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Abstract

Purpose: To overcome the severe intensity inhomogeneity and blurry boundaries in HIFU (High Intensity Focused
Ultrasound) ultrasound images, an accurate and efficient multi-scale and shape constrained localized region-based active
contour model (MSLCV), was developed to accurately and efficiently segment the target region in HIFU ultrasound images
of uterine fibroids.

Methods: We incorporated a new shape constraint into the localized region-based active contour, which constrained the
active contour to obtain the desired, accurate segmentation, avoiding boundary leakage and excessive contraction.
Localized region-based active contour modeling is suitable for ultrasound images, but it still cannot acquire satisfactory
segmentation for HIFU ultrasound images of uterine fibroids. We improved the localized region-based active contour model
by incorporating a shape constraint into region-based level set framework to increase segmentation accuracy. Some
improvement measures were proposed to overcome the sensitivity of initialization, and a multi-scale segmentation method
was proposed to improve segmentation efficiency. We also designed an adaptive localizing radius size selection function to
acquire better segmentation results.

Results: Experimental results demonstrated that the MSLCV model was significantly more accurate and efficient than
conventional methods. The MSLCV model has been quantitatively validated via experiments, obtaining an average of 0.94
for the DSC (Dice similarity coefficient) and 25.16 for the MSSD (mean sum of square distance). Moreover, by using the
multi-scale segmentation method, the MSLCV model’s average segmentation time was decreased to approximately 1/8 that
of the localized region-based active contour model (the LCV model).

Conclusions: An accurate and efficient multi-scale and shape constrained localized region-based active contour model was
designed for the semi-automatic segmentation of uterine fibroid ultrasound (UFUS) images in HIFU therapy. Compared with
other methods, it provided more accurate and more efficient segmentation results that are very close to those obtained
from manual segmentation by a specialist.
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Introduction

Uterine fibroids are commonly occurring benign tumors that

can trouble females. HIFU therapy, a new type of noninvasive

surgery, has been gradually applied to the treatment of uterine

fibroids for its safety and effectiveness, reducing pain caused by

traditional surgery [1–4]. As is widely known, precise segmentation

of ultrasound images has always been a problem with regard to

image segmentation, and there has not been an ideal solution until

now due to the images’ low SNR (signal to noise ratio), weak

boundaries and intensity inhomogeneity [5]. More serious noise

and blurry boundaries have been observed in images used in

HIFU therapy because of water interference in the treatment

process. However, segmentation of target regions, whose precision

decides the surgery’s final result, is the most critical stage in HIFU

therapy. In the meantime, real-time performance is a great

advantage of ultrasound-led HIFU systems, and the speed of

segmentation of tumor regions greatly impacts the overall process

of the surgery [6–8]. For these reasons, development of a highly

effective and precise image segmentation method for ultrasound

images in HIFU therapy is urgently needed.
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Active contour modeling has been widely applied in medical

image segmentation in recent years as a consequence of its

smoothness and closure, and because it can obtain fairly good

results [9–11]. Active contour modeling, which was first proposed

by Kass et al. [12], can be classified into two categories: edge-

based modeling [12–14] and region-based modeling [15–18]. The

edge-based active contour model adopts the image’s gradient

information as an image-based ‘‘force’’ to push the contour toward

the target boundary, and achieves a good segmentation result for

target regions with clear edges. However, sensitivity to noise in the

image and the initial contours [19], the two major drawbacks of

this model, exist because gradient information is highly localized

image information, so the problem of edge leakage can easily be

produced when this model is applied to ultrasound images, such as

GVF (Gradient Vectov Flow) [20]. Region-based active contour

modeling, in which the driving force is formed using statistical

information about the foreground and background regions, applies

to image segmentation where the intensity is homogeneously

distributed inside regions. The most famous region-based active

contour model is the piecewise constant model by Chan and Vese

(C-V model) [16], which effectively segments ultrasound images

with noise and weak edges as a consequence of not using the

images’ gradient information. However, incorrect results can be

produced on HIFU ultrasound images with intensity inhomoge-

neity because the C-V model assumes regions of intensity in the

image are homogeneously distributed and utilizes global statistical

information [16,19].

To overcome the shortcoming that makes the region-based

active contour model difficult to use when segmenting targets with

inhomogeneous intensity, localizing the region-based model has

attracted interest, and many models using localized information

have been proposed. Li et al. [21] presented a model where a

kernel function was introduced to define local binary fitting energy

in a variational level set framework, thus incorporating local

grayscale information into a region-based active contour model.

Then, Li et al. [18] made improvements on this model and studied

in depth the selection of kernel functions and the size of localized

regions. S. Lankton et al. [19] came up with a localizing

framework that allowed a region-based energy equation that

utilized global information to be rewritten in localized form and

thoroughly analyzed the impact of the localizing radius on

segmentation results. Zhang et al. [22] put forward a similar

localized fitting energy, improving calculation efficiency. Later,

Wang et al. [23] proposed a region-based grayscale level fitting

energy combining global and local information with better

flexibility. Similarly, Wu et al. [24] presented the average

misclassification probability (AMP) model, as well as a global-to-

local strategy by combining global and local information to

enhance segmentation results on complex images. Appia et al. [25]

introduced a global edge-based constraint into the region-based

model. All of these models include local information and are

suitable approaches for the ultrasound image segmentation

problem. They have better segmentation capacity for images with

intensity inhomogeneity than region-based active contour models

that use global information, but for UFUS images in HIFU

therapy that have seriously low SNR, low contrast and weak edges,

as shown in Figure 1, the localized region-based active contour

model may still produce incorrect segmentation with boundary

leakage or excessive contraction. To solve this problem, we

proposed incorporating a shape constraint into the localized

region-based active contour model. Meanwhile, we studied

adaptive selection of localizing radius that is suitable for

segmentation of UFUS images in HIFU therapy to acquire better

segmentation results.

As mentioned in [5], for ultrasound images, depending only on

edge and region information are usually not sufficient to obtain

reliable and precise segmentation. In this case, shape constraint is

usually used to improve the segmentation results [26–30].

Leventon et al. [26] used a level set representation to model the

shape prior by computing a principal components analysis (PCA)

of training shapes incorporated in level set functions, but the

variational formulation was not associated with evolution equa-

tion. Chen et al. [27] designed a novel variational model that

incorporated prior shape knowledge into geometric active

contours. Later, Chen presented a method to solve the minimi-

zation problem of the coupling of prior shape and intensity profiles

for image segmentation [28]. Bresson et al. [29] used a space of a

given shape in the target region to build a shape energy and used

local edge information and global image information at the same

time. Recently, Wu et al. [30] also combined prior high-level

shape information to build a non-parametric statistical shape

model and applied it to prostate segmentation. Huang et al. [31]

focuses on optimization of robust graph-based (RGB) segmenta-

tion algorithm to extract breast tumors in ultrasound images more

adaptively and accurately. Considering that the benign uterine

fibroids usually approximate ellipsoid shapes of different sizes, we

take an ellipse as an example to form a shape constraint to

segment UFUS images for HIFU therapy. In this paper, we

incorporate a shape constraint into a localized region-based level

set framework to obtain the desired and accurate segmentation

avoiding boundary leakage and excessive contraction.

To reduce the calculation time consumed by segmentation of

HIFU ultrasonic images, a multi-scale segmentation method is an

effective way to significantly improve the segmentation efficiency

in HIFU therapy. Yu et al. [32] proposed a novel method for

breast mass segmentation based on the level set method and multi-

scale analysis. Kim et al. [33] introduced a flow-based multi-scale

framework for unsupervised surface defect segmentation based on

the multi-scale scheme of the phase spectrum of Fourier transform.

Zhou et al. [34] proposed a new multi-scale saliency detection

algorithm based on image patches. Wang et al. [35] presented a

multi-scale framework for segmentation of ultrasound image based

on speckle-reducing anisotropic diffusion and geodesic active

contours. All of these previous works utilized multi-scale methods

to improve segmentation efficiency by reducing the heavy

computational burden in some way. Thus, we propose introducing

a multi-scale segmentation method to improve the efficiency of

segmentation of the target regions of UFUS in HIFU therapy.

In this work, our contributions are focused on following 3 parts.

First, by incorporating a new shape constraint into localized

region-based active contouring, the MSLCV model is able to

address ultrasound images with substantial noise and weak edges,

and even with some missing information. This model provides

more precise segmentation, and the shape constraint is universal

and easy to use. Second, to optimize the calculation, we analyze

Figure 1. HIFU ultrasound images of uterine fibroids with
extremely low SNR, low contrast and weak edges; the red
arrows show edges that can easily lead to incorrect segmen-
tation.
doi:10.1371/journal.pone.0103334.g001
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and utilize a multi-scale segmentation algorithm to greatly

improve the efficiency of segmentation. Third, we have studied

the selection of localizing the radius in depth and have designed an

adaptive radius size selection function for the segmentation of

UFUS images in HIFU therapy. Meanwhile, considering that the

proposed method relies on initialization, we put forward some

corresponding methods to reduce the initialization sensitivity.

The remainder of this paper is organized as follows. In the

section ‘‘Materials and Methods’’, the proposed MSLCV

model and two classical region-based active contour models

are described in detail. These two classical region-based active

contour models are the bases of the MSLCV model. Numerous

experiments and comparisons are shown in the ‘‘Results’’

section. We analyze and discuss several key implementation

details and improvement methods that play important roles in

the accuracy and efficiency of segmentation in the ‘‘Discus-

sion’’ section. Finally, in the ‘‘Conclusions’’ section, we

summarize our work and give some directions for further

research.

Materials and Methods

2.1 C-V Model
Chan and Vese [16] proposed a two-phase piecewise constant

model (C-V model) by simplifying Mumford and Shah’s model

[36] and combining the level set method. For a given grayscale

image I : V?R, and a closed curve C, the energy function is

defined as follows:

ECV c1,c2,Cð Þ~l1

ð
inside(C)

I xð Þ�c1j j2dxz

l2

ð
outside(C)

I xð Þ�c2j j2dxzm:length(C),

ð1Þ

where variable x in I(x) refers to a point in V, and outside(C) and

inside(C) accordingly refer to regions outside and inside contour

C, respectively. c1 and c2 are two constants used to evaluate the

image intensity of outside(C) and inside(C). Parameters l1, l2

and m are non-negative constants in which l1 and l2 control the

image data’s driving force inside and outside contour C,

respectively, and m controls the smoothness of the contour. In

equation (1), the first two terms use region-based global

information for form fitting energy, which is called global fitting

energy.

After minimizing the energy function in equation (1) and using

the zero level set to express contour C~fx[Vjw(x)~0g in the

level set method, we can obtain c1 and c2 and the variational level

set equation as follows:

c1 wð Þ~
Ð
V I xð Þ:H0 w xð Þð ÞdxÐ

V H0 w xð Þð Þdx
, ð2Þ

c2 wð Þ~
Ð
V I xð Þ: 1{H0 w xð Þð Þð ÞdxÐ

V 1{H0 w xð Þð Þð Þdx
, ð3Þ

Lw

Lt
~d0 wð Þ {l1 I{c1ð Þ2zl2 I{c2ð Þ2zm:div

+w

+wj j

� �� �
, ð4Þ

where w(x) represents the level set function, H0(x) is the Heaviside

function, d0(w) is the Dirac function, and the derivative of H0(x) is

{l1 I{c1ð Þ2zl2 I{c2ð Þ2, called the data fitting term, which

controls the evolution of the curve. m:div(+w= +wj j), called the

arc length term or regular term, determines the smoothness of

the curve. The limitation of this model is that because c1 and

c2 are acquired using region-based global information without

considering localized image information, c1 and c2 might

disappear from the original data when the image intensity

is inhomogeneously distributed, resulting in segmentation

error.

2.2 Localized Region-based Active Contour Model
To overcome the difficulty that the global region-based

active contour model has with processing images with

inhomogeneously distributed intensity, S. Lankton et al. [19]

proposed a localized region-based active contour model that

allowed any global energy formula based on regions to be

rewritten into localized form, thus segmenting these images

more efficiently and precisely using localized information. The

basic idea of this model is that the localized energy of every

point on the curve is calculated separately. To optimize the

localized energy, every point is considered separately and

moves toward the minimized energy calculated for the point’s

localized region. Each point’s localized neighborhood is

segmented into local inside and local outside by the evolving

curve. Then, energy optimization is realized by a localized

region fitting model.

To define the localized region for each point on the curve, an

eigenfunction is defined as [19]:

B x,yð Þ~
1, x{yk kvr

0, otherwise

�
, ð5Þ

where x,y[V represent each point as separate space variables, and

r represents the radius parameter. When point y is in the circle

centered at x and with a radius of r, the value of the function is 1,

otherwise 0.

The eigenfunction B(x,y) is adopted to acquire the average

intensity inside and outside the localized region of point x on the

contour, respectively denoted by cx1 and cx2:

cx1 wð Þ~
Ð
Vy

B x,yð Þ:H0 w yð Þð Þ:I yð ÞdyÐ
Vy

B x,yð Þ:H0 w yð Þð Þdy
, ð6Þ

cx2 wð Þ~
Ð
Vy

B x,yð Þ: 1{H0 w yð Þð Þð Þ:I yð ÞdyÐ
Vy

B x,yð Þ: 1{H0 w yð Þð Þð Þdy
, ð7Þ

where Vy is the local region defined by B(x,y). After applying the

localized framework into the C-V model, the localized version of

the energy function and the curvature flow for point x are,

respectively:

ELCV cx1,cx2,wð Þ~
ð
V

d w xð Þð Þ
ð
Vy

B x,yð Þ:Fregion I yð Þ,w yð Þð Þdydx

zm

ð
V

d w xð Þð Þ +w(x)k kdx,

ð8Þ
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Lw

Lt
xð Þ~

d w xð Þð Þ
ð
Vy

B x,yð Þd w yð Þð Þ: I yð Þ{cx1ð Þ2{ I yð Þ{cx2ð Þ2
� �

dy

"

zm:div
+w xð Þ
+w xð Þj j

� ��
,

ð9Þ

where Fregion~H(w(y))(I(y){cx1)2z(1{H(w(y)))(I(y){cx2)2

represents the region-based force, d(w) is the Dirac function,

B(x,y) is the above-mentioned eigenfunction, x is a global point in

the whole image, and y is a local point in the local region, which is

the circle centered at x and with a radius of r. Compared with

equation (4), here, l1~l2~1. H(w), compared with H0(w)
mentioned above, is only a difference of definition of inside and

outside the region. In the localized version, the energy is

minimized when every point on the curve has moved such that

its corresponding localized inside and outside region is the best

estimate of localized average cx1 and cx2.

Here, we call this localized C-V model the LCV model, which

segments images with inhomogeneously distributed intensity better

than does the C-V model. However, for images for HIFU therapy

with extremely low SNR, low contrast and blurry boundaries, the

model still easily produced boundary leakage and excessive

contraction. Moreover, because the LCV model applied the C-

V model on every point on the curve separately, it resulted in a

large amount of calculations and became time-consuming.

2.3 Multi-Scale and Shape Constrained Localized Region-
based Active Contour Model

To overcome the limitations of the localized region-based active

contour model, we propose an accurate and efficient multi-scale

and shape constrained localized region-based active contour

model, called the MSLCV model, which improves segmentation

accuracy and efficiency, avoids boundary leakage and excessive

contraction and reduces segmentation time. By incorporating a

shape constraint, we obtain more accurate segmentation for

uterine fibroid HIFU ultrasound images, and by using a multi-

scale segmentation method, we improve the segmentation

efficiency.

2.3.1 Shape Constrained Localized Region-based Active

Contour Model. Traditional shape constrained models always

need specified training followed by a complex matching process of

shifting and stretching transformations [29], which is complicated

and time-consuming. However, ultrasound imaging, due to its low

SNR, low contrast and blurry boundaries, requires a good initial

contour to obtain correct segmentation. Because uterine fibroids

usually approximate elliptical shapes, we can set an ellipse of

suitable size as an initial contour. Based on the LCV model, we

utilized this initial contour as a simple and effective shape

constraint to avoid boundary leakage and excessive contraction

during the segmentation process. This shape constraint was

incorporated into the level set framework of the LCV model,

and accurate segmentation results were acquired in the experi-

ments. Here, we call our proposed shape constrained localized

region-based active contour model the SLCV model.

The basic idea is to add shape constraint energy to the process

of separately calculating each point’s localized energy on the

curve. The shape constraint energy is acquired by a function of the

nearest distance between the point and the initial contour. We

propose the following total energy function of the SLCV model by

incorporating the shape constraint as:

ESLCV wð Þ~
ð
V

d w xð Þð Þ
ð
Vy

B x,yð Þ:Fregion I yð Þ,w yð Þð Þdydx

zm

ð
V

d w xð Þð Þ +w xð Þk kdxzb

ð
V

d w xð Þð Þ:Fshapedx,

ð10Þ

where

Fshape~sign w0 xð Þð Þ px{pmink k2, ð11Þ

sign w0 xð Þð Þ~
1, w0 xð Þw0

{1, w0 xð Þv0

0, w0 xð Þ~0

8><
>: , ð12Þ

where px is the location of point x on the current contour in the

image, pmin is the location of the nearest point on the initial

contour C0 to point x, w0 is the level set representation of the

initial contour C0, b is a positive constant determining the shape

constraint force, and sign(w0(x)) is a function determining the

direction of the shape constraint force to move it towards the

initial contour. Localized average values cx1 and cx2 remain the

same as in equations (6) and (7). In equation (10), the first term is

the data fitting term, the second term is the arc length term, and

the third term is the incorporated shape constraint term that forms

the force toward the initial contour when the curve deforms in the

evolution process.

By minimizing the energy function of the SLCV model, the

corresponding level set evolution equation is:

Lw

Lt
xð Þ~

d w xð Þð Þ
ð
Vy

B x,yð Þd w yð Þð Þ: I yð Þ{cx1ð Þ2{ I yð Þ{cx2ð Þ2
� �

dy

"

zm:div
+w xð Þ
+w xð Þj j

� �
zb:sign w0 xð Þð Þ px{pmink k2

�
:

ð13Þ

b in equation (10) and equation (13) decides the driving force of

the shape constraint in the segmentation. When it approaches a

maximum, the initial contour almost ceases to evolve, and the

constraint degrades to non-existent when it approaches a

minimum. b can be selected according to the quality of the

images to be segmented.

In experiments, the Heaviside function H(w(x)) used to express

the inside of contour C is defined using a smooth version as [19]:

HE w xð Þð Þ~

1, w xð Þv{E

0, w xð ÞwE
1

2
1z

w xð Þ
E

z
1

p
sin

pw xð Þ
E

� �� �
, otherwise

8>>><
>>>:

:ð14Þ

The smooth version of the Dirac function, d(w(x)), used to mark

nearby regions of the curve, is obtained through derivation of

H(w(x)):
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dE w xð Þð Þ~

1, w xð Þ~0

0, w xð Þj jwE
1

2E
1z cos

pw xð Þ
E

� �� �
, otherwise

8>>><
>>>:

: ð15Þ

Thus, the level set evolution equation is estimated as:

Lw

Lt
xð Þ~

dE w xð Þð Þ
ð
Vy

B x,yð ÞdE w yð Þð Þ: I yð Þ{cx1ð Þ2{ I yð Þ{cx2ð Þ2
� �

dy

"

zm:div
+w xð Þ
+w xð Þj j

� �
zb:sign w0 xð Þð Þ px{pmink k2

�
:

ð16Þ

This SLCV model has a natural shortcoming in that it relies on

the quality of the initial contour. As uterine fibroids typically

approximate elliptical shapes, in the experiments, we set ellipses of

different sizes as the initial contours for the segmentation of uterine

fibroids. In the discussion, we have also proposed some methods to

reduce the initialization sensitivity. In the experiments, we

normalized the region-based energy and then used it together

with the arc length term and shape constraint term to act on the

evolution of the curve. Figure 2 illustrates that the shape constraint

force makes a difference in the segmentation of HIFU ultrasound

images of uterine fibroids, effectively avoiding boundary leakage.

2.3.2 Multi-Scale Segmentation. To overcome the short-

comings of the SLCV model of large amounts of computation and

a time-consuming segmentation process, we propose the MSLCV

model, which combines a multi-scale segmentation algorithm with

our proposed SLCV model and incorporates a multi-scale concept

into the process of evolving the level set curve and effectively

reduces the calculation time. The basic idea is, in the process of

curve evolution, we first use a Gaussian pyramid to decompose the

ultrasound image into different scale images and then perform

coarse segmentation on the coarse-scale image using the SLCV

model instead of directly using the original-size images. Then, we

adopt the segmentation result as an initial contour for the fine-

scale image, thus gradually optimizing the contour and reaching

the final segmentation result. Because the amount of calculation is

greatly reduced by using coarse segmentation on the coarse-scale

image while obtaining an essentially correct result that is used as

an initial contour for further segmentation, it takes only a few

iterations to obtain satisfactory results. Thus, the MSLCV model

reduces segmentation time while maintaining the accuracy of the

segmentation results.

Let us suppose that the size of an image is M|N , and n

represents the scale. Now that n~0 represents the original image,

the image with size (M=2)|(N=2) represents layer 1, …, the

image with size (M=2n)|(N=2n) represents layer n, and the

Gaussian pyramid formed by decomposition is as shown in

Figure 3.

The original size of the ultrasound images we used in the

experiments is 524|413. To analyze accuracy and calculation

time using different scales, we segmented HIFU ultrasound images

with different scales and obtained Table 1 through our experi-

ments as follows.

According to Table 1, the DSCs that represent the segmenta-

tion accuracy of layer 0, layer 1 and layer 2 are nearly the same,

while for layer 3, the DSC decreases due to a large loss of

information that results in the images’ becoming overly vague. In

regard to the calculation time, the segmentation time drops

quickly with increasing numbers of layers and decreasing image

size. The segmentation time for layer 2 dropped to less than

10 seconds.

Considering accuracy and time of segmentation, we chose the

image from layer 2 as the input image for coarse-scale

segmentation, and the original image for fine-scale segmentation.

Because of the difference in the initial contour and the different

results for the two segmentations, the parameter settings are also

different. In the first segmentation, the initial contour is manually

initialized using an ellipse. To overcome initialization sensitivity,

the weight of the shape constraint is small and the localizing radius

is large, whereas in the second segmentation, the weight of the

shape constraint is large and the localizing radius is small. The

process for the MSLCV algorithm can be described as Table 2:

Figure 2. The shape constraint’s effect of avoiding boundary
leakage. The yellow curve represents the initial contour, the red curve
represents the contour in the process of evolution, and the green curve
represents the contour drawn manually by the specialist. The red arrows
display the forces of the LCV model near regions of easily occurring
boundary leakage, and the blue arrows represent the shape constraint
forces pointing toward the direction of the initial contour.
doi:10.1371/journal.pone.0103334.g002

Figure 3. Decomposition images of the Gaussian pyramid. n
represents for scale of Gaussian pyramid.
doi:10.1371/journal.pone.0103334.g003
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Results

We conducted experiments on a desktop with an Intel CPU of

Core Dual-core E7500 2.93 GHz, 2 GB RAM, Windows XP 32-

bit and Matlab 2012a.

3.1 Segmentation of Synthetic Images
We first used synthetic images to test the effects of the shape

constraint proposed in this work. When initializing contours using

an ellipse on the synthesized images shown in Figure 4, we utilized

a shape constraint so that the final segmentation would retain an

approximately elliptical contour. However, without a shape

constraint, common segmentation results will stall at clear edges

and cannot maintain the true shape of the target. The experiment

indicates that boundary leakage and excessive contraction will not

occur in the segmentation of images with information loss or

severe noise near the target region when a shape constraint is

introduced to maintain the true shape of the target.

3.2 Segmentation of Uterine Fibroids in HIFU Ultrasound
Images

In this section, we tested our proposed MSLCV model on

uterine fibroids in ultrasound images for HIFU therapy and

compared it with the SLCV model, which is a version of the

MSLCV model without multi-scale segmentation, and other well-

known methods that are suitable for ultrasound images with

inhomogeneous intensity. All of the HIFU ultrasound images of

uterine fibroids used here came from the HIFU center of The

Second Affiliated Hospital of Chongqing Medical University.

For ease of statistical analysis, the resolution of each image was

adjusted to 524|413. Using the software mentioned in [37], we

compared the MSLCV model and the SLCV model with 5 other

well-known methods on their performance in segmenting UFUS

images for HIFU therapy, including an edge-based active contour

model (GAC; geodesic active contours [13]) and region-based

active contour models (C-V [16], LCV [19], RSF (region-scalable

fitting) [18], and LGF (local Gaussian fitting) [38]). Figure 5

presents the experimental results from MSLCV, SLCV and the

other five 5 methods when they were used to segment 10 typical

ultrasound images of uterine fibroids for HIFU therapy. According

to the images’ blurry boundaries, the HIFU ultrasound images of

uterine fibroids are categorized into good, fair, and poor groups.

Images A and B, with relatively clear boundaries, belong to the

good group; images C, D, E and F, with blurry boundaries in some

regions, belong to the fair group; and images G, H, I and J, with

extremely blurry boundaries and low contrast, belong to the poor

group. In the experiments, we set an ellipse of suitable size as the

initial contour. The experimental results illustrate that MSLCV

and SLCV can achieve more accurate segmentation results than

the other 5 methods while avoiding boundary leakage and

excessive contraction, even for the images in the poor group.

Table 2. The process the MSLCV algorithm.

Algorithm : MSLCV

1: The first segmentation:

2: Initialize contour as C0 .

3: Assume the size of original image I0 is M|N , get the (M=4)|(N=4) image I1 and the corresponding contour C1 by Gaussian Pyramid, initialize level set function
w1(x) from C1 by SDF (Signed Distance Function).

4: while not meet the iteration stop condition do

5: evolve the curve C1 on image I1 by evolving w1(x) using the evolution equation (14)

6: end while

7: get the first segmentation result C2 and w2(x), C2~fx[Vjw2(x)~0g.
8: The second segmentation:

9: get C3 from C2 after interpolation and enlargement to the size of I0 and corresponding w3(x).

10: while not meet the iteration stop condition do

11: evolve the curve C3 on image I0 by evolving w3(x) using the evolution equation (14)

12: end while

13: get the second segmentation result C4 and w4(x), C4~fx[Vjw4(x)~0g as the final result.

doi:10.1371/journal.pone.0103334.t002

Table 1. Accuracy and calculation time under different scales (iterations = 300).

Layer n Size Localized radius DSC Calculation time (s)

0 524|413 40 0.96 81.13

1 262|207 30 0.96 25.84

2 131|104 15 0.95 5.05

3 66|52 8 0.93 1.76

doi:10.1371/journal.pone.0103334.t001
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To more precisely estimate the quantitative comparison

between the segmentation results and manual segmentation by a

specialist, we adopt the Dice similarity coefficient (DSC) [39] and

the mean sum of square distance (MSSD) [37] as standards. The

Dice similarity coefficient is defined as:

DSC SS,SRð Þ~ 2Area SS\SRð Þ
Area SSð ÞzArea SRð Þ , ð17Þ

where SS and SR represent segmentation results and ground truth,

respectively. The closer the value of the DSC is to 1, the better the

segmentation result is.

The mean sum of square distance is defined as:

MSSD~
1

N

XN

n~1
D2

2 A,B xnð Þð Þ, ð18Þ

D2 A,B xð Þð Þ~ min
y[A

y{xk kð Þ, ð19Þ

where A and B are the reference contour and the result contour of

our algorithm, respectively, and N is the size of the result contour.

The closer the value of the MSSD is to 0, the better the

segmentation result is. We obtained table 3 via quantitative

comparison of the MSLCV and the SLCV with the other five

methods.

Meanwhile, in table 4, we compared the calculation times of

these methods for the segmentation of UFUS images. For ease of

comparison and full evolution of the curves, we set the number of

iterations at 400. In Figure 5 and Table 3, we can see that the

accuracy of the segmentation results for the SLCV and the

MSLCV are very similar. The drop in the quality of the

segmentation results when using MSLCV is almost negligible,

while the segmentation efficiency is greatly improved by using the

multi-scale algorithm, as shown in Table 4. This result confirms

the practicability of the multi-scale segmentation algorithm. As

shown in Figure 6, the MSLCV model (the red line) achieves the

best performance in the segmentation of HIFU ultrasound images

of uterine fibroids when considering the overall evaluation of the

of the DSC, MSSD and calculation time.

Discussion

4.1 Setting the Parameters
In equation (10), m and b are two important parameters. m

decides the smoothness of the curve, and if m is too small, it will

result in some independent points in the segmented image with

substantial noise. Thus in HIFU ultrasound images with consid-

erable noise, we usually choose a relatively large value for m as the

weight of regular term. b decides the value of the shape constraint

forces in the segmentation. If its value is too large, the initial

contour will evolve very little if at all; if it is too small, the proposed

model will be degraded without shape constraint. In fact, b should

be chosen according to the quality of the images to be segmented.

It can be a relatively small value if the image has clear edges and

little noise; if the opposite is true, b should be a relatively large

value, thus enhancing the effect of the shape constraint.

Meanwhile, the closer the initial contour is to the true contour

of the target region, the larger b should be. In the experiments, we

choose 0.2 for m and 0.5–0.9 for b for the segmentation of HIFU

ultrasound images of uterine fibroids because of the images’

quality and the uterine fibroids’ shape.

4.2 The Localizing Radius
As another important parameter, the localizing radius is

separately discussed here because it decides localization, thereby

affecting the final segmentation results. An improper localizing

radius can produce incorrect results in regions with extensive

noise. Figure 7 illustrates the effects of different localizing radii on

segmentation results using the LCV and MSLCV models. In

Figure 7(a) and Figure 7(d), the iteration was slow under a

Figure 4. Segmentation of two synthetic images. Column (a) is initialization, column (b) is the segmentation results without shape constraint
and column (c) is the segmentation results with shape constraint. Comparing column (b) with column (c), we can see that the incorporation of the
shape constraint maintains an approximately elliptical contour in the final segmentation results in the segmentation of images with information loss
or severe noise near the target region.
doi:10.1371/journal.pone.0103334.g004
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relatively small localizing radius that led to incorrect results, while

in Figure 7(c) and Figure 7(f), we observe that the LCV model

easily produces boundary leakage when the localizing radius is

relatively large. Because of the shape constraint and multi-scale

segmentation, the MSLCV model effectively reduced the problem

of boundary leakage caused by the relatively large localizing radius

while worsening the difficulty in evolving the contour when the

localizing radius was relatively small. Thus, it is of great

importance for segmentation accuracy and efficiency to choose a

suitable localizing radius.

S. Lankton et al. [19] discussed the effects of localizing radius in

detail and noted that the localizing radius should be chosen

according to the scale of the target region and the presence and

proximity of surrounding noise, but they did not give a method for

adaptive selection of the localizing radius. We do so by making use

of well-initialized contours. Because difference of the size of the

target region may be substantial, to automate the selection of the

localizing radius, we connect the selection to the size of the well-

initialized contour. We take a proportion of the sum of the

difference between the maximum and minimum values on the x

axis and y axis, respectively, of the initial contour in the image as

an input parameter of the localizing radius’ adaptive selection

function. For example, if we utilize an ellipse to initialize the

contour, we take a proportion of the sum of the major and minor

axes of the ellipse. The localizing radius’s adaptive selection

function R(x) is defined as:

Figure 5. Comparison of the MSLCV and SLCV with five other well-known methods by applying them to segment 10 typical
ultrasound images (A-J) of uterine fibroids for HIFU therapy. Columns 1 and 2 are the original images and the initial contours. Columns 3 to 9
respectively show the segmentation results for GAC [13], C-V [16], LCV [19], RSF [18], LGF [38], SLCV and MSLCV. The green curves are manual
segmentation results by the specialist as ground truth, and the red curves are the final segmentation contours from these methods.
doi:10.1371/journal.pone.0103334.g005
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R(x)~10|arctan 0:28x{6ð Þz24, ð20Þ

where

x~k xmax{xmink kz ymax{ymink kð Þ, ð21Þ

where k is a coefficient that controls the proportion, which is

usually set as 0.25. xmax and ymax respectively, are the maximum

values of the initial contour on the x axis and y axis, while xmin

and ymin are the minimum values. Figure 8 demonstrates that the

function R(x) effectively avoids the problem of the localizing

radius being too large or too small when the segmentation target is

too large or too small. We set a range of 10 to 40 for the localizing

radius according to the size of the uterine fibroids in the HIFU

ultrasound images and experimental results to avoid the lack of

evolution of the contour that occurs when the localizing radius is

too small and the boundary leakage and greatly increased

calculation time that occur when the localizing radius results is

too large. In the multi-scale segmentation, we set a larger k in the

first segmentation to obtain a larger localized radius, faster

convergence and weaker initialization sensitivity, and set a smaller

k on the second segmentation to reduce the calculation time.

4.3 Reducing initialization sensitivity
The effect of the incorporated shape constraint relies on the

initial contour. To reduce initialization sensitivity, we consider

using a zero narrow band that is generated around the zero level

set created by the initial contour. The shape constraint is ignored

within the zero narrow band. As shown in Figure 9, the green

curve represents the initial contour, C0~fx[Vjw(x)~0g, the

yellow curve inside the green curve is Cinside~fx[Vjw(x)~0g,
and the yellow curve outside the green curve is Coutside~

fx[Vjw(x)~0g. The width of the zero narrow band is represented

by 2w. Ignoring the constraint within the zero narrow band

reduces the effect of the shape constraint around the initial contour

and thus reduces the initialization sensitivity. In the multi-scale

segmentation, for the first segmentation, we use the zero narrow

band to reduce the initialization sensitivity due to the manually

initialized contour, while on the second segmentation, we do not

use the zero narrow band because the coarse contour has already

been confirmed.

Conclusions

In this paper, an accurate and efficient multi-scale and shape

constrained localized region-based active contour model, called

the MSLCV model, has been proposed to perform semi-automatic

segmentation of uterine fibroid in ultrasound images for HIFU

therapy. By incorporating a new shape constraint into the

localized region-based active contour, we have obtained a more

precise segmentation result, avoiding the problems of boundary

leakage and excessive contraction due to the low SNR, weak

boundaries and intensity inhomogeneity of HIFU ultrasound

images. Further, to overcome the shortcomings of the large

computation time and the time-consuming nature of the

segmentation process in the localized region-based active contour

model, we have proposed a multi-scale algorithm that greatly

improves the segmentation efficiency. Meanwhile, to solve the

problem of the selection of localizing radius and initialization

sensitivity, we have discussed and analyzed the adaptive selection

of the localizing radius and the formation of a zero narrow band.

Compared with other well-known methods, the MSLCV model
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Figure 6. Average value Comparison comparison of DSC, MSSD and calculation time for segmentation results of GAC [13], C-V [16],
LCV [19], RSF [18], LGF [38], SLCV and MSLCV by applying them on segmenting ultrasound images (A-J).
doi:10.1371/journal.pone.0103334.g006

Figure 7. Effects of different localizing radii on the segmentation results. The first row and the second row present the segmentation
results with different localizing radii using the LCV model and the MSLCV model, respectively. The green curves are manual segmentation results by
the specialist, the red curves are the results from the experiments, and the yellow circles represent the size of localized regions formed by the
localizing radius. The localizing radii of (a) and (d), (b) and (e), and (c) and (f) are 4, 20 and 45, respectively.
doi:10.1371/journal.pone.0103334.g007
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provides more accurate and efficient segmentation results that are

closer to the manual segmentation results obtained by a specialist.

In future work, we will further improve the segmentation efficiency

by GPU acceleration and study the adaptive change of the shape

constraint’s effect according to the quality of the HIFU ultrasound

images of uterine fibroids to acquire better segmentation results.
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