with approximately 90% accuracy as

demonstrated with two transfemoral (TF) amputees. Motivated by previous approaches, our

group further improved the interface design by fusing both EMG and mechanical

information [15]. This approach, we have termed neuromuscular-mechanical fusion,

outperformed the approaches based on only EMG signals or mechanical measurements.

Various types of data sources including EMG signals recorded from residual limbs and

ground reaction forces/moments measured from prosthetic pylon have been fused together to

recognize user intent for volitional control of powered artificial legs. However, there is still

a debate on what exact data sources are necessary for accurately and responsively

recognizing the user's intended tasks. Although the fusion of multiple data sources have

demonstrated performance improvement over the approaches using single data sources, the

use of a large number of data inputs would complicate the design of the instrumented

prostheses, the intent-recognition algorithm, and the hardware necessary for its real-time

application on powered artificial legs. Therefore, further investigation is needed to identify
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the informative data sources, reduce the number of system inputs, and create a more

efficient real-time intent-recognition interface for artificial legs.

The goals of this study were to (1) investigate the usefulness of different data sources

commonly suggested for user intent recognition, and (2) determine an informative set of

data sources for volitional control of prosthetic legs. In this study, we first implemented our

previously designed neuromuscular-mechanical-fusion interface in real time. We then

ranked included data source based on the usefulness for user intent recognition and selected

a reduced number of data sources that ensured accurate recognition of the user's intended

task by using three source selection algorithms. The online performance of the intent-

recognition algorithm was tested on four patients with TF amputations and compared with

and without the source selection. Finally, this study suggested a protocol for determining the

informative data sources and sensor configurations for future development of volitional

control of powered artificial legs.

II. METHODS

A. Participants and Experimental Measurements

This study was conducted with Institutional Review Board (IRB) approval at the University

of Rhode Island and the written, informed consent of all the recruited subjects. Two male

and two female patients with unilateral TF amputations (TF01–04) were recruited (see Table

I). All subjects were regular prostheses users.

All available data sources were used for initial testing of the intent recognition interface.

These measurements included EMG signals recorded from the residual thigh of TF

amputees, mechanical loads on the prosthetic pylon, and the kinematics of the prosthesis.

Eight active bipolar surface EMG electrodes were placed on the residual thigh. The targeted

muscles included the rectus femoris (RF), vastus lateralis (VL), vastus medialis (VM),

tensor fasciae latae (TFL), biceps femoris long head (BFL), semitendinosus (SEM), biceps

femoris short head (BFS), and adductor magnus (ADM). The exact locations of electrode

placement for each individual subject were determined by EMG recordings and muscle

palpation. A ground electrode was placed on the bony area near the anterior iliac spine. It is

noteworthy that it is not always possible to measure the activity of all muscles due to lower

limb amputation and scar or fatty tissues on the residual limb. If fewer than eight muscles

were identified, additional EMG sites were selected where strong signals could be recorded

when the subject performed hip flexion/extension, hip adduction/abduction, or executed

knee flexion/extension. When executing knee flexion/extension, the subjects were asked to

attempt to flex/extend their amputated knee joints. The electrodes contained a preamplifier

that band-pass filtered the EMG signals between 10 and 2000 Hz with a pass-band gain of

20. The EMG electrodes were embedded in customized gel liners (Ohio Willow Wood, US)

for both the users’ comfort and reliable electrode-skin contact. A 16-channel EMG system

(MA 300, Motion Lab System, US) was used to collect EMG signals. The cut-off frequency

of the anti-aliasing filter for EMG channels was 450 Hz. Mechanical ground reaction forces

(Fx, Fy, Fz) and moments (Mx, My, Mz) were measured by a six-degree-of-freedom (DOF)

load cell (PY6, Bertec Corporation, OH, US) mounted on the prosthetic pylon, with the x, y,

and z axes aligned with the mediolateral, superoinferior, and anteroposterior axes of the
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subject, respectively. Both analog EMG signals and mechanical load values were sampled at

1000 Hz by a data acquisition board (DATAQ DI-720, DATAQ Instruments, Inc., Ohio,

US). In addition, two inertial measurement units (IMUs) (Xsens Technologies B.V.,

Enschede, Netherlands) were used to measure the kinematics of the prosthesis. Both IMUs

were tightly affixed to the lateral side of the prosthetic socket and pylon. The IMUs’

coordinate systems were aligned with the coordinate system of the load cell in the standing

position. A total of 12 kinematic data were derived from the IMU measurements, including

three-DOF linear accelerations of the thigh segment (TAcc_x, TAcc_y, TAcc_z), angular

velocity (TAV_x, TAV_y, TAV_z) and acceleration (TAA_x, TAA_y, TAA_z) of the thigh

segment, knee angle (KA), knee angular velocity (KAV), and knee angular acceleration

(KAA). The kinematics of the residual thigh segment and prosthetic knee were specifically

monitored because (1) motion of the residual thigh is still controlled by a transfemoral

amputee and therefore represents the user's voluntary control, (2) the selected kinematic

parameters of the prosthetic socket and knee have been used to demonstrate the movement

state of prosthesis [16] and classify user intent [10], and (3) all of these data sources can be

measured by sensors mounted on the prosthesis. The kinematic measurements were sampled

at 100 Hz and were synchronized with EMG and mechanical load measurements. All

sampled data were streamed into a desktop computer (Dell OptiPlex 380 with 2.93 GHz

Core 2 Duo E7500 CPU and 2 GB RAM) for real-time intent recognition.

B. Real-time User Intent Recognition

The architecture of our neuromuscular-mechanical-fusion interface has been previously

reported [15]. The multichannel data are preprocessed and segmented into analysis

windows. Features believed to capture the signal patterns are extracted and fused into one

feature vector. The feature vector is then fed to a phase-dependent pattern classifier,

composed of a gait-phase detector and multiple sub-classifiers corresponding to individually

defined gait phases for mode recognition. The classification decisions are further post-

processed to improve system accuracy. There are two procedures involved in real-world

application of the intent-recognition interface: (1) offline training and (2) real-time testing.

In this study, both procedure were implemented and tested using MATLAB (The

Mathworks, Massachusetts, US).

1) Interface Training Strategy and Offline Training Algorithm—Training data were

collected while lower limb amputees performed the assigned locomotion modes. In this

study, the considered modes included level-ground walking, stair ascent, stair descent, ramp

ascent, ramp descent, sitting, and standing. The latter two modes were included because they

were important for gait initiation and termination and were difficult for leg amputees. For

the task of level-ground walking, we instructed subjects to start from standing, walk along a

straight walkway, and stop and stand. For sitting and standing tasks, subjects were asked to

transition between sitting and standing. When in standing positions, subjects were allowed

to make small steps and shift their weight; during sitting, subjects were allowed to move the

prosthetic limb. During collection of training data for stair ascent/descent or ramp ascent/

descent, subjects switched from level-ground walking to stair ascent/decent or ramp ascent/

descent and then switched back to level-ground walking. Stair ascent/descent and ramp

ascent/descent were negotiated with a 5-step stair and a 10-foot ramp with 10 degrees of
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inclination, respectively. At least 30 seconds of data were collected in each mode and five

repetitions of each task transition were captured.

Training data were preprocessed and segmented into overlapped analysis windows with a

window length of 150ms and a window increment of 50ms. EMG signals were band-pass

filtered by a 20–450 Hz sixth-order Butterworth digital band-pass filter. The mechanical

forces/moments were filtered by a low-pass filter with a 45 Hz cut-off frequency. The linear

accelerations and angular velocities of the thigh segment and knee angle were low-pass

filtered with a 20 Hz cut-off frequency before the derivation of other kinematic data. Each

window was labeled with a gait phase index and task index. The gait phase index was

determined automatically by the gait phase detection algorithm based on the vertical GRF

measured from the six-DOF load cell [17]. The labeling of tasks required manual indication

of mode transitions from an experimenter. Four commonly used EMG time-domain (TD)

features [18] (mean absolute value, number of slope sign changes, waveform length, and

number of zero crossings) were extracted from each EMG signal in each analysis window.

The mean, maximum, and minimum values of mechanical loads and motion parameters

were extracted as features from each of these data sources. The features extracted from

EMG signals (4 feaures×8 channels), mechanical loads (3 features×6DOF), and kinematic

measurements (3 features×12 sources), were then concatenated into one feature vector

(86×1). The fused feature vectors for the same gait phase index were used to train the sub-

classifier corresponding to that phase. A nonlinear support vector machine (SVM) classifier

based on the “one-against-one” (OAO) scheme [19] and C-Support Vectors Classification

(C-SVC) [20], was used to design the classifier. Finally, the parameters of each sub-

classifier were calculated and stored for real-time testing.

2) Real-time Implementation of User Intent Recognition—In real-time testing, the

classifier parameters calculated in the training session were reloaded into the memory of the

computer. The time sequence of the real-time algorithm is shown in Fig. 2. Each analysis

window (e.g. W1, W2, and W3 in Fig. 2) had the same window length (tw = 150ms). The

window increment (Δt = 50ms) determined the time delay for each decision. The processing

time τ, consisted of the time required for preprocessing the data and extracting the features

from each analysis window (B1), formulating and normalizing the feature vector (B2),

detecting the gait phase and activating the corresponding classifier (B3), and classifying the

user intent (B4). In order to make use of all of the streamed data for continuous decision

making, the window increment (Δt) was required to be greater than or equal to the

processing time (τ) [21]. At time t0, the EMG, mechanical, and kinematic signals were

simultaneously streamed into the computer. These acquired data were stored in a first-in

first-out (FIFO) buffer. At time t1, when the data for the first analysis window, W1, were

available, the data were transferred from the FIFO buffer to system memory and execution

of the real-time algorithm began. At the same time, new incoming data were stored in the

buffer. At time t2, the computation for W1 completed. The first decision, D1, was made to

recognize the user intent for window W1. At t3, the data for the second window, W2, were

available for processing. Similarly, new incoming data continued to be stored in the FIFO

buffer. At time t4, the decision, D2, for window W2 was made. In addition, a five-point

majority vote scheme was applied to eliminate erroneous decisions.
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C. Evaluation of the Intent-recognition Interface

1) Experimental Protocol—Each TF subject participated in two experimental days. On

each day, the experiment took around three hours. In the first experimental day, all of the

previously discussed measurements (EMG, kinematics, and pylon forces/moments) were

used for real-time intent recognition. All subjects wore a hydraulic passive knee (Total

Knee, ÖSSUR, Germany) and performed the instructed tasks in multiple trials. During the

real-time testing session, the subjects were asked to transition among seven task modes in a

fixed sequence: sitting, standing, level-ground walking, stair ascent, level-ground walking,

ramp descent, level-ground walking, ramp ascent, level-ground walking, stair descent, level-

ground walking, standing, and sitting. Each trial lasted approximately 1 minute. A total of

15 real-time testing trials were conducted. For the subjects’ safety, they were allowed to use

a hand rail when walking on the staircase or ramp if necessary. Rest periods were allowed

between trials to avoid fatigue. All of the data and real-time decisions collected during the

experiment were saved for system evaluation and source selection analysis. In addition, a

pressure-measuring mat was attached to the gluteal region of the subject to indicate the

states of sitting and standing. The experiment was also videotaped for evaluation purposes.

The second experiment was conducted after the informative set of data sources (those that

carried the majority of information for accurate intent recognition) was determined via an

offline analysis of the data collected in the first experimental day. The experimental protocol

was the same as the first experimental, except that only a subset of data sources was used for

interface training and real-time testing. The time between the two experimental days was 3

weeks, 2 weeks, 1 month, and 3 weeks for TF01-04, respectively.

2) Evaluation Parameters—Three parameters were used to evaluate the real-time

performance of the intent-recognition interface: (1) recognition accuracy in static states

(RA), (2) the number of missed task transitions, and (3) transition prediction time. Static

states were defined as states when subjects continuously performed the same task. More

details about the definition of these evaluation parameters can be found in previous study

[15].

D. Source Selection Analysis

1) Overview of Source Selection Methods—Data source or feature selection is

commonly used in the field of machine learning to reduce the dimensionality of inputs and

create an efficient classification model. If the considered unit for input selection is

individual features, it is called feature selection; if the selected input is data source

(consisting of multiple features), it is called source selection. Exhaustive searching method,

which enumerates all the possible combinations of subsets, is generally used to find the

globally optimal subset. However, due to computational complexity, this approach is not

practical for real application. Instead in this study, we considered more efficient and

commonly used searching methods to find the sub-optimal subset of data sources. The

source/feature selection methods can be divided into two broad classes: wrapper methods

and filter methods [22]. Wrapper methods require one predetermined classification

algorithm and use the classifier as a black box to select the subset of sources based on the

discriminatory power [22]. The most commonly used wrapper methods are sequential
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forward selection (SFS) and sequential backward selection (SBS). Filter methods select the

sources based on discriminating criteria, which are relatively independent from the

classifier. Examples of such criteria are correlation coefficients [23], mutual information

[24], and statistical tests (t-test and F-test) [25]. Recent studies [24, 26] used a minimum-

redundancy-maximum-relevance (mRMR) criterion. This method considered the relevant

and redundant features simultaneously when selecting the sources/features; it expanded the

representative power of useful data sources/features and improved the generalization of the

source/feature selection algorithm. In this study, two wrapper methods (e.g. SFS and SBS)

and a filter method (e.g. mRMR) were applied to the data collected in the first experimental

day to select the informative data sources for intent recognition.

2) Sequential Forward and Backward Selection Algorithms—The SFS algorithm

was applied as follows. The algorithm started with two data source sets: the selected set, A,

was initially empty; and the remaining set, B, included all 26 data sources. In the first search

iteration, the data from each individual source were used to train and test the intent-

recognition system. The source that yielded the highest average classification accuracy

across all modes in the static state was selected as the most important source for the system

and was added to set A. In the following iterations, each of the sources in set B was paired

with the selected sources in set A to train and test the classifier. The source from set B that

produced the maximum recognition accuracy when combined with the selected sources from

set A was added to set A. Only one source was selected in each search step. The sequence in

which sources were selected produced a rank of the sources in terms of their importance for

accurate mode recognition.

The SBS method began with set B empty and set A containing all 26 sources. In each search

iteration, the source from set A that produced the lowest decrease in recognition accuracy

when removed was moved to set B. Only one source was removed from set A in each

iteration. The first source removed was considered to contain the least information; while

the last source remaining in set A was considered to be the most informative.

3) mRMR Source Selection Algorithm—The mRMR algorithm select the feature fi to

satisfy the criterion in (1) [24, 26]. This approach simultaneously maximizes the relevance

between this feature and the classes (intended tasks) and minimizes the redundancy among

the studied features.

(1)

In (1), fi and fj are different features. S and ΩS represent the selected important feature set

and the remaining unselected feature set, respectively. |S| is the number of selected features

in S. F(fi, K) denotes the F-statistic test value of feature fi in the K studied classes (K=7 in

this study), which is used to evaluate the relevance between the feature and classes [24, 26].

The F-statistic value was calculated by
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(2)

In (2), f̄ is the mean value of feature fi across all observations; f̄k is the mean value of fi
within the kth class; nk is the size of the feature in the kth class. σk is the variance of the

feature in the kth class and N denotes the total number of observations. The Pearson

correlation coefficient c(fi, fj) in (1) measures the redundancy among the features [24],

defined as

(3)

where fi,m denotes the mth observation of fi; f̄i and f̄j denote the mean value of fi and fj,

respectively; Sfi and Sfj are standard deviations of fi and fj.

It is noteworthy that the mRMR algorithm is usually used on the feature level. Therefore, in

order to search the sub-optimal data source, two steps were involved in this study: (1) each

feature from all sources was ranked in terms of their importance for accurate intent

recognition based on the mRMR criteria in equation (1); (2) the data sources were ranked

based on the highest rank of the features associated with it. For all source selection methods

applied, the number of selected data sources was determined based on two criteria: (1) the

recognition accuracy in static states had to be greater than 95%; and (2) no additional missed

mode transitions could be induced by the reduction in data sources. The 95% threshold

chosen for the first criterion in this study can be modified based on the specific requirements

for system performance.

III. RESULTS

A. Performance of Source Selection Algorithms

The data collected in the first experiment were used for offline source selection. The effect

of increasing the number of selected data sources on the intent recognition accuracy in static

states was similar among the three tested algorithms (SFS, SBS, and mRMR) (Fig. 3): when

the number of applied data sources increased, the classification accuracy increased

dramatically and gradually plateaued. When 95% accuracy (indicated by a red dashed line in

Fig. 3) was chosen as the criterion to select the informative set of data source for all studied

selection methods, the number of selected sources was 9, 11, 10, and 10 for TF01-TF04,

respectively.

Table II listed the informative set of data sources selected by SFS, SBS, and mRMR for

TF01-TF04. The sources were ranked in descending sequence in terms of the order they

were selected or removed for the sequential forward/backward searching or based on the

calculated relevance-redundancy value for mRMR selection method. The number of selected

sources and the rank of the selected sources varied among the different subjects. However,

the majority of the top ranked data sources selected by SFS, SBS, and mRMR overlapped for
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individual subject. The number of EMG signals in the selected set was larger than half of the

total number of selected sources across all the subjects and selection algorithms. Of all the

data sources, only the vertical ground reaction force was consistently selected across all the

subjects and all selection methods. Except for the thigh segmental acceleration, no other

kinematic measurements were selected as the important sources for intent recognition.

Additionally, we compared the execution time of three different source selection algorithms.

mRMR required the shortest execution time (an average of 84 seconds over the four

subjects), while SBS was the most time-consuming algorithm (requiring an average of 1978

seconds). SFS took approximately 383 seconds for data source selection. Since mRMR was

the most computationally efficient algorithm and yielded similar performance to the other

two searching algorithms (Table II and Fig. 3), the sources selected by mRMR were used in

the second experiment for real-time mode recognition in order to evaluate the robustness of

the selected data sources across days.

B. Real-time Performance with and without Data Sources Selection

The performance of the intent-recognition interface in static states was compared with and

without data source reduction (Fig. 4). The accuracy decreased to approximately 95% when

the data sources selected by mRMR were used (gray and white bars in Fig. 4), compared to

around 98% accuracy derived from all data sources (the black bars in Fig. 4). This was to be

expected, as 95% accuracy was used as the threshold in one of the searching criteria.

Importantly, the system produced stable performance in the static states by using the same

data sources selected by mRMR across days, which implied that the selected data sources

robustly captured important information for accurate intent recognition.

When all data sources were used for online testing (in the first experimental day), the

average processing time for one decision (i.e. the duration of B1–B4 in Fig. 2) was 45.2 ±

2.7ms. When the number of data sources was reduced by the mRMR method (in the second

experiment), the online processing time ranged from 21.3ms to 28.8ms for the four subjects,

which would result in more frequent decision-making.

The real-time system performance during transitions derived from the informative data

sources in the second experiment was similar to that derived from all data sources in the first

experiment. For both days, 3 out of the 720 transitions (12 transitions* 15 trials* 4 TF

subjects) tested in all four subjects were missed. These missed transitions included the

transitions from level-ground walking to ramp ascent and ramp descent to level-ground

walking. The prediction times for the 12 transitions were averaged across all the testing

trials and all the subjects, excluding the missed task transitions. Similar prediction times

were observed when using all data sources and when using selected sources (Table III).

IV. DISCUSSION

In this study we aimed to investigate the usefulness of each data source used for user intent

recognition, and determine an informative set of data sources for efficient real-time intent-

recognition for the control of artificial legs. The offline source-selection analysis showed

that when the number of data sources was reduced from 26 to approximately 10, the
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interface was still able to accurately recognize the subject's intents (above 95% accuracy in

static states) without missing additional mode transitions. These results indicate that not all

of the studied data sources carried important information for intent recognition and input

redundancy existed in the initial design of fusion-based interface. Therefore, reduction of

system redundancy is necessary to improve the efficiency of the design for its eventual

clinical use for artificial legs. At the hardware level, removing sources that capture less

important or redundant information can simplify the design of the instrumented prosthetic

leg, I/O circuits, wiring, and embedded system. At the software level, reducing the number

of data sources decreases the computational complexity of the intent-recognition algorithm.

For example, in this study we showed that the computational speed for recognizing intents

with a reduced number of data sources was almost 1.9 times faster than that when using all

data sources.

By ranking the data sources based on the usefulness for user intent recognition, a reduced

number of data sources that ensured accurate recognition of the user's intended task was

selected by using three source selection algorithms for individual subject. Although there

was a variation in types and ranks of data sources selected across the different selection

methods and subjects, some consistency was still observed. First, more than half of the

selected sources for all subjects were EMG signals, which implied that neuromuscular

information measured from the residual limbs may be the essential data source for accurate

and responsive intent recognition. However, it was difficult to unify which muscles were

necessary for intent recognition across different subjects, which may be due in part to the

variations in the level of amputation, cause of amputation, surgical approach, and

locomotion pattern among the TF amputees. Therefore, the optimization of EMG signal

inputs should be customized for each individual in the future clinical application for

artificial legs. Second, with the exception of thigh acceleration, no kinematic information

was selected by the algorithms, implying that the kinematics of the prosthetic knee is not

important for differentiating user intent and predicting the studied task transitions.

Additionally, the vertical ground reaction force was selected as an important source by all

searching methods for all tested subjects. This indicates different patterns of GRF on the

prostheses even before the users switched locomotion modes. Since the GRF was also used

as the input for gait phase detection in the current system design and is usually available for

intrinsic control of lower limb prostheses, it is necessary to include it as one of the

informative data sources. At the sensor level, based on the results from this study, we

suggested that the sub-optimal sensor configuration for future design of intent-recognition

interface for powered artificial legs should include at least four surface EMG sensors (two

targeting quadriceps and two targeting hamstring muscles), a 6-DOF load cell mounted on

prosthetic pylon, and one accelerometer instrumented on prosthetic socket.

The results of this study showed that all three methods selected similar data sources when at

least 95% accuracy for recognizing user intent was required. However, the mRMR method is

suggested for future clinical application because (1) it was much more computationally

efficient than the other two searching methods; (2) the mRMR algorithm can be used

regardless of the type and structure of the classifier; while SFS and SBS involve the direct

goal of maximizing the classification accuracy of one particular classifier. Furthermore, the
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data sources selected by mRMR were robust over time. Similar performance was observed

across experimental days when the mRMR-selected sources were used to classify task

modes.

Another important contribution of this study was the real-time PC implementation of our

previously designed intent-recognition interface. Unlike previous design, in which we used

offline cross validation to evaluate the interface [15], this study included a system-training

protocol for quick calibration and real-time algorithm for online system testing. The real-

time interface could make a decision every 50ms and produced high accuracy for intent

recognition and task transition prediction, similar to the results of the offline analysis [15].

These results imply the soundness of our designed training protocol and real-time intent-

recognition algorithm; these designs can be used for the future embedded implementation of

an intent recognition interface for artificial legs.

In summary, this study suggested a protocol for determining the informative data sources

and sensor configurations for future development of volitional control of powered artificial

legs. Software based on the mRMR algorithm can be developed for prosthetists to allow

them to customize the sub-optimal sensor placement for each TF amputee. The prosthetists

may simply choose the optimization criteria and run the program for quick sensor placement

guidance. In addition, our real-time mode-recognition algorithm can be directly

implemented in the embedded control units in prosthetic knees. Nevertheless, several study

limitations were also identified. First, the evaluation of the system was done in the

laboratory, due to the limitations of our experimental setup. It will be important to further

test our system in more realistic environments. In addition, the reported execution speed for

locomotion mode recognition was not the true online processing speed for CPU

implementation. This is because we did not ignore background programs in the PC, and

MATLAB does not allow multi-threaded programs. The execution speed should be faster

when a powerful digital signal processor is used. Furthermore, this study fixed the

optimization criteria to 95% classification accuracy. Further studies are needed to justify

whether or not this criterion is sufficient for safe prosthesis control. Finally, it was

noteworthy that the suggestion of sub-optimal sensor configuration for volitional control of

power artificial legs was made only based on the results from the recruited subjects.

Customization of sensor configuration for each individual user is desired in the future

clinical application.

V. CONCLUSION

In this study, we analyzed the usefulness of different data sources for user intent recognition

and identified an informative set of data sources for volitional control of prosthetic legs.

First, our previously designed interface based on neuromuscular-mechanical fusion was

implemented in real time. We then ranked data sources based on the usefulness for user

intent recognition and selected a reduced number of data sources that ensured accurate

recognition of the user's intended task by using three source selection algorithms. The real-

time performance of the intent-recognition algorithm with and without source selection was

evaluated and compared on four patients with TF amputations on different experimental

days. Based on the study results, we suggested a protocol for determining the informative
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data sources and sensor configurations for future development of volitional control of

powered artificial legs.

Acknowledgments

The authors thank Michael J. Nunnery and Becky Blaine at Nunnery Orthotic and Prosthetic Technology, LLC, for
their suggestion and assistance in this study and Aimee Schultz for editing the manuscript. This work was partially
supported by the National Science Foundation (NSF)/CPS #0931820 and #1149385, National Institutes of Health
(NIH)/NICHD #RHD064968A, and NIDRR #H133G120165.

Biography

Fan Zhang (S'11) received the B.S. degree in biomedical engineering from Tianjin Medical

University, Tianjin, China, in 2006, and the M.S. degree in biomedical engineering from

Tianjin University, Tianjin, China, in 2008. He is currently working the Ph.D. degree in

biomedical engineering at the University of Rhode Island, Kingston, RI.

His research interests include signal processing, pattern recognition, the design of neural-

machine interface for the powered artificial limb control, and analysis and modeling of

normal and neurologically disordered human motion.

He Huang (S'03–M'06–SM'12) received the B.S. degree from the School of Electronics and

Information Engineering, Xi'an Jiao-Tong University, Xi'an, China and the M.S. and Ph.D.

degrees from the Harrington Department of Bioengineering, Arizona State University,

Tempe.

She was a Research Associate in the Neural Engineering Center for Artificial Limbs at the

Rehabilitation Institute of Chicago, Chicago, IL. Currently, she is an Assistant Professor in

the Department of Electrical, Computer, and Biomedical Engineering, University of Rhode

Island, Kingston, RI. Her primary research interests include neural–machine interface,

modeling and analysis of neuromuscular control of movement in normal and neurologically

disordered humans, virtual reality in neuromotor rehabilitation, and design and control of

therapeutic robots, orthoses, and prostheses.

Zhang and Huang Page 12

IEEE J Biomed Health Inform. Author manuscript; available in PMC 2014 July 25.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



References

1. Ziegler-Graham K, MacKenzie EJ, Ephraim PL, Travison TG, Brookmeyer R. Estimating the
prevalence of limb loss in the United States: 2005 to 2050. Arch Phys Med Rehabil. Mar; 2008
89(3):422–9. [PubMed: 18295618]

2. Cutson TM, Bongiorni DR. Rehabilitation of the older lower limb amputee: a brief review. J Am
Geriatr Soc. Nov; 1996 44(11):1388–93. [PubMed: 8909359]

3. Fletcher DD, Andrews KL, Hallett JW Jr. Butters MA, Rowland CM, Jacobsen SJ. Trends in
rehabilitation after amputation for geriatric patients with vascular disease: implications for future
health resource allocation. Arch Phys Med Rehabil. Oct; 2002 83(10):1389–93. [PubMed:
12370874]

4. Sup F, Bohara A, Goldfarb M. Design and Control of a Powered Transfemoral Prosthesis. Int J Rob
Res. Feb 1; 2008 27(2):263–273. [PubMed: 19898683]

5. Au S, Berniker M, Herr H. Powered ankle-foot prosthesis to assist level-ground and stair-descent
gaits. Neural Netw. May; 2008 21(4):654–66. [PubMed: 18499394]

6. Martinez-Villalpando EC, Herr H. Agonist-antagonist active knee prosthesis: a preliminary study in
level-ground walking. J Rehabil Res Dev. 2009; 46(3):361–73. [PubMed: 19675988]

7. I. Otto Bock Orthopedic Industry. Manual for the 3c100 Otto Bock C-LEG. Duderstadt, Germany:
1998.

8. OSSUR. The POWER KNEE. http://bionics.ossur.com/Products/POWER-KNEE/SENSE

9. Bedard S, Roy P. Actuated leg prosthesis for above-knee amputees. 2003

10. Varol HA, Sup F, Goldfarb M. Multiclass real-time intent recognition of a powered lower limb
prosthesis. IEEE Trans Biomed Eng. Mar; 2010 57(3):542–51. [PubMed: 19846361]

11. Hargrove LJ, Simon AM, Lipschutz RD, Finucane SB, Kuiken TA. Real-time myoelectric control
of knee and ankle motions for transfemoral amputees. JAMA. Apr 20; 2011 305(15):1542–4.
[PubMed: 21505133]

12. Ha KH, Varol HA, Goldfarb M. Volitional control of a prosthetic knee using surface
electromyography. IEEE Trans Biomed Eng. Jan; 2011 58(1):144–51. [PubMed: 20805047]

13. Huang H, Kuiken TA, Lipschutz RD. A strategy for identifying locomotion modes using surface
electromyography. IEEE Trans Biomed Eng. Jan; 2009 56(1):65–73. [PubMed: 19224720]

14. Flowers WC, Mann RW. Electrohydraulic knee-torque controller for a prosthesis simulator. ASME
J. Biomech. Eng. 1977; 99(4):3–8.

15. Huang H, Zhang F, Hargrove L, Dou Z, Rogers D, Englehart K. Continuous Locomotion Mode
Identification for Prosthetic Legs based on Neuromuscular-Mechanical Fusion. IEEE Trans
Biomed Eng. Jul 14.2011

16. Hale SA. Analysis of the swing phase dynamics and muscular effort of the above-knee amputee for
varying prosthetic shank loads. Prosthet Orthot Int. Dec; 1990 14(3):125–35. [PubMed: 2095530]

17. Zhang F, Dou Z, Nunnery M, Huang H. Real-time implementation of an intent recognition system
for artificial legs. Conf Proc IEEE Eng Med Biol Soc. 20112011:2997–3000. [PubMed:
22254971]

18. Hudgins B, Parker P, Scott RN. A new strategy for multifunction myoelectric control. IEEE Trans
Biomed Eng. Jan; 1993 40(1):82–94. [PubMed: 8468080]

19. Anguita D, Boni A, Ridella S. A digital architecture for support vector machines: Theory,
algorithm, and FPGA implementation. Ieee T Neural Networ. Sep; 2003 14(5):993–1009.

20. Frey, BJ. Graphical models for machine learning and digital communication. The MIT Press;
Cambridge, Mass: 1998.

21. Englehart K, Hudgins B. A robust, real-time control scheme for multifunction myoelectric control.
IEEE Trans Biomed Eng. Jul; 2003 50(7):848–54. [PubMed: 12848352]

22. Liu J, Ranka S, Kahveci T. Classification and feature selection algorithms for multi-class CGH
data. Bioinformatics. Jul 1; 2008 24(13):i86–95. [PubMed: 18586749]

23. Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh ML,
Downing JR, Caligiuri MA, Bloomfield CD, Lander ES. Molecular classification of cancer: class

Zhang and Huang Page 13

IEEE J Biomed Health Inform. Author manuscript; available in PMC 2014 July 25.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://bionics.ossur.com/Products/POWER-KNEE/SENSE


discovery and class prediction by gene expression monitoring. Science. Oct 15; 1999 286(5439):
531–7. [PubMed: 10521349]

24. Ding C, Peng H. Minimum redundancy feature selection from microarray gene expression data. J
Bioinform Comput Biol. Apr; 2005 3(2):185–205. [PubMed: 15852500]

25. Model F, Adorjan P, Olek A, Piepenbrock C. Feature selection for DNA methylation based cancer
classification. Bioinformatics. 2001; 17(Suppl 1):S157–64. [PubMed: 11473005]

26. Peng H, Long F, Ding C. Feature selection based on mutual information: criteria of max-
dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell. Aug;
2005 27(8):1226–38. [PubMed: 16119262]

Zhang and Huang Page 14

IEEE J Biomed Health Inform. Author manuscript; available in PMC 2014 July 25.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 1.
Experimental setup on one transfemoral amputee subject (TF01).
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Fig. 2.
Continuous windowing scheme and time sequence for real-time implementation of user-

intent-recognition interface.
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Fig. 3.
Accuracy of intent recognition in static states when the number of selected data sources

increased. The applied source selection methods were (A) sequential forward selection

(SFS), (B) sequential backward selection (SBS), and (C) minimum-redundancy–maximum-

relevance (mRMR).
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Fig. 4.
Intent recognition accuracy in static states. The black bars were derived from the real-time

decisions in the first experiment when all the data sources were used. The gray bars were

computed offline based on the data in the first experiment, but with a reduced number of

data sources selected by mRMR. The white bars denote the real-time results derived from the

second experiment when the same data sources as used for gray bars were applied.
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