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Abstract

There is a rich literature on Bayesian variable selection for parametric models. Our focus is on

generalizing methods and asymptotic theory established for mixtures of g-priors to semiparametric

linear regression models having unknown residual densities. Using a Dirichlet process location

mixture for the residual density, we propose a semiparametric g-prior which incorporates an

unknown matrix of cluster allocation indicators. For this class of priors, posterior computation can

proceed via a straightforward stochastic search variable selection algorithm. In addition, Bayes

factor and variable selection consistency is shown to result under a class of proper priors on g even

when the number of candidate predictors p is allowed to increase much faster than sample size n,

while making sparsity assumptions on the true model size.
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1. INTRODUCTION

Bayesian variable selection is widely applied, with O’Hara and Sillanpää providing a recent

review (2009). There is a rich literature proposing variable selection methods and studying

asymptotic properties for parametric models, while our focus is variable selection in

semiparametric linear regression models of the form:

(1)

where Yn is n × 1, γ = {γj, j = 1, …, p} ∈ Γ, γj = 1 if the jth candidate predictor is included

in the model with γj = 0 otherwise, Γ is the set of all possible subsets that are given non-zero

prior probability,  is the size of model γ, βγ is the pγ × 1 vector of regression

coefficients, Xγ is the n × pγ design matrix containing the predictors in model γ, and f is an

unknown residual density. Our focus is on avoiding parametric assumptions on f, while

accommodating high-dimensional settings in which the number of candidate predictors p

can be much larger than the sample size n but Γ is restricted to sparse models having pγ < n.
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There has been limited consideration of variable selection in semiparametric Bayesian

models, with essentially no results on asymptotic properties. In particular, it would be

appealing to provide a computationally efficient procedure for Bayesian variable selection

based on (1) for which it can be shown that the posterior probability on the true model

converges to one as n → ∞ even when the number of candidate predictors increases much

faster than n. In order for the asymptotic analysis to reflect the high dimensionality, it is

important to allow p to grow with n. There has been some consideration of increasing p

asymptotics in Bayesian parametric models. Castillo and van der Vaart (2012) study

concentration of the posterior distribution in the normal means problem. Armagan et al.

(2013) provide conditions for consistency in high-dimensional normal linear regression with

shrinkage priors on the coefficients. Jiang (2007) studies convergence rates of the predictive

distribution resulting from Bayesian model averaging in generalized linear models with

high-dimensional predictors. These approaches do not consider consistency of model

selection or semiparametric settings.

This article proposes a practical, useful and general methodology for Bayesian variable

selection in semiparametric linear models (1), while providing basic theoretical support by

showing Bayes factor and variable selection consistency. We also extend our approach and

theory to increasing model dimensions involving p ≫ n candidate predictors while making

sparsity assumptions on the true model. Our approach relies on placing a Dirichlet process

(DP, Ferguson, 1972) location mixture of Gaussians (Lo, 1984) prior on the residual density

f, inducing clustering of subjects. We introduce a prior on the coefficients βγ specific to each

model γ, which generalizes mixtures of g-priors (Zellner and Siow, 1980; Liang et al., 2008)

to include cluster allocation indices induced through the Dirichlet process. The formulation

leads to a straightforward implementation via a stochastic search variable selection (SSVS)

algorithm (George and McCulloch, 1997).

Section 2 develops the proposed framework. Section 3 considers asymptotic properties.

Section 4 contains simulation results. Section 5 applies the approach to a type 2 diabetes

data example, and the proofs of Theorems are contained in the Appendix.

2. MIXTURES OF SEMIPARAMETRIC g-PRIORS

2.1 Model Formulation

In this section, we propose a new class of priors for Bayesian variable selection in linear

regression models with an unknown residual density characterized via a Dirichlet process

(DP) location mixture of Gaussians. In particular, let

(2)

where xγ,i is the ith row of Xγ and does not include an intercept as we do not restrict f to

have zero mean, and f is a density with respect to Lebesgue measure on ℜ. We address

uncertainty in subset selection by placing a prior on γ, while the prior on βγ characterizes

prior knowledge of the size of the coefficients for the selected predictors.
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The DP mixture prior on the density f induces clustering of the n subjects into k groups/

subclusters, where k is random and each group has a distinct intercept in the linear

regression model. Let A denote an n × k allocation matrix, with Aij = 1 if the ith subject is

allocated to the jth cluster and 0 otherwise. The jth column of A then sums to nj, the number

of subjects allocated to subcluster j, with . Following Kyung, Gill and Casella

(2009), conditionally on the allocation matrix A, (2) can be represented as a linear model

with random intercepts

(3)

where A is random with a certain prior probability given by the coefficients in the

summation of the likelihood expression (8) and the response and predictors are centered

prior to analysis. In the special case in which A = 1n, the model reduces to a linear

regression model with a common intercept η and Gaussian residuals. In this case, the

conditional posterior for η given A = 1n is , which has

realizations increasingly concentrated at zero as n increases.

We would like the prior on the regression coefficients to retain the essential elements of

Zellner’s g-prior (Zellner, 1986), while being suitably adapted to the semiparametric case.

To this effect, we propose a mixture of semi-parametric g-priors constructed to scale the

covariance matrix in Zellner’s g-prior to reflect the clustering phenomenon as follows:

(4)

Prior (4) inherits advantages of previous mixtures of g-priors including computational

efficiency in computing marginal likelihoods (conditional on A) and robustness to mis-

specification of g. The prior can be interpreted as having arisen from the analysis of a

conceptual sample generated using a scaled design matrix , reflecting the

clustering phenomenon due to the DP kernel mixture prior. Moreover, the proposed prior

leads to Bayes factor and variable selection consistency in semi-parametric linear models (2)

as we will show.

Note that , so

, implying that the prior variance of βγ conditional on (g, τ) is

higher for the semi-parametric g–prior as compared to the traditional g–prior for any

allocation matrix A. To assess the influence of A on the prior for βγ, we did simulations

which revealed that for fixed (n, p), var(βγl) increases but the cov(βγl, βγl′) decreases as the

number of underlying subclusters in the data increase (l′, l = 1, …, p, l′ ≠ l). This suggests

that as the number of groups in A increase, the components of βγ are likely to be more

dispersed with decreasing association between each other.
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2.2 Bayes Factor in Semiparametric Linear Models

In studying asymptotic properties of our proposed approach, we follow standard practice in

Bayesian model selection, and assume that the data Yn = (y1, …, yn)′ arise from one of the

models in the list under consideration. This true model is denoted  as defined in equation

(5). For pairwise comparison, we evaluate the evidence in favor of  compared to an

alternative model  using the Bayes factor, where

(5)

where γj ∈ Γ indexes models of dimension pj and π(βγj) is defined in (4), j = 1, 2. Our prior

specification philosophy is similar to the one adopted by Guo and Speckman (2009) for

normal linear models, in that we assign proper priors on all elements of both βγ1, βγ2

conditional on (g, τ−1), and an improper prior on τ−1 for a more objective assessment.

However unlike Guo and Speckman (2009), our focus is on Bayesian variable selection in

semi-parametric linear models.

Note that the conditional likelihood of the response after marginalizing out η in (3) is L(Yn|

A, βγ, τ−1) = N (Xγβγ, τ−1ΣA) (Kyung et. al., 2009). Thus conditional on A and under the DP

mixture of Gaussians prior on f,  in (5) reduces to the normal linear model:

(6)

where . Under a mixture of semi-parametric g-priors, we can directly use

expression (17) in Guo and Speckman (2009) to obtain (conditional on A) for j = 1, 2

(7)

where .

Also, marginalizing over all possible subcluster allocations for a given sample size n, the

following marginal likelihood can be obtained under a DP prior on f (Kyung et. al., 2009):

(8)

where  is the collection of all possible n×k matrices corresponding to different allocations

of n subjects into k subclusters, and  is the collection of all possible allocation matrices for

a sample size n with  wl = 1. In the limiting case as n → ∞, we have  as the class of
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limiting allocation matrices. Further using (7), the Bayes factor in favor of  conditional on

the allocation matrix A is given by

(9)

where , (j = 1, 2). Finally using (8), the unconditional Bayes factor

in favor of  marginalizing out A is

(10)

2.3 Posterior Computation

We propose a MCMC algorithm for posterior computation for model (2), which combines a

stochastic search variable selection algorithm or SSVS (George and McCulloch, 1997) with

recently proposed methods for efficient computation in DP mixture models. In particular, we

utilize the slice sampler of Walker (2007) incorporating the modification of Yau et al.

(2011). Using Sethuraman’s (1994) stick-breaking representation, let

(11)

The slice sampler of Walker (2007) relies on augmentation with uniform latent variables,

which allows us to move from an infinite summation for P in (11) to a finite sum given the

uniform latent variable. In particular,

For the DP precision parameter, we specify the hyperprior m ~ Ga(am, bm) for greater

flexibility. We specify a Ga(aτ, bτ) prior on τ and Be(a1, b1) prior on Pr(γl = 1) for

implementing SSVS, l = 1, …, p. We choose π(g) as the hyper-g prior with a = 4 and use the

fact that  to sample g using a griddy Gibbs approach employing equally spaced

quantiles. Inverting the n × n matrix ΣA in the mixtures of semiparametric g-prior in (4) does

not add much to the computational burden even for large n, as we can use the closed form

expression , where k grows at a rate log(n) (Antoniak, 1974)

and is small to moderate in most practical applications. We outline the posterior

computation steps in Appendix I.
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3. ASYMPTOTIC PROPERTIES

In this section we establish asymptotic properties for the proposed approach using γ1 to

index the true model  defined in (5) and γ2 to index an arbitrary model  being

compared to , with  ⊂  denoting nesting of  in . Before proceeding, we

introduce some regularity conditions essential for the development of asymptotic theory.

(A1′)
.

(A2′)
For  ⊈ , , with

.

(A1)
For p1 = O(na1), 0 ≤ a1 < 1, .

(A2)
For  ⊈ , , where bA,2 ∈ [0, bA,1) for

fixed p1, p2, and bA,2 ∈ (0, bA,1) for pj = O(naj) (j = 1, 2, 0 ≤ a1 < a2 < 1).

(A1), (A2) depend on the allocation matrix A, which is a n × k binary matrix that

for large n tends to have k ≪ n, and be very sparse containing mostly zeros with

sparsity increasing with column index. We also assume the following for the

class of proper priors π(g) on g:

(A3) There exists a constant k ≥ 0 such that  for any constant c0 > 1

and any sequence an ≈ n. Here an ≈ bn implies that limn→∞ an/bn > 0.

(A4) There exists a constant ku such that k−(p2−p1)/2 < ku ≤ k and

.

We state (A1′), (A2′) as the standard assumptions for establishing Bayes factor consistency

in normal linear models, on which our assumptions (A1), (A2) are based. We develop

asymptotic theory for semiparametric linear models (5) based on assumptions (A1)–(A4).

We note that (A1) is stronger compared to (A1′), since (A1) implies (A1′) as

. Further, in the extreme case when A = In, we have

, so that (A1′) implies (A1). Again when A =1n,

 for large n, for . Hence

, where  is the centered design matrix. When

, (A1′) implies (A1).

Assumption (A2) can be interpreted as a positive ‘limiting distance’ between the two models

corresponding to design matrices Xγ1 and Xγ2 in (3) conditional on A, after marginalizing

out η, i.e. . Such a ‘limiting

distance’ (Δ21,A) can be considered as a natural extension of the definition of distance
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between two normal linear models in Casella et. al. (2009) and Moreno et. al. (2010) to

models with random intercept as in (3).

Assumptions (A3), (A4) define a class of proper priors for g described in Guo and Speckman

(2009). This class includes  and 

priors with 2 < a ≤ 4 (Liang et. al. 2008), Zellner-Siow priors (Zellner and Siow, 1980) as

well as beta-prime priors (Maruyama and George, 2008). It is clear that these assumptions

on π(g) are satisfied by quite a few standard priors are hence are quite reasonable.

The following lemma gives the limits of quantities such as , which

would be useful for establishing asymptotic properties. The proof follows directly using

Lemmas 1, 2 of Guo and Speckman (2009) and from (6) which essentially states that under

the DP mixture of Gaussians prior on f for  in (5) and conditional on allocation matrix A,

, j = 1, 2.

Lemma 1—Let assumptions (A1), (A2) hold.

i.
If  ⊂ , conditional on A, , under 

ii.
If  ⊈ , conditional on A, , under 

As shown by the following result, the proposed approach leads to Bayes factor consistency

when comparing fixed dimensional models as well as models growing at the rate O(nt), 0 < t

< 1, when the truth is sparse.

Theorem I—Let assumptions (A1), (A2) hold.

I. Suppose p1 and p2 are fixed. If  ⊂ , then under  and assumptions (A3),

(A4),  as n→ ∞ and if p2 − p1 > 2 + 2(k − ku),  as n → ∞.

Further, if  ⊈ , then under  and assumption (A3),  as n → ∞.

II. Suppose pj is growing at the rate O(naj), j=1,2, with 0 ≤ a1 < a2 < 1. Then under 

and assumption (A3),  as n → ∞.

REMARK 1: Although we omit the proof here, Theorem I can be modified to

accommodate the case of improper priors on g (i.e. ). In such a case, assumptions

(A3), (A4) are excluded and we require p2 − p1 ≥ 3 for a.s. convergence in (I) for  ⊂ .

The next result establishes model selection consistency for the proposed approach, even in

cases when the cardinality of the model space increases with n. In particular, we consider

cases when the number of candidate predictors pn is growing at the rate O(na), a > 0, but the

prior on the model space assigns zero probability to models growing at a rate equal to or

faster than n. When a ≥ 1, the prior support consists of models constructed using O(nt) (0 ≤ t

< 1) sized subsets of pn = O(na) candidate predictors.

Kundu and Dunson Page 7

J Am Stat Assoc. Author manuscript; available in PMC 2015 March 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



To elaborate, let the support of the prior on the model space be  =  ∪ , where  is

the set of all (non-null) models γ such that there exists a sample size n0 < ∈ for which γj = 0

for all j > pn0, and  is the set of all models with dimensions growing at a rate strictly less

than n, . Letting p0 = max{j: γ ∈ , γj = 1}, we can

discard predictors having a higher index than p0 for all γ ∈  and treat  as finite

dimensional having 2p0 − 1 elements (excluding the null model). Let γjl denote the lth model

having dimension pj. Consider the following sequence of priors which penalizes models

with increasing dimensions, thus encouraging sparsity:

(12)

When the truth is sparse such that  ∈ , we have the following result.

Theorem II—Suppose assumptions (A1)–(A4) hold. For fixed p and under

 for any prior on Γ with π( ) > 0. When pn = O(na) (a > 0) and

 under , for πn(γjl) defined as in (12).

4. SIMULATION STUDY

We present the results of two simulation studies comparing our method (SLM) with the

normal linear model (NLM) having  (designed to assign

comparable prior information when the residual is Gaussian), the lasso (Tibshirani, 1996)

and elastic net (Zou and Hastie, 2005), as well as robust variable selection methods

including an MM-type regression estimator (Yohai, 1987; Koller and Stahel, 2011), and a

median regression model with SSVS for variable selection (Yu et al., 2013). The data is

generated as follows:

where xi is a ten dimensional predictor (p=10), with xij, j = 1, …, 10 generated

independently from U(−1,1), and βT = (3, 2, −1, 0, 1.5, 1, 0, −4, −1.5, 0).

We used Ga(0.1, 1) prior on the DP precision parameter and Be(0.1, 1) prior on P(γj = 1),

j=1,…,p, which corresponds to a weakly informative prior favoring parsimony. We update g

using the griddy Gibbs approach having 1000 equally spaced quantiles for 

corresponding to a = 4 in the hyper-g prior. For both SLM and NLM, we ran 50,000

iterations with a burn in of 5,000. We implemented the lasso (L1) and elastic net (EL) using

the GLMNET package in R with default settings, while the MM-type estimator (LMR) was

implemented using ‘lmrob’ function in ‘robustbase’ package in R and the median regression

with SSVS (QR) was implemented using function ‘SSVSquantreg’ in ‘MCMCpack’

package in R, with a Be(0.1, 1) prior on the prior inclusion probability for predictors. All
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results are summarized across 20 replicates. The computation time for SLM per iteration

was marginally slower than NLM. The mixing for the fixed effects was good under both the

methods. The results for SLM do not appear to be sensitive to the hyper-parameters in π(m),

but are mildly sensitive to hyper-parameters in π(g) for n = 100.

We study the marginal inclusion probabilities (MIP) under SLM and NLM over varying

sample sizes in Figures 1 and 2. These plots suggest a faster rate of increase of the MIP for

the important predictors under SLM as compared to NLM when the true residuals are non-

Gaussian, and a very similar rate of increase under both methods when the true residuals are

Gaussian (thus justifying the prior choice for NLM). In contrast, the exclusion probabilities

for the unimportant predictors converge to one slowly under both the methods, reflecting the

well known tendency for slower accumulation of evidence in favor of the true null.

Tables 1 and 2 present some summaries for n = 100 for Case I. The MIPs in Table I suggests

correct variable selection decision by SLM, but poor performance by NLM which fails to

exclude any of the unimportant predictors under median probability model. Further, L1, EL

and QR seem to favor an overly complex model by choosing a superset of important

predictors. In terms of estimation of the fixed effects, SLM has the highest degree of

accuracy as reflected by the smallest mean square error ( ) in Table 2, where βT is the

vector of true regression coefficients. In addition, the replicate average mean square error for

out of sample prediction for a test sample size of 25 (Table 2) is smallest under the SLM,

followed by lasso and elastic net. NLM is seen to be clearly inadequate for prediction

purposes as indicated by the extremely high out of sample predictive MSE. Thus in

conclusion, when the true residual is non-Gaussian, the SLM has the best performance

compared to competitors, whereas NLM performs poorly in general.

5. APPLICATION TO DIABETES DATA

The prevalence of diabetes in the United States is expected to more than double to 48

million people by 2050 (Mokdad et. al., 2001). Previous medical studies have suggested that

Diabetes Mellitus type II (DM II) or adult onset diabetes could be associated with high

levels of total cholesterol (Brunham et. al., 2007) and obesity (often characterized by BMI

and waist to hip ratio) (Schmidt et. al., 1992), as well as hypertension (indicated by a high

systolic or diastolic blood pressure or both) which is twice as prevalent in diabetics

compared to non-diabetic individuals (Epstein and Sowers, 1992).

We develop a comprehensive variable selection strategy for indicators of DM II in African-

Americans based on data obtained from Department of Biostatistics, Vanderbilt University

website. Our primary focus is to discover important indicators of DM II by modeling the

continuous outcome glycosylated hemoglobin (> 7mg/dL indicates a positive diagnosis of

diabetes) based on predictors such as total cholesterol (TC), stabilized glucose (SG), high

density lipoprotein (HDL), age, gender, body mass index (BMI) indicator (overweight and

obese with normal as baseline), systolic and diastolic blood pressure (SBP and DBP), waist

to hip ratio (WHR) and postprandial time indicator (PPT) (1 if blood was drawn within 2

hours of a meal, 0 otherwise). We note that lower levels of HDL have been known to be

associated with insulin resistance syndrome, often considered a precursor of DM II with a
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conversion rate around 30%. We also expect PPT to be a significant indicator as blood sugar

levels are high up to 2 hours after a meal.

After excluding the records containing missing values, the data consisted of 365 subjects

which was split into multiple training and test samples of sizes 330 and 35 respectively. The

replicate averaged fixed effects estimates (multiplied by 100) for the SLM, NLM, L1, EL,

LMR and QR are presented in Table 3, and the marginal inclusion probabilities (MIP) for

the SLM, NLM and QR are summarized in Table 4. We also evaluate the out of sample

predictive performance for each training-test split using predictive MSE in Table 5, and

additionally provide the mean coverage (COV) and width (CIW) of 95% pointwise credible

intervals for the predicted responses under SLM and NLM. The same values of hyper-

parameters were used as in section 5. For each replicate, we randomized the initial starting

points and made 100,000 runs for SLM (burn in = 20,000) and 50,000 runs for NLM (burn

in = 5,000).

It is interesting to note from Table 4 that the variable selection decisions under SLM (using

median probability model) are quite different compared to the NLM. In particular, while

both the models successfully identify total cholesterol, stabilized glucose and postprandial

time as important predictors, it is only the SLM which identifies systolic blood pressure

(MIP = 0.72), HDL (MIP = 0.64) and waist to hip ratio (MIP = 0.93) as important indicators,

compared to NLM which assigns MIP = 0.14, 0.39 and 0.13 to these three predictors

respectively. Age is identified as an important predictor under NLM (MIP = 0.67), but not

under SLM (MIP=0.43). For both the methods, the MIPs for BMI (overweight and obese)

were low, which could potentially be attributed to adjusting for the other obesity factors

such as waist to hip ratio. From Tables 3 and 4, we also see that the lasso, elastic net and the

MM-type estimator select an overly complex model by excluding minimal number of

predictors, while the quantile regression with SSVS fails to include several important

predictors and selects a highly parsimonious and inadequate model.

Variable selection in this application is clearly influenced by the assumptions on the residual

density, with the nonparametric residual density providing a more realistic characterization

that should lead to a more accurate selection of the important predictors. Figure 3 shows an

estimate of the residual density obtained from the SLM analysis, suggesting a uni-modal

right skewed density with a heavy right tail. The SLM results suggest that a mixture of two

Gaussians provides an adequate characterization of this density. The computation time for

SLM is only marginally slower than NLM, and in addition SLM exhibits good mixing for

most of the fixed effects (Table 6). These results are robust to SSVS starting points, and

consistency in the results across training-test splits also indirectly suggests adequate

computational efficiency of SSVS.

In terms of out of sample predictive MSE (Table 5), the relative performance between SLM,

NLM, L1 and EL vary across training-test splits so that none of the models can be said to

dominate the others, while LMR and QR produce relatively inferior prediction results.

Overall, the NLM has narrower 95% pointwise credible intervals compared to SLM, often

resulting in poorer coverage for out of sample predictions. In conclusion, SLM succeeds in
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choosing the most reasonable model for DM II, consistent with previous medical evidence,

and compares favorably with other competitors for prediction purposes.
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APPENDIX A: PROOF OF RESULTS

Proof of Theorem I

Using similar methods as in the proof of Theorem 2 in Guo and Speckman (2009), it can be

shown that conditional on A and assumptions (A3) and (A4), the upper and lower bounds of

 are

and . Similarly,

. Therefore,

(13)

Case (I): For fixed pj (j = 1, 2) and large n, ,

ignoring terms independent of n. Using the results in proof of Theorems 2, 3 in Guo and

Speckman (2009), we can show that  when  ⊈ . Again for  ⊂ ,
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using results in the aforementioned proofs, we have . Further for  ⊂

 when p2 − p1 > 2 + 2(k − ku), we have , where δ > 0 is such that i ≤ 2(k

− ku) + 2δ < i + 1 when i ≤ 2(k − ku) < i + 1. This implies that for large enough n,

(14)

Then for large enough n, we have,

(15)

where ζ*(n) is the LHS in equations (14) which is independent of A, and ζ*(n) → 0 as n →

∞ (using (A4)). Dividing both sides of (15) by L(Yn| ), we have  as n

→ ∞.

Case (II): For increasing dimensions p1 = O(na1), p2 = O(na2) with 0 ≤ a1 < a2 < 1, we will

only assume (A3) for g ~ π(g) so that ku = 0. We have using (13)

(16)

Let us consider the following cases under 0 ≤ a1 < a2 < 1.

Case C1:  ⊂ . We have , j=1,2, and

. Using Lemma 1 of Guo et. al. (2009),

Moreover  under . Then for large n,
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where a* > 0 is such that 0 < 1 − a* − a2 < 1. This implies that  under 

for any constant K* > 0. Case C2:  ⊈ . Using Lemma 1,

For fixed τ−1 and bA,2 > 0 (under (A2)), . This implies

that in the limiting case when n → ∞, we have

(17)

where K* > 0 is a constant. Denoting the upper bounds as ζ*(n), it is clear that ζ*(n) is

independent of A and ζ*(n) → 0 as n → ∞ when 0 ≤ a1 < a2 < 1. Using similar arguments

as in equation (15) of Case (I), we have  and consistency follows.

Proof of Theorem II

Given the assumptions (A1)–(A4), Bayes factor consistency holds under the different cases

elaborated in Theorem I. For fixed p, the proof follows trivially using Bayes factor

consistency. For increasing pn = O(na) (a > 0), our prior is

, where π ~ Be(a1, b1) and

. Let Wγ denote the prior weight for γ ∈  after marginalizing out π under the

Be(a1, b1) prior (W1 being the weight for ). Let  Bayes factor between models γ

and , let D = {pγ : γ ∈ } and denote  = {γ ∈  : dim(γ) = pj}. Note that under (A1)–

(A4) and  ∈ ,  for all , using Theorem I. Also,

where  for large enough n, and ε0 → 0 as n → ∞ since all

the individual terms in the finite summation → 0 using Theorem I. Further using (17), the
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upper bound of  for any γjl ∈  is given by ζ*(n) = n−K*
 when n is large, where K* >

0 is a constant. Noting that the cardinality of , we have for large n,

Now note that W1 is fixed and the cardinality of D < κ0n for some constant κ0 > 0. Thus it is

clear that  as n → ∞ for large K*. The rest is straightforward.

APPENDIX B: COMPUTATIONAL STEPS FOR MCMC

The posterior computation steps are:

Step 1.1 Update the ν’s after marginalizing out the augmented uniform variable

using π(νh|−) = Be(1 + nh, Σj>h nj + m), h=1, …, M, where M is the total

number of clusters satisfying , with wh = νh

Πl<h(1 − νl).

Step 1.2 Update ui, i=1, …, n, from its full conditional as described in Walker

(2007).

Step 2 Update the cluster membership of different subjects using f(yi|ui, Aih = 1) ∝

N(yi|ηh, xγ,i, βγ, τ−1)I(h ∈ Bw(ui)), h=1, …, M, with Bw(ui) defined as in

section 2.3.

Step 3 Update the Dirichlet process atom ηl for the l-th cluster using

, where  is the

cardinality of the l-th cluster, l=1, …, M.

Step 4 Update the DP precision using

.

Step 5
Letting , update precision τ using

.

Step 6 Using the hyper-g prior and the fact that  for a = 4, we can

adopt the griddy Gibbs approach (Ritter and Tanner, 1992) to update g.

Step 7 Update the prior inclusion probability π = Pr(γj = 1) using f(π|−) = Be(a1 +

pγ, b1 + p − pγ).
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Step 8 Update γj’s one at a time by computing their posterior inclusion

probabilities after marginalizing out βγ and conditional on inclusion

indicators for the remaining predictors as well as g, τ and A. Denote γ(j)

and γ(−j) as the vector of current variable inclusion indicators with γj fixed

at 1 and 0 respectively, and let pγ(j) and pγ(−j) denote the corresponding

vector sums. We can sample γj from the Bernoulli conditional posterior

distribution with probabilities Pr(γj = 1|−) = pj1/(pj1 + pj0) and Pr(γj = 0|−)

= pj0/(pj1 + pj0), where

Step 9 Set {βj : γj = 0} = 0 and update βγ = {βj : γj = 1} using π(βγ|−) = N(βγ; E,

V), where  and

.
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Figure 1.
Marginal Inclusion Probabilities (MIP) over varying sample sizes: Truth generated from

bimodal residual. Solid lines - Semi-parametric Linear Model, dashed lines - Normal Linear

Model.
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Figure 2.
Marginal Inclusion Probabilities (MIP) over varying sample sizes: Truth generated from

Gaussian residual. Solid lines - Semi-parametric Linear Model, dashed lines - Normal

Linear Model.
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Figure 3.
Residual density for Type II Diabetes study under Semi-parametric Linear Model.
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