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Abstract

Tobacco dependence is the most preventable cause of death and is a chronic, relapsing disorder in

which compulsive tobacco use persists despite known negative health consequences. All currently

available cessation agents (nicotine, varenicline and bupropion) have limited efficacy and are

associated with high relapse rates, revealing a need for more efficacious, alternative

pharmacotherapies. The major alkaloid in tobacco, nicotine, activates nicotinic receptors

(nAChRs) which increase brain extracellular dopamine producing nicotine reward leading to

addiction. nAChRs are located primarily presynaptically and modulate synaptic activity by

regulating neurotransmitter release. Subtype-selective nAChR antagonists that block reward-

relevant mesocorticolimbic and nigrostriatal dopamine release induced by nicotine may offer

advantages over current therapies. An innovative approach is to provide pharmacotherapies which

are antagonists at nAChR subtypes mediating nicotine evoked dopamine release. In addition,

providing multiple medications with a wider array of targets and mechanisms should provide more

treatment options for individuals who are not responsive to the currently available

pharmacotherapies. This review summarizes the currently available smoking cessation therapies

and discusses emerging potential therapeutic approaches employing pharmacological agents which

act as antagonists at nicotinic receptors.
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1. nAChRs and Smoking

1.1. Introduction

Tobacco dependence is the most preventable cause of death and is a chronic, relapsing

disorder in which compulsive tobacco use persists despite its known negative health

consequences [1–3]. Relapse typically occurs within the first month of cessation in ~80% of

tobacco smokers attempting to quit, and after 6 months there is only a 3% success rate [4]. A

strong correlation has been reported between tobacco smoking and mood disorders [4–7].

Clinically depressed individuals are more likely to smoke tobacco, to be nicotine dependent,

and to have more difficulty with cessation and greater withdrawal symptoms [8–11]. In

addition to depression, other neuropsychological diseases (e.g., schizophrenia and Tourette’s

syndrome) are known to be comorbid with tobacco dependence [12–16]. This review

summarizes currently available smoking cessation therapies and novel therapeutic

approaches employing pharmacological agents which act at nicotinic acetylcholine receptors

(nAChRs).

1.2. Diversity of nAChRs

nAChRs are members of the Cys-loop family of ligand-gated ion channel receptors, and

consist of pentameric transmembrane proteins with diverse composition [17, 18]. Nicotine

activates all known nAChR subtypes, with varying affinities [19–22]. Significant functional

diversity is suggested by the identification of 12 genes encoding α2-α10 and β2-β4 subunits

and based on results from in situ hybridization studies which reveal discrete, but

overlapping, CNS distribution of mRNAs encoding these subunits [23–30]. Although

nAChR subtype predominance does not necessarily reflect functional importance, the α4β2*

subtype is predominant in the CNS and is probed by high affinity [3H]nicotine binding to

brain membranes [31–33]. Immunoprecipitation studies indicate that more than two different

subunits assemble to form functional receptors and individual neurons elaborate multiple

subtypes [19, 34–38], further increasing complexity, diversity and challenges associated

with the elucidation of the function of specific native nAChR subtypes. In addition to

heteromeric nAChRs, homomeric nAChRs consist of α7, α8, α9 or α10 [30, 31, 39, 40].

α7* nAChRs are the second most abundant in brain [17, 30, 31], and are probed by

[3H]methyllycaconitine binding to brain membranes [41–44]. The exact subunit

composition, stoichiometry and arrangement of native nAChRs remains to be elucidated

conclusively [45]. Nevertheless, evidence indicates that nAChR subunit composition has an

important impact on pharmacological sensitivity, including agonist and antagonist affinity at

the nAChR binding site [23, 46–49].

1.3. nAChRs and Neurotransmitter Release

Nicotine activation of nAChRs increases brain extracellular DA which mediates, at least in

part, nicotine reward and leads to nicotine addiction [50, 51]. Mesocorticolimbic and

nigrostriatal DA systems, including the nucleus accumbens (NAcc), medial prefrontal cortex

(mPFC), striatum and associated circuitry, have been implicated in drug reward. The NAcc

shell is believed to encode primary appetitive stimuli associated with unconditioned reward

produced by nicotine [50, 52, 53]. mPFC encodes secondary conditioned stimuli associated

with environmental cues paired with nicotine, and integration of motivational information
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from mPFC occurs in striatum leading to initiation and execution of movement in reward

expectancy and detection [52, 54]. In these brain regions, nAChRs are located primarily

presynaptically and modulate synaptic activity by regulating neurotransmitter release [21,

24, 39, 55–62].

Rat substantia nigra neurons express mRNA for α3, α4, α5, α6, α7, β2, β3 and β4 subunits

[25, 26, 30, 63, 64] and express multiple subtypes that may be involved in nicotine-evoked

striatal DA release. Studies using β2 knockout mice reveal that β2 is necessary for nicotine-

evoked DA release [58, 65–70]. Subtype assignment of native nAChRs mediating nicotine-

evoked DA release is based largely on inhibition of agonist-induced responses by subtype-

selective antagonists, defined by their inhibitory activity in cell systems expressing nAChR

subunits of known composition. A major role for α6 and β3 in nicotine-evoked DA release

in striatum is based on both knockout and gain-of-function studies [71, 72]; these subunits

are highly expressed in substantia nigra and ventral tegmental area (VTA; [25, 27, 64, 71,

73]. α-Conotoxin MII (α-CtxMII) inhibits nicotine-evoked [3H]DA release from striatal

preparations [74–78]. Although α-CtxMII was thought to be a selective antagonist for α3-

containing subtypes, the finding that 125I-α-CtxMII binding remains in α3 knockout mice,

but is abolished in α6 knockouts, provides supports that α-CtxMII is a selective antagonist

at α6-containing nAChRs [79– 81]. Novel α-Ctx peptides (e.g. α-CtxPIA) have higher

selectivity for α6-containing over α3-containing nAChRs and inhibit nicotine-evoked

[3H]DA release from rat striatum [82]. Although subtype-selective α-Ctx peptide

antagonists represent useful pharmacological tools, mechanistic interpretations should be

made with caution. For example, specific nAChR subtypes may display higher affinity for

these α-Ctx peptides; however, one cannot rule out the possibility that these molecules also

inhibit other nAChRs subtypes with lower potency, as well as other subtypes that have not

yet been fully elucidated but contribute to the functional response. Further, it is unlikely

these neurotoxin peptides will be developed into pharmacotherapies for tobacco cessation, in

part due to their poor brain bioavailability and their susceptibility to cleavage by peptidases.

Thus, these molecules will likely only be useful as pharmacologic tools.

Results from a comprehensive molecular genetics study in which an individual subunit gene

(α4, α5, α7, β2, β3, and β4) has been deleted suggest that 6 different subtypes, including α-

CtxMII-sensitive (α6β2β3*, α4α6β2β3*, α6β2* and α4α6β2*) and α-CtxMII-insensitive

(α4β2* and α4α5β2*) subtypes, mediate nicotine-evoked DA release from mouse striatal

synaptosomes, whereas deletion of β4 and α7 subunits had no effect [67, 83]. The

α4α6β2β3* subtype constituted ~50% of α6-containing nAChRs on DA terminals of wild-

type mice and has the highest sensitivity to nicotine of any native nAChR subtype [59, 84],

strongly implicating α4α6β2β3* in nicotine-evoked DA release. Thus, different subtypes

mediate nicotine-evoked DA release, suggesting that small molecule antagonists could

differentially target these sites to selectively inhibit nicotine-evoked DA release and reward.

Although DA is of major interest in nicotine addiction, evidence exists that norepinephrine

(NE) also plays a role [85–87]. Nicotine evokes NE release from rat hippocampal [88–92]

and cortical [93, 94] synaptosomes and slices, and releases NE in hypothalamus as shown in

in vivo microdialysis studies [93]. Nicotine-induced NE release modulates DA function, and

thereby, may contribute indirectly to nicotine addiction [95]. α3, α4, α5, α6, α7, β2, β3 and
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β4 subunit mRNAs are expressed in locus coeruleus, providing potential subtype diversity in

NE cell body and terminal regions [26, 27, 30, 96–98]. The nAChR subtype most associated

with mediating nicotine-evoked NE release from hippocampal synaptosomes is α3β4*,

based on inhibition (34%) by α-CtxAuIB, whereas α-CtxAuIB does not inhibit nicotine-

evoked DA release from striatal synaptosomes [89, 99]. These same studies show that α-

CtxMII does not inhibit nicotine-evoked NE release from rat hippocampus, suggesting that

α6β2-containing nAChRs are not involved in this response. More recently, α-CtxBuIA

(which distinguishes β2 from β4) was used to evaluate nAChRs (α6α4β2β3β4 and

α6α4β2β3) contributing to nicotine-evoked NE release in mouse hippocampus; interestingly

these subtypes were distinct from those mediating nicotine-evoked NE release in rat

hippocampus, i.e., α3β4* and α×β4*, but not α6 [100]. These results indicate that nAChR

subtypes mediating nicotine-evoked NE release include β4 in rat, whereas subtypes

mediating this effect in mouse hippocampus include β2 and β4 subunits. Thus, species

differences need to be taken into consideration with regards to the relative contribution of

various subtypes in mediating nicotine-evoked NE release. Similarly, species differences

have also been noted with respect to nicotine-evoked DA release. While α6-containing

nAChRs comprise 30% of presynaptic nAChRs mediating nicotine-evoked DA release in

mice, 70% of nAChRs mediating nicotine-evoked DA release are α6-containing in non-

human primates [67, 77, 101, 102]. Another issue for consideration is the proportional

amount of DA release mediated by α6β2-containing nAChRs differs among brain regions.

For instance, while α-CtxMII only slightly diminished DA release evoked by electrical

stimulation in the dorsal striatum, DA release in the nucleus accumbens was almost

completely eliminated [103, 104].

1.4. Nicotine-Mediated Changes in nAChRs

Increases in nAChR expression as a function of repeated nicotine administration has been

well described in the literature (for review see [105]). Nicotine-mediated increases in

nAChR expression are subtype specific, with some nAChR subtypes resistant and some

sensitive to up-regulation. Subtypes containing α2, α3 and α5 are not thought to be up-

regulated by chronic nicotine administration [106, 107]. Repeated activation of α4-

containing nAChRs results in receptor up-regulation [108, 109]. Subtypes containing β2

subunits are also up-regulated following repeated nicotine, and deletion of the β2 subunit

eliminates receptor up-regulation [102]. This may be of particular importance given that β2

subunits are thought to be present in all nAChRs that mediate nicotine-evoked DA release

[67, 84]. Conversely, the effect of repeated nicotine administration on α6-containing

receptors is less clear, with studies showing up-regulation [110], down-regulation [111, 112]

and no change [113, 114].

Additional regulatory response to repeated nicotine administration include altered subunit

stoichiometry, specifically the stoichiometry of α4β2 nAChRs (α4(2)β2(3) and α4(3)β2(2)).

The functional consequences of this altered stoichiometry have been shown to be variation

in agonist (e.g., nicotine and acetylcholine) and antagonist (e.g., mecamylamine)

sensitivities, rate of desensitization and calcium permeability [22, 115– 119]. The

observation that partial deletion of the α4 and β2 subunit genes changes acetylcholine

sensitivity of 86Rb+ efflux in cortex and thalamus supports the conclusion that α4β2 exists in

Dwoskin et al. Page 4

Biochem Pharmacol. Author manuscript; available in PMC 2014 July 25.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



different stoichiometries in native tissues [120]. Chronic nicotine has been shown to up-

regulate the high sensitivity α4β2 isoform, and may also down-regulate midbrain α6-

containing nAChRs [111]. Since the composition of nAChRs is more complex than initially

thought, taken together with the observation that all subunits expressed in a subtype

contribute to antagonist sensitivity, there may be opportunities to take advantage of this

complexity and dynamic responsiveness to set the stage for discovery of subtype-selective

nAChR antagonists, particularly antagonists targeted at the specific nAChR subtypes

important for treating smoking cessation.

1.5. nAChR Desensitization

Nicotine both activates and desensitizes nAChRs [121–123]. Activation of nAChRs occurs

when nicotine or endogenous acetylcholine binds at the interface of two α subunits or an α

and β subunit, resulting in a conformational change that opens the channel pore and allows

sodium and calcium influx [124, 125]. Desensitization is defined as a decline in response to

nicotine following repeated exposure [126]. The kinetics of both receptor activation and

desensitization are subtype-dependent [122, 127, 128]. For example, a recent study found

that α7* nAChRs had faster activation than α4β2* containing receptors, and that nAChRs

sensitive to cytisine (i.e., β4* nAChRs) had faster activation than all other subtypes [129,

130]. The β subunit has a strong influence on desensitization kinetics, with nAChRs that

contain β2 subunits having a much faster rate of desensitization than nAChRs with β4

subunits [131]. α subunits have also been shown to modulate desensitization kinetics with

α4 subunits associated with slowly desensitizing currents [132]. Further, inclusion of α5

subunits increases the speed with which receptors desensitize [133]. Studies using Xenopus

oocytes to express different nAChR subunits found that the speed with which heteromeric

nAChRs desensitize can be rank ordered from fast to slow as α3β2 > α4β2 > α3β4 > α4β4

[134].

Interestingly, nAChR desensitization, and the resulting up-regulation that occurs as a result

of diminished nicotinic functional activity, is thought to play a role in tolerance and craving

[102, 108, 123, 135]. A recent clinical trial found that typical tobacco use results in almost

complete (88 – 95%) occupancy of α4β2* nAChRs, indicating that smokers maintain

saturation of this nAChR subtype throughout the day. This study also purported that tobacco

craving is only alleviated when receptor occupancy is at least 88%. Thus, when a sufficient

percentage of previously desensitized nAChRs become unoccupied, and as a result recover

to a responsive state, this leads to tobacco craving [136]. Several clinical studies using

nicotine replacement to aide in tobacco smoking cessation support the above contention.

Smokers administered a 21 mg nicotine patch 24 hr/day had significantly lower craving

during the first two weeks following cessation than smokers administered a 15 mg nicotine

patch for only 16 hr/day [137]. Moreover, smokers administered a 35 mg nicotine patch 24

hr/day exhibited reductions in both withdrawal symptoms and craving and a significantly

reduced risk of lapse [138]. Since the patch provides a constant supply of nicotine to an

individual, it is highly likely that these results are mediated, at least in part, through

continuous nAChR desensitization. Thus, repeated nicotine administration may act as a

functional antagonist by inactivating nAChRs [105, 139], implying that antagonist-induced
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inactivation of nAChRs has therapeutic potential for smoking cessation since the functional

outcome is the same as agonist-induced desensitization.

2. nAChR Partial Agonists as Smoking Cessation Treatments

2.1 Introduction

Currently available cessation agents have been shown to have limited efficacy and are

associated with high relapse rates [4, 140–142], revealing a need for alternative more

efficacious pharmacotherapies. In targeting nAChRs mediating nicotine-evoked DA and NE

release for medication development, either a subtype-selective agonists or antagonists can be

developed. Each strategy has potential advantages and limitations. nAChR agonists (partial

or full) are generally well-tolerated and produce good patient compliance, as they substitute

for the reinforcing effect of tobacco use [4, 140–142]. Partial and full agonists at nAChRs

also provide relief from withdrawal symptoms that typify abstinence [143]. While nicotine

replacement therapy has been the mainstay of smoking cessation therapeutics, several new

and potential smoking cessation therapeutics are nAChR partial agonists. Partial agonists

mimic nicotine replacement therapy by alleviating withdrawal symptoms and craving

resulting from smoking cessation, while simultaneously reducing both nicotine

reinforcement and the repetitive nicotine-induced phasic DA release mediated by nAChRs

[144, 145]. Compared with the full agonist, partial agonists may have lower abuse liability

due to the less than maximal response with respect to neurotransmitter release [146].

However, the beneficial effects of agonist replacement therapy are less than optimal [147].

A potential disadvantage of nAChR agonist replacement therapy is that continued

stimulation of nAChRs maintains the dependence induced by tobacco use. Thus, in the event

of a relapse to tobacco use following nicotine replacement therapy, the reinforcing effect of

nicotine self-administration may be reinstated rapidly.

2.2 Varenicline

Originally developed by Pfizer, Inc. in 1997 [148], varenicline (Chantix) is structurally to

the plant alkaloid cytisine (discussed below), and one of only three smoking cessation

therapeutics currently approved by the United States Food and Drug Administration (FDA).

Initial in vivo binding studies found that varenicline has high affinity for the α4β2 nAChR

subtype with little affinity for other subtypes [148]. Further, in rat brain slices, varenicline

was found to release lower concentrations of DA release (40–60% of that released by

nicotine) [149]. Collectively, these findings suggested that varenicline is a partial agonist at

α4β2* nAChRs [148]. However, studies report that varenicline also is as a full agonist at α7

nAChRs expressed in cell systems [150]. In humans, maximal absorption of varenicline

occurs within 3–4 hr of oral administration, and the drug has an elimination half-life of ~24

hr [151], primarily through renal excretion [152]. Further, steady-state conditions are

established within 4 days of oral administration in healthy adults [151].

Varenicline fully substitutes for nicotine in preclinical drug discrimination studies and

blocks nicotine self-administration in rats [149]. According to several recent reviews that

summarize the results from Phase 2 and 3 clinical trials, varenicline generally increases the

chances of a successful quit attempt 2- to 3-fold greater than placebo [153, 154]. A recent
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multicenter, randomized, double-blind placebo-controlled study found continuous

abstinence rates of 44% for varenicline during 9–12 weeks after quitting, which was higher

than the abstinence rates for patients treated with bupropion (30%) or placebo (18%) [155].

Further, while the majority of patients, regardless of therapeutic intervention, returned to a

regular pattern of smoking during the 9–52 wk follow-up period, abstinence rates among

patients that received varenicline (22%) were still higher than those for patients receiving

bupropion (16%) or placebo (8%; [155]). In February, 2008, a public health advisory note

was issued by the FDA, stating that patients taking varenicline experience serious

neuropsychiatric symptoms, including behavior, agitation, depressed mood, suicidal

ideation, and attempted and completed suicide [156]. However, the number of patients

experiencing these behavioral changes are small, and an analysis of neuropsychiatric

adverse events in the patients that participated in all nine completed, placebo-controlled

clinical trials is currently being performed [145, 155]. Results from these analyses will be

important for evaluating the continued used of varenicline as a smoking cessation

therapeutic.

2.3 Cytisine

As was discussed above, varenicline is a structural analog of cytisine, an alkaloid present in

several plant species, including Cytisus laburnum [148]. Cytisine was originally

characterized as a selective, partial agonist with high affinity for α4β2* nAChRs [157]. In

support of this, cytisine has been found to evoke [3H]DA release from both striatal slices

and synaptosomes in vitro, with a maximum effect ~50% of that found for nicotine [158,

159]. The partial agonist properties of cytisine have also been demonstrated in vivo, where it

increases the rate of DA turnover in the nucleus accumbens with a maximum effect ~40% of

that found for nicotine [148]. However, similar to varenicline, cytisine interacts with

additional nAChR subtypes, including α4β4-and for α6-containing subtypes [160, 161].

Further, the efficacy of cytisine appears to vary depending on the species and experimental

system used [162].

Behaviorally, cytisine decreases locomotor activity in drug naïve rats, with a maximum

effect lower than that produced by nicotine [163]. Cytisine had no effect on locomotor

activity in rats that received repeated nicotine administration (0.4 mg/kg/day for 21 days)

[163], indicating the development of cross-tolerance. In drug discrimination studies, cytisine

substituted for nicotine [164]. In a limited number of studies, cytisine has been shown to

have reinforcing properties. Drug naïve mice self-administer cytisine intravenously [165],

providing evidence for its reinforcing properties. In other studies, cytisine has been shown to

produce conditioned place preference in rats [166]. A limited number of clinical trials

assessing the usefulness of cytisine in smoking cessation have been reported. A recent

uncontrolled clinical trial reported smoking cessation efficacy rates (~14%) for cytisine

comparable with that obtained with nicotine replacement therapy [167].

2.4. Dianicline

Another partial agonist currently in development by Sanofi Aventis, Inc. for use as a

smoking cessation therapeutic is dianicline. Dianicline (SSR591813) is similar in structure

to both varenicline and cytisine, although mechanistic information is somewhat limited
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[168]. Dianicline has a high affinity for human α4β2 nAChRs and a low affinity for other

nAChR subtypes expressed in Xenopus oocytes, HEK 293 cells and IMR-32 cells [168]. In

electrophysiology studies, dianicline exhibited an Emax of 19% of the response to

acetylcholine, indicating its action as a partial agonist [168]. In light of the recent studies

demonstrating that varenicline and cytisine are not selective for α4β2* nAChRs, it is likely

that dianicline will also lack selectivity for α4β2* due to its structural similarity with these

two drugs. In drug discrimination studies, dianicline substituted for nicotine, although at

doses that decreased the rate of responding [168]. In clinical trials, dianicline had a 16%

success rate compared to 8% for placebo [169], however, in February, 2008, Sanofi Aventis

announced that the development of dianicline was terminated [170].

2.5. Sazetidine-A

Sazetidine-A is a novel nAChR ligand reported to have high affinity and selectivity for α4β2

nAChRs [171, 172]. Affinity for α4β2 was 4-orders of magnitude higher than for α3β4

nAChR subtypes expressed in cell systems [171, 172], and prolonged incubation with this

novel compound increased the density of α4β2 binding sites [171]. However, initial studies

determined that sazetidine-A did not stimulate 86Rb+ efflux from cells stably expressing

α4β2 nAChRs, suggesting that this compound may not activate nAChRs [171].

Interestingly, preincubation with sazetidine-A reduced nicotine-evoked 86Rb+ efflux that

was not readily reversible [171], indicating that receptor desensitization had occurred. Thus,

while sazetidine-A did not activate α4β2* nAChRs in this cell expression system, these

receptors were up-regulated and desensitized. This mechanism of action has been termed

“silent desensitization”, since desensitization occurs without receptor activation.

Interestingly, co-incubation of sazetidine-A with nicotine did not result in inhibition

of 86Rb+ efflux, whereas preincubation with sazetidine-A prior to incubation with nicotine

inhibited completely the effect of nicotine. These results have been interpreted to indicate

that sazetidine-A has low affinity for α4β2* nAChRs in the resting state, but high affinity in

the desensitized state. Further, the results suggest sazetidine-A binds with high affinity to

nAChRs that spontaneously convert to the desensitized state, trapping the receptors in this

desensitized state and resulting in inhibition of channel function [171, 139].

Recent studies using more sensitive voltage clamp techniques reported that sazetidine-A

induces current amplitudes in cells expressing α4β2 nAChRs similar to amplitudes induced

by acetylcholine [172], suggesting that this novel nAChR ligand acts as a agonist. In this

study, sazetidine-A was also found to potently evoke [3H]DA release from rat striatal slices

and produced an Emax about 90% of that produced by nicotine. Sazetidine-A-evoked

[3H]DA release was inhibited completely by both mecamylamine and dihydro-β-

erythroidine (DHβE; [172]), indicating that the response is nAChR mediated. Further, the α6

nAChR selective antagonist α-CtxMII also inhibited sazetidine-A evoked [3H]DA release

with an Imax of 50%. Collectively, these findings suggest that both α4β2* and α6* nAChRs

mediate sazetidine-A evoked [3H]DA release. At 1000-fold higher concentrations,

sazetidine-A also evoked [3H]NE release from rat hippocampal slices, with an Emax of

~50% of the maximal response to nicotine, suggesting a partial agonist action. Similarly, the

response to sazetidine-A was inhibited completely by both mecamylamine and DHβE [172].

Furthermore, sazetidine-A substitutes completely for nicotine in the drug discrimination
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assay [173], also consistent with a nAChR agonist action. Thus, in contrast to the initial

results obtained using the 86Rb+ efflux assay, sazetidine-A acts as a partial agonist at

nAChRs in hippocampous and as a full agonist at nAChRs in striatum. Ass such, sazetidine-

A may have utility as a smoking cessation agent similar to other nAChR agonists.

3. nAChR Antagonists as Smoking Cessation Treatments

3.1. Introduction

Given the availability of replacement therapies using either full or partial agonists or

therapies that indirectly stimulate reward-relevant DA receptors, an innovative alternative

approach is to provide pharmacotherapies which are antagonists at nAChR subtypes

mediating neurotransmitter release associated with the reward produced by tobacco

smoking. In this regard, subtype-selective nAChR antagonists that block reward-relevant

mesolimbic DA release induced by nicotine may offer an advantage. Blockade of nAChRs

mediating nicotine-evoked NE release may also be a viable target for preventing relapse, as

NE neurotransmitter systems are implicated in nicotine seeking [175, 176]. Since relapse

rates are high among smokers primarily due to the environmental cues that surround the

experience of tobacco use [177, 178], it may be inevitable that many tobacco users will lapse

(e.g., smoke one cigarette) during a quit attempt. In this regard, it may be advantageous to

use a medication that effectively blocks the pleasurable effect of the initial lapse, thus

discouraging a full-scale relapse back to a pattern of regular smoking. In addition, providing

multiple medications with a wider array of mechanistic targets should enhance the clinical

utility among individuals who are not responsive to the currently available agonist

pharmacotherapies. For example, mecamylamine has been shown to have clinical efficacy in

double blind, placebo controlled studies [3, 179, 180], but its nonselective inhibition of

peripheral receptors has produced untoward peripheral side effects that have precluded its

clinical development. The significance of this alternative approach is that it will lead to the

development of subtype selective antagonists, which retain and/or enhance the efficacy of

mecamylamine, while exhibiting reduced and/or negligible peripheral side effects, thus

breaking the impasse for developing a clinically-useful nAChR antagonist.

3.2. Mecamylamine

Mecamylamine dose-dependently decreases nicotine self-administration, a behavioral task

used to measure reward associated with drug administration in laboratory animals [181–

189]. Pretreatment with mecamylamine also blocks performance in a progressive ratio (PR)

model of nicotine self-administration [190]. Furthermore, cue-induced reinstatement of

nicotine-seeking behavior, whereby re-introduction of an environmental cue associated with

nicotine delivery reinstates extinguished nicotine seeking, is also blocked in rats by

pretreatment with mecamylamine [191, 192].

Building upon the findings in the preclinical literature, several clinical studies have

investigated the therapeutic potential of mecamylamine in regards to tobacco use cessation

[193]. Mecamylamine, a noncompetitive antagonist at all known central and peripheral

nAChRs, reverses both positive and negative subjective effects of intravenous nicotine in

smokers [194]. Mecamylamine alone was reported also to be beneficial in reducing smoking
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satisfaction [195]. In a randomized, double-blind placebo-controlled study, mecamylamine

combined with a nicotine transdermal patch was shown to improve smoking cessation

outcome for up to one year compared to nicotine alone [180]. Since mecamylamine is an

open channel blocker, these results suggest that the presence of the agonist augments access

of mecamylamine to its binding site within the receptor channel pore. Due to the lack of

selectivity at nAChRs including inhibition of peripheral nAChRs, the clinical utility of

mecamylamine is limited by its anticholinergic side effects (e.g., constipation, hypotension;

[196]). These studies provide precedence for the use of nAChR antagonists as tobacco use

cessation agents. A selective drug, which is targeted at central nAChRs that specifically

mediate nicotine-evoked DA release, would be predicted to retain the beneficial therapeutic

effects of a nAChR antagonist while averting the peripherally-mediated side effects. Such an

antagonist treatment may be especially useful for highly motivated individuals attempting to

quit tobacco use.

3.3. Bupropion

The antidepressant, bupropion, has demonstrated benefit as a tobacco use cessation agent

[141, 142, 175, 197–201]. In addition to its antidepressant activity, which presumably

derives from its ability to inhibit DA and NE transport into the presynaptic nerve terminal,

bupropion is an effective and well-tolerated tobacco use cessation agent [199, 202].

Similarly, reboxetine, a selective NE transporter (NET) inhibitor and effective

antidepressant [203–205], decreases nicotine self-administration in rats [87] and inhibits

nicotine-evoked [3H]NE release from superfused brain slices [206]. Taken together with the

findings from the above studies with mecamylamine, these results provide rationale for

determining if antagonists that selectively inhibit central nAChRs mediating nicotine-evoked

DA and/or NE release will decrease nicotine self-administration and relapse.

Bupropion inhibits the function of both the DA transporter (DAT) and the NET, which

likely contributes to its efficacy as a tobacco use cessation agent. Bupropion inhibits

[3H]DA uptake (IC50=2 µM) into striatal synaptosomes and [3H]NE uptake (IC50=5 µM)

into hypothalamic synaptosomes [3, 179, 180, 207, 208]. Increased extracellular DA and NE

concentrations may substitute for nicotine-evoked neurotransmitter release as a result of

tobacco smoking. However, nicotine reinforcement has been associated primarily with

increased DA release [3, 50, 51, 179, 180, 209]. Bupropion dose-dependently increases

presynaptic vesicular DA uptake and redistributes vesicular monoamine transporter protein

[210]. Important from the current perspective, bupropion acts as a nAChR antagonist,

inhibiting (IC50=11 µM) nAChR agonist-induced 86Rb+ efflux from cells expressing α3β4

ganglionic nAChRs, from human clonal cells expressing muscle-type nAChRs (IC50=1.5

µM; [211], and from Xenopus oocytes expressing rat α3β2 (IC50=1.3 µM), α4β2 (IC50=8

µM) and α7 (IC50=60 µM) nAChRs [212]. 86Rb+ efflux models K+ efflux and is a functional

assay for nAChRs [213–218]. Bupropion inhibition of nAChR function is not surmounted

by increasing agonist concentration, and bupropion does not displace [3H]nicotine binding

to native nAChRs, consistent with allosteric inhibition [211, 212]. Bupropion metabolites

also inhibit nAChR function [219]. We evaluated the ability of bupropion to specifically

inhibit native nAChRs mediating nicotine-evoked [3H]DA and [3H]NE release from rat

striatal and hippocampal slices [220]. Bupropion inhibited nicotine-evoked [3H]DA and
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[3H]NE release (IC50=1.3 and 0.32 µM, respectively), indicating that bupropion acts as a

nAChR antagonist at subtypes mediating this response. DAT and NET were not mediating

the bupropion-induced inhibition of nicotine-evoked neurotransmitter release since the

superfusion buffer included saturating concentrations of nomifensine or desipramine.

Bupropion concentrations that inhibit DAT and NET did not inhibit field stimulation-evoked

[3H]DA release, suggesting mediation by nAChRs. Bupropion-induced decreases in

smoking may result from one or both mechanisms (i.e., nAChR antagonism and DAT/NET

inhibition), both of which may contribute to its smoking cessation and antidepressant

efficacy.

3.4. UCI-30002

Another novel antagonist currently being examined for potential use as a smoking cessation

therapeutic is UCI-30002 [221]. UCI-30002 is a positive allosteric modulator of GABAA

receptors [222]; however, since GABAA and nAChRs are both members of the ligand-gated

ion channel superfamily, it was hypothesized that this novel compound may have efficacy as

an allosteric modulator at α4β2* nAChRs [221]. UCI-30002 inhibited nicotine-evoked

currents in Xenopus oocytes expressing neuronal α4β2, α7 and α3β4 nAChR subtypes [221].

Further, UCI-30002 also inhibited nicotine-evoked currents in oocytes expressing muscle-

type nAChRs. Thus, UCI-30002 may act as a negative allosteric modulator of nAChRs

similar to its action at GABAA receptors [221], although additional evidence is needed to

support this mechanism of action.

With regards to behavioral effects, UCI-30002 inhibited high-dose, nicotine-induced

seizures [221]. More importantly, UCI-30002 decreased nicotine self-administration on both

a fixed ratio 5 (FR5) and a PR schedule [221], suggesting that this compound decreases

nicotine reward. Further, UCI-30002 did not alter food-maintained responding, indicating

that it specifically decreased responding for nicotine [221]. While additional studies are

needed, these results are promising and suggest that UCI-30002 may have potential as

smoking cessation therapeutic. Thus, negative allosteric modulators of nAChRs may

constitute an unexplored target for the development of novel therapeutics to treat nicotine

addiction.

3.5 bPiDDB and r-bPiDDB

Development of antagonists selective for nAChRs mediating nicotine-evoked DA and NE

release should retain therapeutic efficacy as smoking cessation agents without producing

peripheral side effects. Unfortunately, no compounds are available for clinical use that have

this profile. In this regard, N-n-alkylnicotinium analogs with C7–C12 N-nalkyl groups

potently inhibit nicotine-evoked [3H]DA release from rat striatal slices in an orthosteric

manner and inhibit high affinity [3H]nicotine binding to rat brain membranes [223, 224].

Structurally-related N-n-pyridinium analogs with C10–C20 N-n-alkyl groups were also potent

inhibitors of nicotine-evoked [3H]DA release, and longer chain analogs (C15 and C20)

showed incomplete maximal inhibition (Imax=50%), supporting the involvement of more

than one nAChR subtype in this effect of nicotine [225]. These pyridinium analogs had little

affinity for the [3H]nicotine binding site [225], indicating enhanced selectivity for nAChRs

mediating nicotine-evoked DA release.
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The related bis-quaternary ammonium compounds, hexamethonium and decamethonium,

which are considered to be simplified analogs of d-tubocurarine, have been used to

differentiate muscle and ganglionic nAChRs [226–228]. The bis-quaternary ammonium

structural framework was utilized to enhance nAChR subtype selectivity and afford a new

class of N,N’-alkane-diyl-bis-3-picolinium (bAPi) analogs [229–231]. These polar and

charged analogs were predicted to have poor brain bioavailability following systemic

administration. However, previous work with structurally-related polar mono-nicotinium

analogs revealed good affinity for the blood-brain barrier (BBB) choline transporter and

active transport into brain [232]. A lead analog, N,N’-dodecane-1,12-diyl-bis-3-picolinium

dibromide (C12, bPiDDB), was evaluated for inhibition of nicotine-evoked DA release and

for their ability to inhibit the discriminative stimulus and/or locomotor stimulant centrally-

mediated effects of nicotine. bPiDDB exhibited little affinity for α4β2* and α7* high

affinity ligand binding sites, nor for nAChRs modulating DA transporter function, but

potently inhibited nicotine-evoked [3H]DA release (IC50=2 nM; Imax=64%; [231]), bPiDDB

did not inhibit electrically-evoked [3H]DA release, suggesting specific nAChR inhibitory

effects and a lack of toxicity to DA neurons. Schild analysis suggested that bPiDDB

interacts in an orthosteric manner at nAChRs mediating nicotine-evoked [3H]DA release. To

determine if bPiDDB interacted with α-CtxMII-sensitive α6β2-containing nAChRs, slices

were exposed concomitantly to maximally-effective concentrations of bPiDDB (10 nM) and

α-CtxMII (1 nM). Inhibition of nicotine-evoked [3H]DA release was not different with the

combination compared with either antagonist alone, suggesting that bPiDDB interacts with

α6β2-containing nAChRs. These results support the interpretation that similar to α-CtxMII,

the lead analog bPiDDB is a selective high potency antagonist at a subset of nAChR

subtypes containing α6 and β2, and likely inhibits α6β2*, α6β2β3*, α4α6β2* and/or

α4α6β2β3*. Furthermore, bPiDDB exhibited high affinity for the blood-brain barrier choline

transporter in vivo and [14C]bPiDDB was a substrate for the choline transporter [233],

suggesting brain bioavailability. In microdialysis studies using rats, bPiDDB decreased

extracellular DA levels in nucleus accumbens following systemic nicotine [234] and

decreased intravenous nicotine self-administration, but not sucrose maintained responding

[235]. Surprisingly, in contrast to mecamylamine and DHβE, bPiDDB did not block the

discriminative stimulus effect of nicotine [231]. Since mecamylamine and DHBE block the

full complement of β2-containing nAChRs mediating nicotine-evoked DA release, whereas

bPiDDB blocks only a subset of β2-containing nAChRs (i.e., those also containing α6) and

only partially inhibits nicotine-evoked [3H]DA release, these results suggest that inhibition

of all β2-containing nAChRs and/or complete inhibition of nicotine-evoked DA release may

be required to block the nicotine cue.

In contrast to the discriminative stimulus effect of nicotine, DA systems are critically

involved in mediating the locomotor stimulant effect of nicotine. Locomotor sensitization

produced by repeated nicotine administration is also associated with increased nicotine-

evoked DA release in NAcc [236, 237]. Both mecamylamine and DHβE block the nicotine-

induced hyperactivity in nicotine-sensitized rats. Similarly, bPiDDB decreased nicotine-

induced hyperactivity [231]. Since bPiDDB did not reduce locomotor activity when co-

administered with saline in the nicotine-sensitized rats, the bPiDDB-induced decrease in

nicotine-induced hyperactivity was not likely due to nonspecific motor impairment. The
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bPiDDB-induced decrease in nicotine-induced hyperactivity likely reflects a specific

blockade of nAChRs mediating the nicotine-evoked DA release. Future experiments should

determine whether bPiDDB would be useful for preventing cue-dependent relapse to

tobacco smoking in animal models and clinical populations.

The bPiDDB molecule is able to access brain by the blood-brain barrier choline transporter

even though it is a bis-quaternary ammonium with insignificant lipophilic character, and

thus, is unable to permeate cell membranes by passive diffusion. Pharmacokinetic analysis

in the rat indicates that bPiDDB has good brain bioavailability when administered via the

subcutaneous route and reaches behaviorally-relevant concentrations in brain with no

indication of toxicity [238]. Nevertheless, when given by the oral route, bPiDDB has poor

plasma and brain bioavailability, and thus, may be categorized as a poorly drugable

molecule. As part of a structural optimization program to improve the drugability of bis-

quaternary ammonium analogs that act as subtype-selective nAChR antagonists, we

identified a structural analog of bPiDDB in which the two quaternary ammonium groupings

(3-picolinium headgroups) were converted into tertiary amino groupings (3-methyl-1,2,5,6-

tetrahydropyridines) through a simple chemical reduction procedure, affording r-bPiDDB, a

highly lipophilic molecule with greatly improved drugability.

r-bPiDDB has physicochemical properties that predict good bioavailability by the oral route

and it is a potent inhibitor of nicotine-evoked [3H]DA release from superfused rat striatal

slices (IC50 = 0.29 nM, Imax = 74%), and thus, had 10-fold greater potency than bPiDDB

(Fig. 2). These results suggest that the two quaternary ammonium head groups in the

bPiDDB molecule may not be a structural requirement for nAChR antagonism and are

replaceable with more lipophilic, non-quaternary tertiary amino headgroups that could be

protonated at physiological pH, allowing more efficient partitioning through biological

membranes

Similar to bPiDDB, which was effective in decreasing nicotine self-administration in the rat

[235] r-bPiDDB, over a broad dose range, also exhibited effectiveness in the nicotine self-

administration model (Fig. 3). Importantly, some specificity of effect was obtained, as a

dose of r-bPiDDB (58.3 µmoles/kg) that significantly decreased nicotine self-administration

did not alter responding for food reinforcement (Fig. 3). Further, the ability of r-bPiDDB to

decrease nicotine self-administration was retained without any loss of effect following 7

repeated daily treatments (data not shown). Additional structurally-related bis-tertiary amino

analogs are being evaluated to optimize the specificity of effect on nicotine self-

administration.

Taken together, these findings suggest that the two quaternary ammonium head groups in

the bis-quaternary ammonium series of analogs are not a structural requirement for nAChR

antagonism, and that neurochemical and behavioral activity can be retained and improved by

simple conversion of the quaternary ammonium headgroups in bPiDDB to their chemically

reduced bis-tertiary amino equivalents, as in r-bPiDDB. The two tertiary amino groups in r-

bPiDDB can be predominantly protonated at physiological pH, since r-bPiDDB is predicted

to have pKa values in the range 9–9.5, providing cationic moieties at physiological pH that

may interact with the nAChR binding site in a similar manner to the azaaromatic quaternary
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ammonium headgroups in the bPiDDB molecule. Thus, this approach may result in better

lead candidates for drug development, since the reduced bis-tertiary amino equivalent

analogs likely will be potent, behaviorally-active and orally bioavailable due to their

physicochemical properties.
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Fig. 1. The structures of N,N-dodecane-1,12-diyl-bis-picolinium dibromide (bPiDDB; top) and
reduced-bPiDDB (r-bPiDDB; bottom)
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Fig. 2. Concentration dependence of bPiDDB and r-bPiDDB inhibition of nicotine-evoked
[3H]DA overflow from superfused rat striatal slices
Superfusion buffer contained nomifensine (10 µM) and pargyline (10 µM) throughout the

experiment. Striatal slices were superfused in the absence (control) or presence of bPiDDB

or r-bPiDDB for 36 min and then for an additional 36 min with nicotine (10 µM) added to

the buffer. Control represents [3H]DA overflow in response to nicotine (total [3H]DA

overflow as a percentage of tissue-3H content for; mean ± S.E.M.). The concentration

response curves were generated by nonlinear regression. Data are expressed as percentage of

control; n = 6 rats/group.
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Fig. 3. Nicotine self-administration (left) and food-maintained responding (right) in rats
following acute treatment with varying doses of r-bPiDDB
Results are expressed as the number of nicotine infusions or sucrose pellets earned (mean ±

S.E.M.) during a 60-min operant conditioning session. n = 4–10/ dose. Nicotine self-

administration was decreased dose-dependently by r-bPiDDB [F3,24=5.17, p<0.01]. r-

bPiDDB did not decrease food-maintained responding significantly, except for the highest

dose of r-bPiDDB [F3,24=5.17, p<0.01]. * represents a significant difference compared to

saline (SAL) control group, *p < 0.05, **p < 0.01.
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