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Background
Phospholipidosis (PLD) is a storage disorder 
whereby excess phospholipids accumulate within 
the cell, particularly in the lysosome. PLD has 
been shown to be induced by a class of cationic 
amphiphilic drugs (CADs) which have a hydro-
phobic moiety with a charged cationic amine that 
interferes with phospholipid metabolism and 
turnover. Drug-induced PLD has been observed 

in vivo [Kodavanti and Mehendale, 1990; 
Lullmann-Rauch, 1979] and in vitro [Drenckhahn 
et  al. 1976; Jagel and Lullmann-Rauch, 1984; 
McCloud et al. 1995; Ruben et al. 1991], and can 
affect many tissues. The first reports of drug-
induced PLD were on alveolar macrophages 
[Franken et  al. 1970; Reasor, 1981] which are 
particularly susceptible to the formation of 
multilamellar bodies. Affected macrophages 
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are referred to as foamy macrophages as the 
cytoplasm appears ‘foamy’ when viewed with 
light microscopy.

PLD is thought to be an adaptive response to 
CAD exposure; the drug is sequestered in lamel-
lar bodies to avoid potential toxicity to intracel-
lular structures [Hostetler et al. 1985]. Subsequent 
accumulation of one or several types of lipid is 
thought to occur via inhibition of lysosomal 
phospholipases, most likely through binding of 
CADs to phospholipids [Drenckhahn et al. 1976; 
Lullmann et al. 1978]. Direct inhibition of lysoso-
mal phospholipases [Kubo and Hostetler, 1985] 
or regulation of phospholipid synthesis may also 
contribute to lipid accumulation [Pappu and 
Hostetler, 1984].

Drug-induced PLD is reversible and does not 
necessarily cause toxicity, but is predictive of 
drug or metabolite accumulation in affected tis-
sues and is a warning to investigate possible 
associated toxicities. The severity and reversibi
lity of PLD depend on the dose, exposure, dura-
tion of treatment and pharmacology of the 
CAD. Evidence of PLD has previously led to 
discontinuation of development of some com-
pounds. Fischer and colleagues have recently 
reported a new in-silico method for predicting 
the likelihood of compounds in causing PLD 
[Fischer et al. 2012]. However, evidence of PLD 
does not have to result in withdrawal of a mole-
cule; PLD only presents a problem when linked 
to toxicity, and regulatory authorities are likely 
to require additional studies in these circum-
stances [Reasor, 2010]. Withdrawal of any com-
pound is a serious issue for any pharmaceutical 
developer [Kaitin, 2008], and early recognition 
of characteristics that may cause a product to fail 
at later stages is preferable from both a human 
safety and economic perspective [Kola and 
Landis, 2004].

The phospholipidotic potential of a compound is 
most easily indicated by histopathological exami-
nation, such as the detection of foamy macrophages 
in various tissues, for example lungs, or vacuola-
tion of epithelial cells. However, a definitive PLD 
diagnosis is based on ultrastructural changes 
detected by transmission electron microscopy 
(TEM). A metabonomic approach by Nicholls 
and colleagues to identify novel markers for PLD 
examined urinary levels of metabolites in rats fol-
lowing dosing with CAD [Nicholls et  al. 2000]. 
Urinary levels of the tricarboxylic acid (TCA) 

cycle intermediates, citrate and 2-oxoglutarate 
were found to decrease, suggesting that the mito-
chondrial TCA cycle for the production of energy 
had been disrupted, and energy-yielding interme-
diates metabolized. In addition, the study high-
lighted that levels of urinary phenylacetylglycine 
(uPAG) increased, and thus PAG was proposed 
as a biomarker for PLD. A subsequent study of uri-
nary metabolites in acclimatizing germ-free rats by 
Nicholls and colleagues demonstrated that uPAG 
levels were affected during the establishment of 
stable gut microflora [Nicholls et  al. 2003]. 
However, the alterations in uPAG caused by 
microbes were not as substantial as those caused 
by metabolic dysfunction. uPAG has also been 
shown to be affected by parasitic infection [Garcia-
Perez et al. 2010] and dietary intake [O’Sullivan 
et al. 2011]. Several subsequent studies of urinary 
metabolites in rats with PLD induced by amio-  
darone reported increases in uPAG [Delaney et al. 
2004; Dieterle et al. 2006; Hasegawa et al. 2007]. 
PAG has therefore been suggested as a surrogate 
marker for PLD. PAG is formed metabolically 
by the conjugation of phenylacetyl coenzyme A 
(CoA) with glycine [Jones, 1982]. Phenylacetate, 
the precursor for phenylacetyl CoA, can be synthe-
sized by oxidation of phenyl-containing fatty acids, 
or produced by the degradation of phenylalanine 
to phenylethylamine and phenylacetaldehyde, or 
via phenylpyruvate.

To support the hypothesis of PAG as a bio-
marker for PLD, a single-dose toxicology 
study was performed in a rat model. The 
effects of two compounds (A and B) with simi-
lar structures were assessed by clinical chemis-
try, histopathology, electron microscopy, 
metabolite and protein composition in urine, 
and gene expression in liver. The structure of 
these compounds mainly differs by a pipera-
zine against a morpholine moiety in compound 
A, leading to a more basic pKa and greater 
potential to induce PLD compared with com-
pound B, based on amphiphilicity. It was 
hypothesized that dosing with compound A, 
but not compound B, would induce an increase 
in PAG based on known histopathology find-
ings of PLD with compound A only.

Methods
This study was performed in a laboratory 
approved by the Association for the Assessment 
and Accreditation of Laboratory Animal Care 
(AAALAC) and the Swiss Federal Act on Animal 
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Protection (Swiss APA 1978) in accordance with 
Swiss Animal Protection law.

Five groups each of 12 male specific pathogen-
free Wistar rats (HanBrl:WIST) were dosed 
once with vehicle, or 300 mg/kg or 1500 mg/kg 
of compound A, or 300 mg/kg or 1000 mg/kg of 
compound B. Blood and urine samples were 
collected in nonfasted stage. Samples for blood 
chemistry were collected approximately 24, 48 
and 168 h after dosing. Blood samples for toxi-
cokinetics were drawn from the retro-orbital 
plexus under light isoflurane anaesthesia before, 
and then 1, 3, 5, 8, 24, 48 and 168 h after dos-
ing. Urine samples were collected in metabo-
lism cages at 0–4°C automatically refrigerated 
by a Tecniplast sampling/cooling unit into 
labelled sample tubes containing 1 ml of an 
aqueous Na-azide (1%) solution. Before ali-
quoting urine, volumes were determined. The 
metabolism cages were cleaned with bidistilled 
water on days –3, 0, 2, 4 and 6 directly at the 
end of the sampling period and prior to the 
next. On days –1, 1, 3, 5 and 7 the collection 
units of the metabolism cages were exchanged. 
Urine samples were collected at 12 timepoints 
(four predose: –144, –40, –16 and 0 h; and eight 
postdose: 8, 24, 48, 72, 96, 120, 144 and 168 h) 
for nuclear magnetic resonance (NMR) spec-
troscopy, urinalysis, proteomics and liquid 
chromatography–mass spectrometry (LC-MS) 
[Schlotterbeck et al. 2006].

Necropsies were performed on five animals from 
each group at 48 h and 168 h after dosing, and 
the remaining two animals from each group 
were observed for toxicokinetic bleeding only. 
At necropsy, blood samples were collected from 
all animals for electron microscopic examination 
of peripheral lymphocytes, and major organs 
including liver, kidneys, lungs, mesenteric lymph 
nodes and spleen underwent subsequent histo-
pathologic evaluation. Tissues were embedded in 
paraffin, cut at a nominal thickness of 2–4 mm, 
stained with haematoxylin and eosin, and exa
mined under a light microscope. Buffy coats were 
prepared from a sample of at least 2 ml terminal 
blood and processed for electron microscopy fol-
lowing standard protocols.

Blood chemistry parameters were measured by 
routinely used procedures; samples for serum 
analysis were allowed to clot naturally at room 
temperature for no longer than 10 min and then 
cooled and centrifuged at 1000 g for 10 min at 

4°C. Standard assays were performed on a Hitachi 
917 spectrometer for the following parameters: cre-
atinine (enzymatic colorimetric assay), phos
pholipids (phospholipase–cholinoxidase–peroxidase 
assay), albumin (bromocresol green assay), globu-
lin (calculated as total protein minus albumin), 
and total protein (Biuret assay). Tyrosine was 
assayed by treatment with two volumes of pheny-
lalanine lyase, pH 8.75 for 30 min at 37°C, fol-
lowed by separation on a Waters Oasis HLB 
column (1 ml; Elstree, UK) and analysis by high-
performance liquid chromatography.

Pharmacokinetic parameters were calculated 
using WinNonlin Pro v.3 (Pharsight, Inc., 1998, 
Cary, NC, USA). The maximum plasma concen-
tration (Cmax) was determined directly from plasma 
concentration–time profiles. The apparent termi-
nal half lives were derived from the equation t½ = 
ln 2/λz. λz was calculated by least squares linear 
regression of the terminal portion of the log-trans-
formed plasma concentration curve.

Urine was processed for NMR analysis or  
proteomics as described previously in the litera-
ture [Keun et  al. 2002]. Urine samples from 
high-dose groups collected at 48 h and 168 h 
postdosing were also subjected to proteomics 
analysis by two-dimensional polyacrylamide 
gel electrophoresis followed by staining, gel spot 
excision and matrix-assisted laser desorption 
ionization time-of-flight mass spectrometry as 
described elsewhere [Roessler et al. 2006].

Gene expression analysis was performed on RNA 
from the livers of all animals collected in 
RNALater (Applied Biosystems; Carlsbad, CA, 
USA) and determined using RG U34a GeneChip 
microarrays (Affymetrix; Santa Clara, CA, USA) 
following the provider’s instructions. Expression 
levels of phenylalanine hydroxylase (PAH) and 
carnitine palmitoyltransferase 1A (CPT1a) were 
determined by signal intensity with the M12337_
at. To classify individual gene expression profiles, 
previous liver gene expression profiles from male 
Wistar rats were used to generate a predictive 
support vector machine (SVM)-based predictive 
model for the following hepatotoxic categories: 
control/nontoxic, direct acting, peroxisome pro-
liferation, cholestasis and steatosis [Lee, 1995]. 
Subsequently, gene expression profiles from the 
livers of control and treated rats were compared 
with the SVM Hepatotox_SVM_OVA_Versionl 
[Steiner et al. 2004], and classified according to 
confidence.
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Results
A similar level of plasma exposure was reached 
with both compounds. Maximum plasma con-
centrations were reached at 5–8 h postdose 
with compound A, and at 2–3 h with compound 
B. The maximum plasma concentration (Cmax) 
for compound A was 3.4 µg/ml with 300 mg/kg 
and 4.8 µg/ml with 1500 mg/kg, and for com-
pound B was 2.8 µg/ml with 300 mg/kg and 2.3 
µg/ml with 1000 mg/kg, suggesting saturation in 
the absorption of both compounds at higher 
doses. Terminal half lives were 32 and 34 h for 
the low- and high-dose groups with compound 
A, and 31 and 35 h for the low- and high-dose 
groups with compound B.

Body mean weight gain on day 2 increased by 
(+)0.8% and (+)0.5% in animals on control or on 
compound B 1000 mg/kg while mean body weight 
decreased by (–)3% and (–)2.7% for animals on 
compound A (300 and 1500 mg/kg respectively) 
and by (–)0.5% for animals on compound B 300 
mg/kg.

Compounds A and B decreased liver function, as 
indicated by a reduction in total protein in blood 
samples taken at 168 h (Table 1). However, ani-
mals dosed with compound A had a severe altera-
tion in liver function with a significant reduction 
in levels of creatinine, phospholipids, albumin, 
globulin and tyrosine in blood samples taken at 24 
h and 168 h. These effects were not seen in ani-
mals dosed with compound B.

Gene expression analyses confirmed that com-
pound A had clear hepatotoxic potential and 
showed evidence of steatosis (Table 2). At 48 h, 
all animals dosed with compound A (both high 
and low dose) were classified as steatotic com-
pared with no animals dosed with compound B. 
Liver steatosis is an expected finding in lipid stor-
age disorders.

Histopathology findings for compound A, but not 
compound B, were characteristic for PLD, and 
were more severe with the higher dose. The extent 
and timing of pathologic response differed accor
ding to tissue type; vacuolated macrophages in 
lungs, mesenteric lymph nodes and spleen, and 
vacuolated Kupffer cells and hepatocytes were 
affected by compound A only (Table 3). In addi-
tion to PLD histopathology findings, organ  
toxicity was observed in liver, kidney, spleen and 
mesenteric lymph nodes, particularly in animals 
administered with the higher dose of compound 

A, and consisted of single cell, focal or multifocal 
necrosis predominantly 168 h postdose.

Electron microscopy of peripheral lymphocytes 
demonstrated the presence of intracytoplasmic 
inclusions for compound A, with timings coinci
ding with histopathologic changes (Figure 1). 
Lamellar inclusions were more prevalent with the 
higher dose than the lower dose of compound A 
for animals necropsied 48 h following administra-
tion. Animals necropsied 168 h following admi
nistration with the lower dose of compound A 
exhibited decreased or no lymphocyte response 
compared with 48 h following administration, 
indicating partial or complete recovery. At the 
high dose there were no indication of recovery 
within 168 h following administration.

NMR analysis of urine samples indicated that 
compound A caused a disruption to the TCA 
cycle at the higher dose (Figure 2). Levels of  TCA 
cycle intermediates, citrate, isocitrate, 2-oxogluta-
rate, succinate, fumarate and malate were 
decreased compared with the control, following 
the higher dose of compound A; however, levels 
were not affected following dosing with compound 
B. Changes are summarized in Table 4 and indi-
cated schematically in Figure 3 by arrows. uPAG 
was seen to increase by two- to fourfold with 
higher doses of compound A (Figure 4). The lower 
dose of compound A also produced a twofold 
increase in uPAG at 24 h, whereas neither dose of 
compound B affected uPAG levels. Proteomic 
analysis revealed no clear differences between any 
of the urine samples (data not shown).

Gene expression analysis indicated downregula-
tion of phenylalanine hydroxylase (PAH) at mRNA 
level, and induction of CPT1a following dosing 
with both compounds, at all doses (Figure 5). The 
effect on PAH downregulation was greater with 
compound A; however, the upregulation of CPT1a 
was greater with compound B. For compound A, 
at 48 h, downregulation of PAH correlated with 
decreased tyrosine levels while compound B at 
1000 mg/kg did not change the plasma concentra-
tions of tyrosine.

Discussion

PAG as a biomarker for phospholipidosis in 
association with mitochondrial toxicity
Diagnosis and screening for phospholipidosis 
involves examination of peripheral lymphocytes 
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by electron microscopy and biochemical assay of 
tissue phospholipid content. However, these 
methods have limited throughput. Fluorescent 
staining and immunohistochemical approaches 
are useful in identifying PLD [Casartelli et  al. 
2003; Ulrich et  al. 2009; Xia et  al. 1997; 
Matsuzawa and Hostetler, 1980; Obert et  al. 
2007] but do not indicate whether PLD might 
result in associated toxicity. As drug-induced 
PLD is reversible and is not always associated 
with toxicity, a noninvasive biomarker that indicates 
PLD associated with mitochondrial toxicity is 
highly desirable.

PAG is published as a marker for phospholipi-
dosis [Garcia-Perez et  al. 2010; Espina et  al. 
2001; Robertson et  al. 2010] even after single 
compound administration [Nicholls et al. 2000; 
Delaney et al. 2004; Hasegawa et al. 2007], but 
the predictivity as a marker is critically discussed 
within the expert field and it has not been linked 
to mitochondrial toxicity. In a model tested to 
detect phospholipidosis with metabonomics 
techniques after single compound administra-
tion using 20 non-phospholipidogenic and 17 
phospholipidogenic compounds, Lienemann 
and colleagues concluded that the induction of 
phospholipidosis by the test compounds could 
not be predicted using NMR-based urine analy-
sis or the previously published biomarker PAG 
[Lienemann et al. 2008].

The results of our trial investigating uPAG as a 
biomarker for PLD show that, following dosing 
with CAD, uPAG increases in a dose-dependent 
manner in line with a traditional marker for PLD, 
that is the formation of lamellar bodies in peripheral 
lymphocytes and in association with organ toxicity. 
We propose that uPAG (phenylacetylglycine in 
rodents, phenylacetylglutamine in primates and 
humans) is a suitable noninvasive biomarker 
for mitochondrial toxicity associated with drug-
induced PLD. Subsequent sections provide the 
mechanistic hypothesis for considering uPAG 
as such a biomarker, based on biochemistry 
considerations.

PAG and phenylketonuria
In addition to drug-induced PLD, an increase in 
uPAG is seen in patients with phenylketonuria 
(PKU), a metabolic autosomal recessive disorder. 
PKU is associated with an increase in ketone  
bodies, including phenylpyruvate and phenylacetyl 
CoA, and the latter is conjugated with glutamine to 
form PAG. PKU is caused by a lack of phenylala-
nine hydroxylase, which catalyzes the production of 
tyrosine from phenylalanine [Berg et al. 2006]. The 
resulting accumulation of phenylalanine is thought 
to donate amino groups through amino trans-
ferase activity and deplete 2-oxoglutarate. The 
2-oxoglutarate entity is an intermediate of the TCA 
cycle and in its absence the cycle cannot function to 
produce energy aerobically. In patients with PKU, 

Table 2.  Classification of individual gene expression profiles by a support vector machine (SVM)-based 
predictive model.

Compound Dose Classification  
(n animals)

Classification status  
(% animals)

Group 1 Control – Control (5) Unique (60%)
  Fits into no class (40%)
Group 2 Compound A   300 mg/kg Steatotic (5) Unique (60%)
  Ambiguous (40%)
Group 3 Compound A 1500 mg/kg Steatotic (5) Unique (100%)
Group 4 Compound B   300 mg/kg Control (2) Fits into no class (100%)
  Cholestatic (1) Fits into no class (100%)
  Steatotic (2) Fits into no class (100%)
Group 5 Compound B 1000 mg/kg Control (4) Unique (75%)
  Fits into no class (25%)
  Cholestatic (1) Fits into no class (100%)

Gene expression profiles from the livers of control and treated rats were classified using the SVM Hepatotox_SVM_OVA_
Version l. These were compared with predictive SVM-based models created from our database of liver gene expression 
profiles for the following hepatotoxic categories: control/nontoxic, direct acting, peroxisome proliferation, cholestasis, 
and steatosis.
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mitochondrial toxicity is associated with abnormal 
brain development and mental retardation [King, 
2012].

The biochemical changes observed in PKU are 
similar to the pattern of TCA cycle changes follow-
ing dosing with CAD, that is, an increase in ketone 
bodies due to anaerobic metabolism which can 
lead in either situation to the generation of PAG.

Mechanism for mitochondrial dysfunction
Mitochondrial dysfunction may be induced 
directly or indirectly.

Direct mitochondrial dysfunction.  Mechanisms 
for direct mitochondrial dysfunction potentially 
include uncoupling of nicotinamide adenine dinu-
cleotide (NAD) – nicotinamide adenine dinucleo-
tide with hydrogen (NADH) via CAD associated 
with protons on the exterior of mitochondria, 
passing through the membrane with the bound 

Table 3.  Pathologic findings for animals necropsied at 168 h postdose.

Group 1 Group 2 Group 3 Group 4 Group 5

  Control Compound A Compound B

  300 mg/kg 1500 mg/kg 300 mg/kg 1000 mg/kg

Kidneys  
Single cell necrosis of 
tubular epithelium

– – 4 (1.5) – –

Liver  
Glycogen increase 5 (2.0) 2 (1.0) – 5 (1.6) 5 (1.8)
Haematopoiesis 3 (1.0) 4 (1.3) – 3 (1.0) 4 (1.0)
Necrosis – 1 (2.0) 2 (3.0) –
Vacuolated Kupffer cells – – 3 (3.0) – –
Lung  
Alveolar histiocytosis – 5 (2.8) 5 (3.6) – –
Mesenteric lymph nodes  
Histiocytosis – – 5 (3.4) – –
Lymphoid depletion – – 3 (4.0) – –
Inflammation – – 5 (2.6) – –
Necrosis – – 4 (2.8) – –
Spleen  
Haematopoiesis 5 (2.2) 4 (1.3) – 5 (2.2) 5 (1.6)
Histiocytosis – – 5 (2.6) – –
Lymphoid depletion – – 3 (3.0) – –
Inflammation – – 1 (2.0) – –

For each group, five animals were necropsied and kidney, liver, lung, mesenteric lymph node and spleen pathology was 
graded as follows: grade 1 = minimal/very few/very small; grade 2 = slight/few/small; grade 3 = moderate/moderate 
number/moderate size; grade 4 = marked/many/large; grade 5 = finding unilateral in paired organs. Numbers are 
expressed as number of animals (average grade).

Figure 1.  Electron microscopy of peripheral 
lymphocytes demonstrating the presence of 
intracytoplasmic inclusions for compound A.
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Table 4.  Summary of metabolic changes upon dosing with compounds A and B.

Drug Blood Urine Histopathology Liver toxicogenomics

Compound A
 
 

Creatinine ↓ (L, H)
Phospholipids ↓ 
(L, H)
ALP, total protein, 
globulin. ↓ (H)
Albumin ↓ ( H)
Albumin/globulin 
↓ (L, H)
ASAT, ALAT ↑(H)
Tyrosine ↓ (H)*

Biochemistry 
pH ↓ (L,  H)
Creatinine ↓ (H)
Phospholipids ↓ (L, H)
Ca++, K+ ↓ (L, H)
Inorganic PO4 ↑ (L, H)
 
NMR analysis
PAG ↑ (2× L, 2-4x H)
Citrate, 2OG, fumarate, malate, 
isocitrate, succinate ↓ (H)
Taurine ↓ (H)
Carnitine, creatine ↑ (H)

Proteomics
Clear sign of nephrotoxicity (H)*

Vacuolated foamy 
macrophages 
lungs, mesenteric 
lymph nodes (L, 
H), spleen (H)
Vacuolated 
hepatocytes (L,H).
Associated 
toxicity (necrosis) 
in liver, 
kidney, spleen, 
mesenteric 
lymph nodes 
(predominantly H).

Call of hepatotoxicity, 
steatosis/cholestasis. 
Partly reversible at 168 h
PAH ↓
FA-metabolism ↑  
FA synthase ↓  
Stearoyl CoA desaturase ↓
ATP citrate lyase ↓ 
Fumarate hydratase ↑
General stress response
 
 

Compound B Total protein ↓ (H) NMR analysis
No significant drug-induced 
changes

Single cell liver 
necrosis (L, H,  
48 h, postdose)

Individual animals with 
borderline cholestasis-like 
evidence (L, H)
Slight PAH ↓
Slight FA synthase ↓
Slight ATP citrate lyase ↓ 
Slight fumarate hydratase ↑

*Tested only with high doses.
2OG, 2-oxoglutarate; ALAT, alanine aminotransferase; ALP, alkaline phosphatase; ATP, adenosine triphosphate; ASAT, aminotransferase; FA, fatty 
acid; H, high dose; L, low dose; PAG, phenylacetylglycine; PAH, phenylalanine hydroxylase.

Figure 2.  Levels of tricarboxylic acid cycle intermediates by nuclear magnetic resonance analysis, following 
dosing and normalized to time-matched control animals. Levels of urinary citrate and 2-oxoglutarate are 
shown for animals dosed with high and low doses of compound A (left) and compound B (right).
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Figure 3.  Schematic diagram showing metabolic changes upon dosing with compound A. Phenylacetylglycine 
(PAG) is formed metabolically from phenylalanine (PA) via phenylacetyl coenzyme A (CoA) and phenylpyruvate. 
The metabolism of PA is linked to the mitochondrial tricarboxylic acid (TCA) cycle via acetyl CoA. Dosing with 
compound A but not compound B caused an increase in urinary PAG (as indicated schematically by yellow 
arrows), and the higher dose of compound A caused disruption to the TCA cycle as indicated by a decrease 
in TCA cycle intermediates compared with the control. Downregulation of phenylalanine hydroxylase (PAH) 
by compound A after 48 h correlated with a decrease in tyrosine levels. An increase in urinary inorganic 
phosphate also indicated disruption to oxidative phosphorylation with compound A. (Adapted from the Krebs 
cycle and Kaufman [1999].) AA, amino acid; ADP, adenosine diphosphate; ATP, adenosine triphosphate; CPT1, 
carnitine palmitoyltransferase 1; DOPA, dihydroxyphenylalanine; FADH2, reduced form of flavin adenine 
dinucleotide; GTP, guanine triphosphate; NADH, nicotinamide adenine dinucleotide plus hydrogen.

proton, and dissociating the proton on the interior 
of the mitochondrion. In the dysfunctional mito-
chondrion, the electron transport generates no 
adenosine triphosphate (ATP), since the translo-
cated protons do not return to the interior through 
ATP synthase. Also when NADH production by 
the TCA cycle is disrupted, oxidative phosphory-
lation is affected, which is inferred by an increase 
in free inorganic phosphate in urine samples since 
NADH is required to efficiently synthesize ATP 
from inorganic phosphate and adenosine diphos-
phate. Mitochondrial uncoupling by a protono-
phoretic mechanism has been inferred for 
bupivacaine, an amphiphilic basic amine com-
pound [Sun and Garlid, 1992; Irwin et al. 2002]. 
It is interesting to note that compound A is also an 
amphiphilic amine, whereas compound B is a 
nonbasic amine at physiological pH.

Another potential dysfunction is an increase in the 
ratio of acetyl CoA to oxaloacetate and a decrease 
in ATP levels may result in an excess of acetyl CoA 
and a switch to anaerobic respiration, leading to 
the production of ketones in the mitochondria.

A decrease in urinary levels of intermediates in the 
TCA cycle supports the hypothesis that direct 
mitochondrial toxicity is occurring. Our results 
show that compound A at higher dose levels 
induced a decrease in urinary levels of citrate and 
2-oxoglutarate. A similar biochemical effect was 
reported following dosing of Han Wistar rats with 
CAD, when urinary levels of citrate and 2-oxoglu-
tarate were also decreased [Nicholls et al. 2000].

Indirect mitochondrial dysfunction.  Indirect 
mitochondrial toxicity is indicated by altered 



Therapeutic Advances in Drug Safety 4 (3)

110	 http://taw.sagepub.com

Figure 4.  Urinary phenylacetylglycine (PAG) from rats dosed with compound A, compound B or control. (a) Top 
panel shows an example of a 1H NMR spectrum of urine taken from a control rat. The two boxes indicate the 
aliphatic (left) and aromatic (right) signals from PAG. The latter is shown in more detail in the expansion panel, 
where 15 spectra at 144 h postdose are shown as a stacked plot. (b) and (c) Relative mean PAG concentrations 
for compounds A and B respectively, related to time-matched control samples.

Figure 5.  (a) Expression levels of phenylalanine hydroxylase (PAH) at 48 h postdose, represented by 
signal intensity with the M12337_at probe. The five treatment groups each containing five animals are 
plotted in separate columns. (b) Expression levels of carnitine palmitoyltransferase 1A (CPT1a) for each 
animal at 48 h postdose, represented by signal intensity with the L07736_at probe.
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transport of fatty acids into mitochondria.  
Levels of carnitine, required for the transport of 
fatty acids from the cytosol for the catabolism of 
lipids, are increased in rat’s urine following  
dosing with compound A which may indicate a 
fatty acid oxidation disorder. This disorder may 
be caused by complex formation between drug 
and phospholipid, leading to a decrease in phos-
pholipase activity and decreased transport of 
fatty acid CoA to the mitochondria. Amioda-
rone is an example of a drug reported to be asso-
ciated with a mitochondrial effect [Fromenty 
et al. 1990; Varbiro et al. 2003] and is a powerful 
inhibitor of phospholipases [Jacobson et al. 1997; 
Shaikh et al. 1987]. Amiodarone is also a potent 
inducer of PLD.

The transport of long-chain fatty acids across the 
mitochondrial membrane involves carnitine, 
which if not acylated to form acylcarnitine is not 
metabolized and is excreted in the urine; levels of 
urinary carnitine were increased in our study. 
Urine carnitine level increase may also indicate 
an increased export of short chain fatty acyl out 
of the mitochondria and the removal of toxic 
acyl CoA from cells and tissues. A concomitant 
decrease in TCA cycle intermediates results in 
anaerobic metabolism, leading to ketone bodies 
and PAG formation. In addition, CPT1a, which 
mediates the transport of long-chain fatty acids 
across the membrane by binding these to carni-
tine, was upregulated with compound A; how-
ever, CPT1a was also upregulated by compound 
B, thus this effect might not be connected with 
the toxicity of the compounds with regard to 
removal of excess fatty acids. Liver histopatho-
logical findings were indicative of PLD for com-
pound A but not for compound B.

In addition to disruption of the TCA cycle, these 
findings suggest that mitochondrial toxicity is also 
associated with disruption to the urea cycle. The 
urea cycle is closely linked biochemically with the 
TCA cycle via α ketoglutarate. Fumarate, malate 
and 2-oxoglutarate were depleted following 
dosing with compound A. When the levels of 
2-oxoglutarate are decreased this may indicate a 
disruption of the urea cycle and ammonia elimi-
nation; ammonia will then be eliminated via gluta-
mate and PAG. The liver of humans and primates 
contains an enzyme that conjugates glutamine 
with phenylacetate (a by product of phenylala-
nine catabolism) to form phenylacetylglutamine 
(i.e. the human PAG), which is excreted in urine 
[James et al. 1972; Moldave and Meister, 1957].

Ketones bodies resulting from increased fatty 
acid oxidation in the liver may be used as a major 
fuel instead of glucose. Conversion of free ammo-
nium and α ketoglutarate to glutamate and incor-
poration of ammonia into glutamate forming 
glutamine is part of nitrogen balance, taking into 
account that about 80% of the excreted nitrogen 
is in the form of urea via urea cycle or Krebs bi-cycle. 
The short-term regulation of urea cycle occurs 
principally at mitochondrial carbamoyl phosphate 
synthetase 1, which is relatively inactive in the 
absence of N-acetylglutamate generated from 
acetyl CoA and glutamate. The operation of the 
TCA and urea cycles is, therefore, dependent 
upon a common metabolite, that is, acetyl CoA. 
Acetyl CoA may be oxidized in TCA or used in 
the synthesis of ketone bodies.

Another link between the urea and TCA cycles is 
fumarate, an intermediate of the TCA cycle, 
derived from aspartate, phenylalanine and 
tyrosine for input to the Krebs cycle. Fumarate 
released from argininosuccinate is converted into 
malate and then to oxaloacetate by making use 
of the TCA cycle enzymes, fumarase and malate 
dehydrogenase respectively. Oxaloacetate then 
undergoes transamination with glutamate to 
regenerate aspartate, which is then reused by the 
urea cycle [Anand and Anand, 1993].

The formation of phenylacetylglutamine is used 
in the diagnosis of a number of inborn errors of 
the urea cycle enzymes that lead to the accumu-
lation of toxic concentrations of ammonia in  
body fluids. In affected children treated with  
phenylacetate, nitrogen derived from protein 
catabolism is excreted in the form of phenyl
acetylglutamine rather than urea [Brusilow, 
1991]. An inborn error in one of the enzymes of 
the urea cycle affects not only the operation of 
the urea cycle, but also the TCA cycle by sipho
ning of the α ketoglutarate by reductive amina-
tion [Devlin, 1997]. Increased demand in α 
ketoglutarate for production of glutamate/PAG 
is also seen in PKU and in PLD with low TCA 
intermediates.

In summary, the possible mitochondrial effects 
caused by similar biochemical changes in PKU 
and PLD are depicted in Table 5.

Taken together, these implicate PAG as a bio-
marker for compounds inducing PLD associated 
with mitochondrial toxicities. It is likely mito-
chondrial toxicity results from a combined direct 
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and indirect toxicity via impairment of the pro-
ton motor force and alteration of fatty acid 
catabolism. Reduction in TCA intermediates 
such as fumarate and α ketoglutarate will also 
impact the urea cycle, hence the elimination of 
nitrogen.

Conclusion
The risk of mitochondrial toxicity associated with 
PLD should be minimized during drug develop-
ment using preclinical screening tools and detected 
early in clinical trials with CADs. Levels of uPAG 
increased in a dose-dependent manner following 
induction of mitochondrial toxicity associated with 
drug-induced PLD. We stipulate uPAG (phenyl
acetylglycine in rodents, phenylacetylglutamine in 
humans) is a suitable non-invasive biomarker to dis-
tinguish compounds inducing PLD with or without 
associated mitochondrial toxicity. Further mechanis-
tic investigations should be performed to address 
whether organ toxicity associated with PLD-
inducing compounds results from indirect and direct 
mitochondrial toxicity, including TEM examination 
of mitochondria.
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