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Editor’s key points

† Morphine activates
cellular signalling
pathways which can
promote angiogenesis in
mouse models of cancer.

† High levels of MOR
expression in metastatic
prostate cancer are
associated with reduced
progression free survival.

† This study uses a
transgenic mouse model
of cancer and investigates
the effect of morphine on
cancer onset and
progresssion.

† Morphine does not affect
tumour onset, but it
promotes development of
established tumours with
increased MOR
expression.

Background. Morphine stimulates angiogenesis and cancer progression in mice. We
investigated whether morphine influences tumour onset, development, and animal model
survival, and whether m-opioid receptor (MOR), lymphangiogenesis, mast cell activation,
and substance P (SP) are associated with the tumour-promoting effects of morphine.

Methods. Transgenic mice with a rat C3(1) simian virus 40 large tumour antigen fusion gene
which demonstrate the developmental spectrum of human infiltrating ductal breast
carcinoma were used. Mice were treated at different ages with clinically relevant doses of
morphine or phosphate-buffered saline to determine the effect on tumour development
and progression, and on mouse survival. Tumours were analysed for MOR, angiogenesis,
lymphangiogenesis, SP, and mast cell activation by immunofluorescent- or laser scanning
confocal-microscopy. Cytokine and SP levels were determined by enzyme-linked
immunosorbent assay.

Results. Morphine did not influence tumour development when given before the onset of
tumour appearance, but significantly promoted progression of established tumours, and
reduced survival. MOR-immunoreactivity (ir) was observed in larger but not in smaller
tumours. Morphine treatment resulted in increased tumour angiogenesis, peri-tumoural
lymphangiogenesis, mast cell activation, and higher levels of cytokines and SP in tumours.
SP-ir co-localized with mast cells and elsewhere in the tumours.

Conclusions. Morphine does not affect the onset of tumour development, but it promotes
growth of existing tumours, and reduces overall survival in mice. MOR may be associated
with morphine-induced cancer progression, resulting in shorter survival. Mast cell activation
by morphine may contribute to increased cytokine and SP levels, leading to cancer
progression and refractory pain.
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Morphine and other opioids are used in escalating doses to
control severe pain in cancer patients.1 2 While morphine
exerts analgesia via m-opioid receptor (MOP/MOR, termed
MOR here) in the central nervous system (CNS), it also has
direct effects on non-neural cells, including endothelial,
tumour, and mast cells.3 – 6 Previous studies from our labora-
tory showed that morphine activates mitogen-activated
protein kinase/extracellular signal-related kinase and Akt sig-
nalling pathways leading to the proliferation and survival of
endothelial cells.3 Activation of these signalling pathways
and cycloxygenase-2 signalling led to the promotion of angio-
genesis, tumour growth, and metastasis and reduced survival

in mice.7 Methylnaltrexone (MNTX), an opioid receptor antag-
onist, inhibits morphine-induced endothelial proliferation,
angiogenesis, and disruption of endothelial barrier function.5 8

However, it remains to be determined whether morphine pro-
motes cancer initiation, or whether it stimulates the growth
of existing tumours without influencing the development of
cancer.

In a retrospective analysis, we found that patients with
metastatic prostate cancer requiring higher doses of opioids
had shorter progression-free survival (PFS) and overall survival
(OS).9 The presence of high MOR-immunoreactivity (ir) in the
malignant areas of the prostate biopsies correlated strongly
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with shorter time to progression, PFS, and OS. Both opioid re-
quirement and MOR-ir retained prognostic significance for
PFS and OS in multivariable analyses that adjusted for known
prognostic factors.

Opioids are known to stimulate mast cell activation result-
ing in the release of inflammatory cytokines, neuropeptides
such as substance P (SP), and tryptase.6 10 – 12 High density of
tryptase-positive mast cells were found to be associated with
advanced stages of colorectal cancer.13 In murine breast
cancer models, mast cells modulate the tumour microenviron-
ment and facilitate metastases via their cell surface receptor
c-Kit.14

Tryptase and SP released from mast cells activate periph-
eral nerve terminals leading to the release of more SP.6 In
turn, SP further activates the nerve fibres leading to
increased pain. Additionally, SP stimulates angiogenesis
and promotes cancer progression.15 SP and its high affinity
receptor neurokinin 1 (NK1) are highly expressed in HER2+
breast cancer and SP stimulates HER2 signalling and may
contribute to drug resistance in breast cancer.16 Thus, mast
cell activation by morphine may further exaggerate the
pro-inflammatory, pro-nociceptive, and vasoactive tumour
microenvironment.

In the present study, we used a transgenic mouse model
that mimics the evolutionary spectrum of human breast
cancer.17 In this mouse, distinct phases of tumour develop-
ment, progression, metastasis, and survival can be evaluated,
enabling analysis of the effect of opioids on tumour develop-
ment and progression and also on survival.

Methods
Mouse studies were performed with approval from the Univer-
sity of Minnesota’s Institutional Care and Use Committee
(IACUC, Protocol #0703A03589 and 1212-30170A). Detailed
procedures are described in the Supplementary Appendix.

Mice

Female, transgenic mice with a rat C3(1) simian virus 40 large
tumour antigen fusion gene (called C3TAG mice henceforth),
which causes highly invasive breast tumours were used.17

These mice develop ductal epithelial atypia around 8 weeks
of age that progresses to intraepithelial neoplasia around
12 weeks, and to grossly palpable tumours and invasive carcin-
oma around 16 weeks. Tumours principally metastasize hae-
matogenously to the lungs, but also to the adrenals, liver,
and heart. By 6 months of age, mice die due to universal devel-
opment of multifocal mammaryadenocarcinomas. This model
was chosen because the effect of morphine could be distin-
guished on distinct phases of tumour development (between
8 and 12 weeks), tumour growth (12 weeks onwards), metasta-
ses (16 weeks onwards), and survival.18

Drugs and treatments

Mice were injected subcutaneously with either phosphate-
buffered saline (PBS) or morphine sulphate (MS; Baxter
Esilerderle Healthcare, Cherry Hill, NJ, USA) at 0.5 mg kg21

day21 for 2 weeks, followed by dose escalation every 2 weeks
as follows: 0.75, 1.0, 1.25 mg kg21 day21, and finally to
1.5 mg kg21 day21 for the duration of each study as indicated.
Mice were divided into three groups to examine the effect of
morphine on: (i) tumour development/onset: 6-week-old mice
were injected with morphine for 7 weeks; (ii) tumour growth/
progression: 3-month-old mice were injected with morphine
for 7 weeks; (iii) survival: 3-month-old mice were injected
with morphine until they became moribund, which was consid-
ered the end of survival as per our animal ethics policy.

Tumour burden

At the end of treatment, mice were euthanized and all visible
tumours throughout the body were dissected out. Tumour
numbers and tumour weight/mouse were recorded as mea-
sures of tumour burden.

Immunofluorescent staining for MOR, CD31, and
lymphatic vessel endothelium hyaluranon receptor-1

Tumours were cryosectioned into 6 mm thick sections and
immunostained with: goat anti-lymphatic vessel endothelium
hyaluranon receptor-1 (LYVE-1) (1:500, R&D Systems, Minneapolis,
MN, USA), rat anti-CD31 (1:200, Santa Cruz Biotechnology, Dallas,
TX, USA), and rabbit anti-MOR (1:100, Millipore, Billerica, MA,
USA) as described by us.6 7 18 – 20 Anti-MOR antibody was vali-
dated for MOR specificity using skin sections from MOR-
knockout mice as described earlier (Supplementary Fig. S1).19

Mast cell analysis

Approximately 6 mm thick tumour sections were stained with
Toluidine blue and enumerated as described previously.6 21

Laser scanning confocal microscopy of tumour
sections

Approximately 6 mm thick tumour sections were fixed in 4%
paraformaldehyde, blocked with 3% donkey serum and per-
meabilized with 0.03% Triton X-100 (all from Sigma-Aldrich,
St Louis, MO, USA). Sections were then incubated with
primary antibodies, rabbit anti-SP (1:50, AbD Serotec, Raleigh,
NC, USA), rat anti-CD31 (1:200, Santa Cruz, CA, USA), goat anti-
c-Kit (1:100, BD Bioscience, San Jose, CA, USA), and rabbit
anti-Fc1R 1(eBioscience,SanDiego, CA,USA)as describedbyus.6

Enzyme-linked immunosorbent assay for cytokines

Supernatants from tumour lysates were analysed for: tryptase
(American Research Products, Inc., Waltham, MA, USA),
b-hexosaminidase (Cedarlane Labs, Burlington, NC, USA), gra-
nulocyte macrophage colony-stimulating factor (GM-CSF),
regulated on activation normal T-cell expressed and secreted
(RANTES), SP, and interleukin-6 (IL-6; all from R&D Systems)
after the manufacturer’s instructions.

Statistical analysis

Data were analysed with Prism software (v 5.0a, GraphPad
Prism Inc., San Diego, CA, USA ). A P-value of ,0.05 was consid-
ered significant. Analysis of variance with Bonferroni’s
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correction was used to correlate the responses between treat-
ments and Student’s t-test was used to analyse the signifi-
cance between PBS and morphine treatment. A Kaplan–
Meier analysis was performed to analyse survival data. All
data are presented as mean (SEM).

Results
Influence of morphine on tumour development
and progression, and survival of mice

Toexaminetumourdevelopment/onset,whichoccursbetween
8 and 12 weeks of age in C3TAG mice, we started morphine or
PBS injections before this age (at 6 weeks) and continued the
treatments for the next 7 weeks (until 13 weeks of age). Mor-
phine treatment did not have a significant effect on tumour
burden (weight and number) when compared with PBS treat-
ment (Fig. 1A and B). Both sets of mice developed palpable
tumours by 12 weeks of age, as expected.

Next, to examine the influence of morphine on the growth of
established tumours, we treated 3-month-old mice with mor-
phine or PBS for 7 weeks. Morphine treatment of 3-month-old
mice led to significant increases in tumour burden (weight and
number) when compared with PBS treatment (Fig. 1C and D).
Morphine-induced tumour growth was antagonized by co-
treatment with the opioid receptor antagonist naloxone, sug-
gestive of an opioid receptor-mediated mechanism. The
Kaplan–Meier analysis showed that continued treatment of
3-month-old mice with morphine resulted in significantly
shorter survival when compared with PBS treatment (Fig. 1E).

Together, these data demonstrate that morphine does not
influence the onset of tumour development, but promotes
the growth of existing tumours via an opioid receptor-
mediated mechanism, resulting in shorter survival of tumour-
bearing mice.

MOR expression in C3TAG tumours, and effect of
morphine on angiogenesis and lymphangiogenesis

MOR-ir was considerably more intense in large (established)
tumours when compared with small ( just developed)
tumours (Fig. 2A). MOR-ir co-localized with endothelial and
with non-endothelial cells (Fig. 2A, bottom left panel). Larger
tumours also showed appreciably more angiogenesis and lym-
phangiogenesis when compared with smaller tumours (data
not shown).

Morphine stimulated angiogenesis and lymphangiogenesis
in the tumours of 3-month-old mice treated for 7 weeks
(Fig. 2B). Tumour vasculature in morphine-treated mice was
more dense and had more dilated vessels when compared
with PBS-treated mice. Lymphatic vessels were organized in
a peri-tumoural fashion and also appeared to be more
dilated in morphine-treated mice. These data suggest that
MOR expression, angiogenesis, and lymphangiogenesis in-
crease as tumours grow, and are further stimulated by mor-
phine treatment in association with morphine-induced
tumour growth.

Morphine promotes mast cell activation in tumours

Toluidine blue and Fc1R1 and c-Kit staining revealed larger and
significantly higher number of mast cells in tumours from mice
treated with morphine (Fig. 3A and B). Additionally, tumour sec-
tions from morphine-treated mice exhibited intense mast cell
degranulation, whereas PBS-treated mice showed few or no
degranulating mast cells (Fig. 3A). Mast cells were co-localized
with the tumour vasculature or in close proximity to the vascu-
lature in both morphine- and PBS-treated mice. However, the
levels of tumour tryptase and b-hexosaminidase, markers of
mast cell activation, were significantly higher in morphine-
treated mice when compared with PBS-treated mice (Fig. 3D

and E). These findings suggest that morphine may influence
tumour growth via the activation of mast cells, in addition to
promoting angiogenesis and lymphangiogenesis.

Morphine treatment leads to increased cytokine
expression in tumours

Because activated mast cells release cytokines and are also
themselves activated bycytokines,we examinedwhether mor-
phine treatment amplifies the release of GM-CSF, RANTES, and
IL-6. Both GM-CSF and RANTES are involved in the recruitment,
differentiation, and proliferation of mast cells. An enzyme-
linked immunosorbent assay (ELISA) assayshowed significant-
ly higher concentrations of GM-CSF, RANTES, and IL6 in
tumours of mice treated with morphine when compared with
PBS (Fig. 4A–C). These data suggest that morphine stimulates
the positive feedback loop of GM-CSF and RANTES release and
the recruitment, differentiation, and degranulation of mast
cells.

Morphine triggers the release of SP

We observed greater SP-ir and significantly higher concentra-
tion of SP in tumours of morphine-treated mice compared
with PBS-treated mice (Fig. 5A and B). SP-ir co-localized with
mast cells and with other cells (Fig. 5A). These data suggest
that morphine may promote neuro-inflammation leading to
cancer progression and pain by stimulating SP release via
mast cell degranulation (Fig. 6).

Discussion
We demonstrate that morphine does not influence cancer ini-
tiation, but it stimulates the progression of spontaneously
developed breast tumours and shortens the survival of tumour-
bearing mice. MOR-ir was undetectable in small tumours, but
larger tumours demonstrated dense MOR-ir that co-localized
with vascular and non-vascular compartments of the tu-
mours. Morphine also promoted lymphangiogenesis, mast
cell activation, and degranulation, and in the tumour micro-
environment, it increased the levels of inflammatory cytokines,
tryptase, and SP; the combination of these effects mayunderlie
morphine-induced tumour progression.

Earlier studies from our laboratory and on the influence
of morphine used subcutaneously or orthotopically xeno-
grafted tumour cells that develop into localized tumours in
mice.3 7 22 – 24 Owing to distinct time differences (in weeks)
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between the development and progression phase of tumours
in mice used in the present study, we could determine that
morphine was not involved in the initiation of breast cancer
in this model. This is a critical question with a bearing on the
treatment of chronic non-cancer pain. Consistent with our pre-
clinical findings, we found that chronic opioid treatment for
non-cancer pain was not associated with higher grade or
stage of subsequently diagnosed prostate cancer in patients
(unpublished observations).

In human studies, it is difficult to separate the possibility
that higher opioid exposure causes tumour progression
from the possibility that opioid requirement is higher
because of tumour progression that increases pain. In the
current study, a pre-determined escalating dose schedule of
morphine was administered to the entire experimental
group starting at the same age. It can therefore confidently
be concluded that at least in this mouse model that mimics
human breast cancer, morphine itself promotes tumour
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progression and reduces survival via the cellular and molecu-
lar effects identified herein.

It is also apparent from this mouse model that at initiation,
tumours do not express MOR, but that MOR is expressed as
tumours enlarge. This appears to be due to the cytokines and
growth factors, which increase as tumours grow. Earlier, we
showed that vascular endothelial growth factor (VEGF)

stimulates MOR expression in endothelial cells.25 Other cyto-
kines including IL-6 and TNF-a increase MOR expression in a
variety of cells.26 27 Higher MOR-ir in enlarging tumours coin-
cides with the potentiation of tumour growth after morphine
treatment. Morphine showed no effect on the initiation of
tumour growth, likely because of the lack of MOR in the
tumours. Consistent with this phenomenon, we found that

Large tumoursA

B

MOR,
DAPI

CD31,
DAPI

MOR,
CD31,
DAPI

Morphine PBS

Small tumours

50 mm

500 mm

Fig 2 Higher MOR expression in growing tumours drives morphine-induced angiogenesis and lymphangiogenesis. (A) Cryosections of large and
small tumours showing MOR-ir (green), vasculature (CD31-ir, red), and nuclei (DAPI, blue). Bottom row shows co-localization of MOR-ir with vas-
culature (yellow). Magnification ×1000; scale bar, 50mm. (B). Three-month-old mice were treated with morphine or PBS for 7 weeks. Immunostain-
ing of tumour sections co-stained for lymphatic vessel endothelium (LYVE-1, green), blood vessels (CD31, red), and cell nuclei (DAPI, blue) is shown.
Magnification ×100; scale bar, 500 mm. Each image in (A) and (B) represents six different tumours.
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patients with advanced (metastatic) prostate cancer expres-
sing higher levels of MOR in prostate cancer tissue had signifi-
cantly worse disease outcomes than those with lower MOR
expression.9

Endogenous opioid levels are increased in the blood of
patients with breast cancer and in the tumour tissue in
human melanoma.28 29 Therefore, endogenous opioids them-
selves may interact with MOR in tumours, resulting in disease
progression, even without exogenously administered opioids.
In MOR knockout mice, lung cancer progression and metasta-
ses were reduced when compared with wild-type mice, in
the absence of pharmacological opioid administration.22

Similar findings were reported in a mouse model of melan-
oma.29 In our study, the opioid receptor antagonist naloxone
inhibited morphine-induced tumour progression, suggesting
that morphine acts via an opioid receptor-mediated mechan-
ism. These findings indicate that MOR expression in tumours is
closely associated with disease outcomes, and that endogen-
ous MOR may have a cancer-promoting effect that is further
potentiated by treatment with morphine.

Human studies from our group and others have reported
that endogenous MOR expression and opioid exposure correl-
ate with disease progression, survival, or both.9 30 31 MOR-ir
and MOR binding sites were significantly greater in cancerous
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tissue when compared with adjacent non-cancerous normal
human lung3 22 23 32 33 or prostate9 tissue. Therefore, ourobser-
vations further underscore the importance of tumour-MOR ex-
pression in promoting metastases, leading to reduced survival.

In addition to the tumour vasculature, lymphatic vessels are
also involved in tumour metastasis.34 Lymphatic vessel inva-
sion is a strong adverse prognostic factor for survival in patients
with breast cancer.35 Since peri-tumoural, rather than intra-
tumour, lymphatics are known to be functional in the context
of dissemination of tumour cells,34 the higher density of peri-
tumoural lymphatics in morphine-treated mice observed in

the present study may play a role in dissemination of tumour
cells via lymph nodes to distant sites, contributing to the
shorter survival of tumour-bearing mice.

Morphine stimulates mast cell degranulation.6 This may
have consequences on cancer progression and pain. While
mast cells release SP, tryptase released from mast cells
stimulates more release of SP via protease-activated receptor
2 (PAR2) on peripheral nerve fibres.6 36 SP stimulates vascular
permeability and angiogenesis and also activates mast cells
and nerve fibres, leading to vascular dysfunction, inflamma-
tion, and pain.37 – 40 In the present study, we found that
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morphine treatment led to an increase in GM-CSF and RANTES
which are released by mast cells and also act on mast cell dif-
ferentiation and proliferation.

Increased mast cell tryptase in the periphery, dorsal root
ganglia, and spinal cord of mice with paclitaxel-induced neuro-
pathic pain activates PAR2, and mediates the transition from
acute to chronic pain in a murine cancer model.41 42 Mast
cells promote the growth of pancreatic ductal adenocarcin-
oma (PDAC) in mice, and correlate with higher recurrence
rates and shorter survival in patients.43 Additionally, SP directly
influences cancer progression.15 16 SP transactivates HER2 in
cancer cells derived from human breast cancer, and an NK1 re-
ceptor inhibitor ameliorated tumour growth in vivo in HER2-
and EGFR-expressing tumours in mice.16 SP treatment of
breast cancer cells inhibited their responsiveness to the EGFR
and HER2 tyrosine kinase inhibitors, whereas treatment with
an NK1 receptor inhibitor appeared to synergistically
augment the therapeutic activity of EGFR/HER2 inhibitors.
Therefore, morphine-induced SP in tumours may influence
cancer progression, pain, and response to targeted therapies.

Thus, mast cell degranulation releases tryptase, which acti-
vates SP release from nerve endings, thereby contributing to
sustained neurogenic inflammation and pain in cancer (Fig. 6).
Mast cells and MOR may be potential therapeutic targets for
simultaneously ameliorating pain and cancer progression.

Supplementary material
Supplementary material is available at British Journal of
Anaesthesia online.
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