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Introduction

Epithelial ovarian cancer (EOC), of which high-grade serous 
ovarian carcinoma (HG-SOC) is the most prevalent, is one of 
the most lethal gynecological diseases in the world today. Despite 
dramatic progress in high-throughput biotechnology and oncoge-
nomic studies, the genetic background of this complex disease is 
poorly understood, and the biomarkers for early detection, dif-
ferential diagnostics, prognostic, and disease prediction have not 
been implemented in clinical practices.

Today, patients diagnosed with HG-SOC are confronted with 
a grim statistic that only 30% of them would survive beyond 

5 years after initial diagnosis, even with standard chemotherapy 
and radiotherapy treatments.1 The reasons are likely due to high 
tumor heterogeneity,2 unknown tissue source site,3 asymptomatic 
tumor growth, late clinical detection and diagnosis, as well as 
high susceptibility to recurrence after primary chemotherapy.4

In fact, the heterogeneity of HG-SOC tumors and the absence 
of reliable early detection, prognosis and predictive biomark-
ers means that clinical status of the patients is varied, and the 
tumors often respond poorly to standard therapy. Therefore, 
identification of high-confidence molecular markers for risk 
assessment and risk of disease development/recurrence becomes 
important in various areas ranging from prophylactic to patient 
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High-grade serous ovarian cancer (HG-SOC), a major histologic type of epithelial ovarian cancer (EOC), is a poorly-
characterized, heterogeneous and lethal disease where somatic mutations of TP53 are common and inherited loss-of-
function mutations in BRCA1/2 predispose to cancer in 9.5–13% of EOC patients. However, the overall burden of disease 
due to either inherited or sporadic mutations is not known.

We performed bioinformatics analyses of mutational and clinical data of 334 HG-SOC tumor samples from The Cancer 
Genome Atlas to identify novel tumor-driving mutations, survival-significant patient subgroups and tumor subtypes 
potentially driven by either hereditary or sporadic factors.

We identified a sub-cluster of high-frequency mutations in 22 patients and 58 genes associated with DNA damage 
repair, apoptosis and cell cycle. Mutations of CHEK2, observed with the highest intensity, were associated with poor 
therapy response and overall survival (OS) of these patients (P = 8.00e-05), possibly due to detrimental effect of muta-
tions at the nuclear localization signal. A 21-gene mutational prognostic signature significantly stratifies patients into 
relatively low or high-risk subgroups with 5-y OS of 37% or 6%, respectively (P = 7.31e-08). Further analysis of these genes 
and high-risk subgroup revealed 2 distinct classes of tumors characterized by either germline mutations of genes such as 
CHEK2, RPS6KA2 and MLL4, or somatic mutations of other genes in the signature.

Our results could provide improvement in prediction and clinical management of HG-SOC, facilitate our understand-
ing of this complex disease, guide the design of targeted therapeutics and improve screening efforts to identify women 
at high-risk of hereditary ovarian cancers distinct from those associated with BRCA1/2 mutations.
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clinical management. Many published studies have investigated 
the tumor heterogeneity and identified biologically meaningful 
tumor subgroups.5,6 Recent technological advances have facili-
tated the study of this complex disease, and HG-SOC is one of 
the cancer diseases that have been comprehensively investigated 
by The Cancer Genome Atlas (TCGA) Research Network.5 
Their results showed that via expression profiling of mRNA 
data, patients can be classified into 4 biologically meaningful and 
distinct tumor/gene subgroups: differentiated, immunoreactive, 
mesenchymal, or proliferative. However, survival analysis did not 
show significant differences between these transcriptional sub-
types in TCGA data set.6 Based on meta-analysis of miRNA and 
mRNA expression profiles of TCGA and several other cohorts, 
HG-SOC patients have been reliably categorized into 3 prognos-
tic subgroups in which patient’s overall survival correlates with 
specific pathways and treatment outcome.6

Mutations are the most obvious risk factors of cancer and, con-
sequently, become important candidate biomarkers. HG-SOC is 
characterized mostly by TP53 somatic mutations and high lev-
els of genome instability.7 At such pathobiological background, 
inherited loss-of-function mutations in BRCA1 and/or BRCA2 
predispose to cancer in 9 to 13% of EOC patients. However, the 
overall burden of the disease due to either inherited mutations 
and/or somatic mutations is not known.

Recent mutational studies of TCGA’s HG-SOC patient cohort 
revealed mutated genes such as TP53, NF1, RB1, FAT3, CSMD3, 
GABRA6, CDK12, BRCA1, BRCA2, SMARCB1, KRAS, NRAS, 
CREBBP, and ERBB2.5,8 Other mutations of tumor suppressor 
genes such as BRIP, CHEK2, MRE11A, MSH6, NBN, PALB2, 
RAD50, and RAD51C were also identified via massive parallel 
sequencing in another study.9 However, these and other muta-
tions have not been systematically studied in context of their abil-
ity to provide prognosis of HG-SOC clinical outcomes. Studies 
have shown that in HG-SOC, TP53 somatic mutations were 
present in almost all HG-SOC patients, and while it would be 
useful in areas such as early diagnosis or risk prediction of devel-
oping the disease, their applications in patient survival predic-
tion is restricted. Moreover, conventionally “driver” mutations 
of BRCA1 or BRCA2 were recently reported to be paradoxically 
associated with better patient survival relative to the wild-type 
variant.5

It was reviewed by Hanahan and Weinberg that the 6 hall-
marks of cancer include the enabling of replicative immortality, 
sustained proliferation signaling, cell death resistance, and eva-
sion of growth suppressors, induction of angiogenesis, as well as 
activation of invasion and metastasis.10 Interestingly, the first 4 
hallmarks are associated with cell cycle regulation, which encom-
passes a myriad of cellular processes such as cell cycle arrest, cell 
cycle checkpoint, DNA integrity, and damage checkpoint con-
trol. In this work, we investigated the mutational aspect of genes 
involved in HG-SOC, and studied the impact of cell cycle-related 
genes in patient prognosis and subgroup identification. One 
of the most important genes involved in cell cycle checkpoint 
control, DNA damage response signaling, and apoptosis regu-
lation is checkpoint kinase 2 (CHEK2), which is a nuclear ser-
ine/threonine-protein kinase. In the presence of DNA damage, 

CHEK2 phosphorylates downstream cell cycle regulators such as 
p53, Cdc25, and BRCA1 to activate checkpoint repair or recov-
ery responses, as well as concurrently delay entry into mitosis.11 
Deviation from its normal physiological function is likely to con-
tribute to disease pathogenesis.

The effects of CHEK2 mutations in ovarian cancer patient 
cohorts were previously studied by several other groups.12-14 In 
particular, the missense variant of CHEK2 I157T was signifi-
cantly associated with ovarian cystadenomas, borderline ovar-
ian cancers, and low-grade invasive cancers, but not high-grade 
ovarian cancer.13 In another study, Baysal et al. performed 
single nucleotide polymorphism genotyping by pyrosequenc-
ing and identified del1100C and A252G variants of CHEK2.12 
However, as the statistical differences of the variant frequencies 
were insignificant when compared with controls, it was suggested 
that variations in CHEK2 were not associated with pathogen-
esis of ovarian cancer. In Russian ovarian cancer patients, the 
effects of CHEK2 1100delC on ovarian cancer pathogenesis were 
studied, but no associations were observed.14 These studies were 
mainly focused on screening of some well-reported variants of 
the CHEK2 gene, e.g., del1100C, A252G, and I157T. Therefore, 
mutations of other regions of CHEK2, as well as its association 
with ovarian cancer pathogenesis and patient survival were not 
studied in detail. Moreover, in these previous reports, the authors 
studied the association of specific variants with respect to dis-
ease pathogenesis, but not with respect to patient survival events 
and times. To the best of our knowledge of literature reports, 
the association of CHEK2 mutations with prognosis of HG-SOC 
patients is currently unclear or insignificant.12-14

Nevertheless in several other diseases, there are evidences that 
CHEK2 mutations were correlated with adverse clinical out-
comes. In superficial bladder cancer, the use of CHEK2 muta-
tional status as a prognostic factor was suggested, as they were 
associated with tumor recurrence risk, the number of recurrences 
as well as presentation of a poorer clinical course.15 In breast can-
cer, the clinical impact of CHEK2 alterations were studied in 
Bulgarian breast cancer patients, and results showed that CHEK2 
mutations can increase the risk of death in these patients.16 
Results from both retrospective and prospective cohort studies 
of breast cancer patients revealed that CHEK2*1100delC germ-
line mutation introduced additional risks of developing a second 
breast cancer, as well as unfavorable long-term recurrence-free 
survival rates and distant metastasis-free survival.17,18 In glioblas-
toma, while there was no association of CHEK2 mutations with 
disease formation, there was significant correlation of CHEK2 
gene polymorphism with adverse patient prognosis.19 In view of 
these published studies, which reported significant associations 
of CHEK2 mutations with adverse clinical outcomes, it is then 
important to investigate if CHEK2 could function as prognostic 
factors in HG-SOC patients.

However, as the interconnectivity and interactions of related 
genes is a common feature of biological processes in either nor-
mal or tumor tissues, other genes involved in the biological pro-
cess or associated with prognostic significance would be studied 
as well, with the aim of defining a classifier capable of patient 
stratification.20 In this aspect, new methods for prediction and 
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identification of cancer risk assessment, stratification, overall 
survival prognosis, and therapy response prediction for patients 
with HG-SOC are urgently needed. In this study, we performed 
integrative bioinformatics and statistical analysis of genome-
wide mutational and clinical data sets of HG-SOC patients from 
TCGA to identify prognostic genes (biomarkers) whose mutation 
status could stratify patients into distinct survival subgroups. We 
also aim to discover novel susceptible gene signatures related 
to poor prognosis of patients, where distinct tumor subgroups 
are characterized and potentially driven by germline or somatic 
mutations of these signature genes.

Results

Genome-wide mutational spectrum and statistical distribu-
tion of gene mutations

Exome sequencing experiments via Illumina or ABI SOLID 
sequencing platforms were performed for 334 HG-SOC tumor 
samples at the Human Genome Sequencing Centers (HGSCs): 
Baylor College of Medicine (BCM), Broad Institute Genome 
Center (BI) and Genome Institute at Washington University 
(WUSM). The data was analyzed by the TCGA research net-
work as previously described.5 We downloaded the processed 
level 2 mutational data from the TCGA data portal for further 
analysis (see “Materials and Methods”).

The data set contains 21 978 putative mutations across all 
studied genes and patients (Fig. S1). We removed 4339 data where 
the mutational status were unknown, and the remaining 17 639 
mutations were comprised of germline, loss-of-heterozygosity 
(LOH) or somatic mutations across 9083 unique gene symbols 
(Fig. S1; Table S1). Each of these mutations was annotated with 
respect to their mutation status, variant types, and variant clas-
sification. For mutation status, somatic mutations comprised 
93.3% of 17 639 mutations, whereas LOH and germline muta-
tions comprised 1.2% and 5.5%, respectively (Table S2A). The 

single nucleotide polymorphism (SNP) was the most commonly 
observed variant type (94.8%) in comparison with DNP, dele-
tion, or insertion (Table S2B). For variant classification, mis-
sense mutations, nonsense mutations, deletions, insertions, 
RNA, splice site mutation comprised a major fraction of all muta-
tions (78%; Table S2C). In this part of our analysis, we included 
silent mutations (21.7%), as they could be conditional patho-
genic mutations due to modifications of the underlying DNA 
sequences, which potentially could affect miRNA binding sites, 
regulatory signaling, RNA–protein binding, post-transcriptional 
events, and cytosol–nuclear transport.21-23

To provide genome-wide analysis of the relative frequency 
of occurrence of mutations within a gene and the relative fre-
quency of gene mutations across the patient samples, we first 
generated a 2-dimensional gene-patient tumor sample association 
matrix, where the rows and columns correspond to 9083 unique 
gene symbols and 334 unique tumor sample IDs, respectively 
(Table S3).

For each gene in the matrix, we calculated the number of tumor 
samples with reported mutation in this gene, as well as the total 
number of mutation events across all tumor samples (Table S3). 
Subsequently, the marginal frequency distribution function of 
the number of mutated tumor samples that are distributed across 
individual genes (n = 9083) was estimated. Figure 1A shows that 
the frequency distribution of the number of tumor samples is 
skewed with a long right tail, representative of observations that 
few genes are highly mutated, whereas many other genes are less 
mutated in HG-SOC tumor samples. Such function belongs to 
a family of skewed probability distributions, which are observed 
often in many evolving and interactive (interconnecting) sys-
tems in which the birth–death processes are occurring and 
driving a system by evolution toward the complexity and self-
organization (see “Materials and Methods”).24,25 In such models, 
the skewed form of the function is strongly population/sample 
size and scale-dependent. In the context of cancer driving muta-
tions, Kolmogorov–Waring (K–W) model could help us to better 

Figure 1. Statistical characteristics of gene mutations in HG-SOC. (A) Frequency distribution of mutations in susceptible driving genes. (B) Number of 
distinct mutations against number of mutated samples. Scatter plot of genes, where the vertical axis corresponds to the number of mutations across all 
samples and the horizontal axis corresponds to the number of samples with at least one mutation for a given gene. The diagonal represents the hypo-
thetical scenario where number of mutations per sample for each gene is 1. Both axes are log10-transformed.
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understand the nature of enormous variability and plasticity of 
mutation events and the role of common and rare mutations in 
cancer origin and its progression.24,25 Practically, K–W model 
allows estimation of a fraction of the mutated genes 

which could be observed if the numbers of mutated tumor sam-
ples are increased (see “Materials and Methods”). In this case, 
our best-fitted K–W function yields the following parameters:

and

Thus, the total number of susceptible target genes N
s
 could be 

estimated by the formula:
Ns = Nb/a = 9083 × 9.5/3.944 = 21887 genes
This result suggests that expected number of potential target 

genes for mutagenesis come up to entire set of protein-coding 
genes in humans. As analysis of TCGA data only revealed 9083 
mutated genes, the discrepancies could be false negatives, and 
new rarely mutated genes in ovarian cancer could be observed 
via increasing sample sizes (the number of tumor samples) and 
improvement of technology.8,26

Examples of mutated genes with low, moderate and high fre-
quency in the HG-SOC samples are shown in Figure 1. In par-
ticular, Figure 1A shows the relative high frequencies of tumor 
samples having mutations in BRCA1 (40 of 334 tumor samples) 
or BRCA2 (23 of 334 tumor samples) genes in the TCGA patient 
cohort. In contrast, mutations in DNA-mismatch repair genes 
MLH1, MSH2, MSH6, PMS1, and PMS2 occurred in much 
fewer patients (1, 1, 4, 2, and 1 out of 334 patients, respectively). 
These genes are commonly associated with Lynch syndrome and 
accounts for a subset of hereditary ovarian cancers.27,28

We also counted an abundance of mutated sites for each 
gene across all samples and generated a scatter plot where each 
point represents each gene, and the axes represent the number 
of patient tumor samples with at least one mutation in that gene 
against the number of total mutation sites for the gene across all 
samples (Fig. 1B; Table S3). The diagonal line represents a hypo-
thetical situation where each gene was mutated on average once 
per sample, if any at all. Our results indicated that while TP53 
is the most highly mutated gene and was observed in almost all 
HG-SOC patients, the number of mutations with the gene locus 
in each patient sample is relatively low, i.e., on average, only 1 
TP53 mutation was observed for each patient (298 mutations 
across 285 HG-SOC patients). Altered or loss of function of 
this tumor suppressor appears to be critical for HG-SOC carci-
nogenesis. The other cancer susceptibility gene BRCA2 was less 
frequently mutated, and only 25 mutations were observed in 23 
HG-SOC patients. CHEK2 and BRCA1 mutations appear to be 
generally mutually exclusive in HG-SOC patients, as only 18% 
(4 of 22) of patients with non-silent CHEK2 mutations harbored 
BRCA1 mutations (Table S4). Similarly, only 18% (4 of 22) of 

patients with non-silent CHEK2 mutations harbored BRCA2 
mutations (Table S4).

A mutation cluster is defined by genes involved in various 
cell cycle-, apoptosis-, DNA damage-, and DNA repair-related 
processes

To study the structure of gene–patient tumor sample mutation 
associations, we performed unsupervised hierarchical clustering 
on the mutation association matrix (Table S3). Interestingly, all 
14 experimentally verified mutated genes reported in previous 
TCGA studies were included in our subset of the TCGA signifi-
cantly mutated genes, if at least 2 patients were considered as a 
confidence threshold (Table S3).5,8 This suggests that the false 
positive mutation rate could be greatly reduced if we consider 
only genes whose mutations are detected in at least 5 HG-SOC 
patients. Applying this threshold, a subset of 455 genes with 
observed mutations in at least 5 of 334 (1.5%) HG-SOC tumors 
was selected for unsupervised hierarchical clustering of the gene–
patient tumor sample mutation association matrix (Table S3). 
The full heat map for 455 genes and 334 HG-SOC patients 
is shown in Figure S2. As expected, the TP53 mutations were 
observed in a majority of HG-SOC patients (85%, 285 out of 
334). However, the intensity of TP53 mutations in each patient 
was low: generally only one TP53 mutation was observed in each 
p53 gene for a given patient. Interestingly, mutation sites along 
the TP53 locus appears to be randomly located across the exons, 
and there appears to be no strong positive clonal selection for 
any particular gene variant (Table S5). The frequencies of muta-
tions of other genes such as BRCA1 (12.0%, 40 out of 334) and 
CHEK2 (7.2%, 24 out of 334) across all tumor samples were 
relatively smaller. However for affected patients, the intensity 
of these gene mutations per tumor sample is more than 3 times 
higher than for TP53 (on average, 3.38 and 3.96 mutations per 
patient for BRCA1 and CHEK2, respectively). Figure 1B and the 
heat map (Fig. S2) provide visual presentation of these findings. 
It also confirmed our previous finding that mutations in BRCA1 
and in CHEK2 were generally mutually exclusive (Fig.  S2; 
Table S4).

Results from hierarchical clustering also revealed a distinct 
gene–patient cluster associated with CHEK2 (Fig. S2). This 
sub-cluster includes 58 gene symbols and 22 HG-SOC patients 
(Fig.  2). Within this cluster, mutations of CHEK2 appear to 
dominate, as multiple regions of CHEK2 were observed to be 
mutated in each of these patients (Fig. 2A). The annotation of 
these 58 gene symbols are listed in Table S6. Analysis of these 
58 gene symbols via DAVID Bioinformatics revealed that these 
genes are significantly enriched in protein kinase activity (TBK1, 
PIK3C2B, MET, PRKCI, CHEK2, ALK, MAP3K6, PTK2B, 
RPS6KA2, MAPK15, PDGFRA, ROR2, TNK2, and INSR), 
adenyl and purine ribonucleotide binding (KIF4B, KIF3B, 
GCLC, TBK1, PIK3C2B, MET, PRKCI, TP53, CHEK2, ALK, 
ABCA3, MAP3K6, PTK2B, RPS6KA2, MAPK15, PDGFRA, 
ROR2, TNK2, CHD6, INSR, EP400, and MYO5C), and dis-
ease mutations (MAD1L1, HNF1A, GCLC, MET, TP53, ITGB2, 
CHEK2, GLI2, GLI3, ABCA3, ROR2, INSR, SPTB, and FN1) 
(Table S7A). Further analysis via Metacore revealed significant 
association with immune response and DNA damage pathways 
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as well as apoptotic and cell cycle gene networks (Table S7B 
and C). Network analysis of these 58 genes further identified a 
tight direct interacting network of 21 genes mostly involved in 
apoptosis, cell cycle control, DNA damage response, and immune 
response (Fig. 2B). These biological categories and networks are 
strongly assigned to well-studied functions such as DNA dam-
age, repair, cell cycle, and check point regulation (Table S8).

CHEK2 mutations are associated with poor prognosis of 
diagnosed HG-SOC patients

Our initial analyses of the mutational spectrum of patients 
diagnosed with HG-SOC revealed a distinct gene–patient clus-
ter, where CHEK2 mutations appear to be highly concentrated 
in a few patients. Specifically, 97 mutations of CHEK2 were 
observed in 24 patient tumor samples, and these mutations 

encompassed allelic variants such as G- > A (27.8% of 97 CHEK2 
mutations), C- > T (24.7%), G- > A (12.4%) or T insertion 
(1.0%) (Table S1). Focusing subsequent analysis on CHEK2, we 
examined if mutations in this gene were associated with patients’ 
overall survival times, and if it could be used as a prognostic sur-
vival factor for patients already diagnosed with HG-SOC.

We performed stratification of the TCGA HG-SOC patients 
based on the non-silent mutational status of the CHEK2 gene. 
In this analysis, a total of 311 patients with both mutational data 
and clinical information were studied (Table S9). Non-silent 
CHEK2 mutations were observed in 22 (7%) of 311 HG-SOC 
patients with clinical information. Kaplan–Meier survival curve 
of the patient subgroup with CHEK2 mutations exhibited sig-
nificantly poorer overall survival times when compared with 

Figure 2. (A) Extracted sub-cluster of mutation matrix belonging to 58 genes and 22 patients, arranged via hierarchical clustering (Kendall–Tau distance, 
complete linkage). The intensity of the plot corresponds to the number of mutations (inclusive of silent mutations) observed for that gene and patient. 
(B) Direct interaction gene network of a subset of 21 genes identified from the mutation sub-cluster.
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the subgroup with no CHEK2 mutations (P ≤ 0.01; 
Fig.  3A). Effectively, our results from retrospective 
study of TCGA data suggest that for patients already 
diagnosed with HG-SOC, non-silent mutations 
(germline, LOH or somatic) of the CHEK2 gene were 
greatly detrimental for patients’ overall survival times, 
as these patients did not survive beyond 5 y after ini-
tial pathologic diagnosis.

In TCGA HG-SOC data, genes such as TP53, 
BRCA1, or MUC16 were mutated with higher fre-
quency than CHEK2, but unlike CHEK2, the muta-
tional status of these genes could not independently 
stratify HG-SOC patients into survival-significant 
subgroups (Fig. 3B–D). Despite the lack of statisti-
cal significance, there is some slight indication that 
mutation in MUC16, a known clinical biomarker of 
ovarian cancer, could be associated with poor patient 
survival. On the other hand, patient with BRCA1 
mutation appears to be associated with better patient 
survival, which is consistent with several other pub-
lished data.29,30 While TP53 is frequently mutated in 
HG-SOC and could be useful in disease diagnosis, 
our analysis revealed that in diagnosed patients, it was 
not effective as a prognostic marker of patients’ over-
all survival times (Fig. 3B).

CHEK2 mutations are associated with poor 
response to therapy

In a previous study of breast cancer by Chrisanthar et al., it 
was reported that CHEK2 mutations were found to be associated 
with therapy resistance, which was defined as progressive dis-
ease on therapy.31 Here, we investigate if the association between 
CHEK2 mutations with therapy resistance were significant in 
HG-SOC. From TCGA data, we categorized HG-SOC patients 
into 2 subgroups. The first subgroup consists of patients who 
exhibited progressive disease after primary therapy. The second 
subgroup consists of patients with partial response, stable disease, 
or complete response after primary therapy. Analysis via kappa 
correlation measure revealed that mutations in CHEK2 gene were 
associated with progressive disease with borderline significance 
(kappa = 0.1278, P = 0.05536; Table 1A). When silent mutations 
were excluded from the analysis, a slightly more significant cor-
relation with therapy resistance was observed (kappa = 0.1422, P 
= 0.03769; Table 1B). Essentially, 25% of patients with CHEK2 
mutations (5 of 20) showed disease progression, whereas only 
8.8% of patients without CHEK2 mutations (21 of 237) showed 
disease progression. Therefore, our results indicate that CHEK2 
mutations were associated with poor response to therapy.

Copy number and mRNA expression of CHEK2 do not 
appear to have significant influence on HG-SOC patient 
survival

To understand if other aspects of CHEK2 could be associated 
with patient survival, we consolidated patient information for 
CHEK2 across available data sets from copy number, mutation, 
expression, and clinical experiments (Table S9) and subsequently 
assessed their prognostic significance.

Copy number variation data was available for 356 patients. 
Analysis of copy number variation data for these patients revealed 
that CHEK2 was significantly amplified in 15 patients and 
deleted in 130 patients. The rest of the patients did not exhibit 
significant copy number variation. Subsequently, our analysis also 
showed that copy number of CHEK2 could not provide signifi-
cant prognostic classification of HG-SOC patients (Fig.  S3A). 
Also expectedly, samples with significant amplification of the 
CHEK2 region exhibited higher mRNA expression, whereas 
those with significant deletion have lower expression (Fig. S3B).

Expression data was available for 399 samples, which com-
prised 8 normal fallopian tube and 391 HG-SOC samples. 
Additionally, 370 of the 391 HG-SOC samples were described 
with tumor information such as histologic grade or tumor stage. 
Therefore, we investigated the expression profile of CHEK2 
mRNA across the normal fallopian tube tissues and tumor tis-
sues belonging to different histologic grades or tumor stages 
(Fig. S3C). The higher mRNA expression of CHEK2 in the 
tumors relative to the fallopian tube samples indicate the possible 
upregulation at early disease onset, probably due to compensa-
tory actions, and suggest the possibility of using CHEK2 mRNA 
expression as an early diagnostic biomarker for HG-SOC. On the 
other hand, the prognostic ability of CHEK2 expression data to 
classify patients already diagnosed with HG-SOC into relatively 
low- or high-risk subgroups is limited (Fig. S3D). We applied 
our published computational algorithm, which assigns patients 
to relative low- or high-risk subgroups depending on an expres-
sion cut-off that was optimized by maximizing the separation 

Figure 3. Kaplan–Meier survival curves of TCGA HG-SOC patients based on the non-
silent mutational status of (A) CHEK2, (B) TP53, (C) BRCA1, and (D) MUC16.
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of the 2 Kaplan–Meier survival curves,32 to CHEK2 mRNA 
expression belonging to the 391 HG-SOC patients. While 370 
of 391 samples were annotated with clinical information, 12 
were incomplete, as they were without survival times and events. 
Therefore, survival analysis was performed on the 358 HG-SOC 
samples well annotated with clinical data. Our results suggest 
that mRNA expressions of CHEK2 were not significantly associ-
ated with HG-SOC patients’ prognosis (P = 0.2057; Fig. S3D).

Therefore, our results suggest that other aspects of CHEK2 
such as expression or copy number variation could not be used as 
prognostic features for HG-SOC patients.

Observed mutations of CHEK2 are unlikely to alter phos-
phorylation events or protein structure

CHEK2 is a serine/threonine protein kinase which functions 
in the nucleus to regulate cell cycle, DNA repair, and apoptosis 
in response to DNA double-strand breaks.11 As post-translational 
activation of Chk2 protein via phosphorylation events is required 
for its physiological function, we next checked if any of the 
CHEK2 mutations were localized at known or predicted phos-
phorylation sites. Known phosphorylation sites of CHEK2 were 
collected from the databases of UniProt33 and Phospho.ELM.34 
Of all the mutations reported for CHEK2, only one mutation 
site was found to co-localize with a known phosphorylation site 
(Table S10). Mutation data from TCGA HG-SOC patients 
revealed that CHEK2 was mutated at a nucleotide coding for 
residue Thr-383 (hg18, chr22:27421808–27421808 at exon 11). 
It has been reported that auto-phosphorylation of Chk2 at Thr-
383/Thr-387 within the activation loop of Chk2 kinase domain 
and at Ser-516 at the C-terminal region of Chk2 are essential 
for Chk2 activation.35 However, mutations at the nucleotide cod-
ing for Thr-383 were observed in only 6 patients. Furthermore, 
as the mutations are synonymous, the same amino acid residue 
threonine would be coded, and, therefore, it does not currently 
appear that mutations here would lead to aberration of Chk2 
function. Our results also showed that CHEK2 mutations are 
not co-localized with any other phosphorylation sites computa-
tionally predicted by NetPhos and PHOSIDA36,37 (Table S10), 
which suggest that based on our current results, alteration of 

phosphorylation events may not be the key mechanisms leading 
to altered Chk2 behavior.

Next, we analyzed if the observed DNA mutations along 
CHEK2 could potentially modify the protein structure. Using 
data generated from RNA-sequencing experiments and down-
loaded from the Sage Bionetworks’ Synapse database,38 we first 
examined the expression data across various CHEK2 isoforms 
and primary solid tumors belonging to 262 patients. We identi-
fied that the isoform uc003adu.1 (representing isoform 1 or A) 
is dominantly expressed when compared with other CHEK2 iso-
forms (Fig. S4). Then, we collected known secondary structures 
along the amino acid residues (isoform 1, UniProt ID: O96017) 
and compared it with the observed DNA mutations (Table S10). 
The DNA mutations at the 8 distinct sites of CHEK2 DNA could 
potentially alter the protein structure at 7 distinct amino acid res-
idues (Fig. 4A and B). Only one of the amino acid residues (Thr-
383) occurred at a structured site of the protein. However, the 
secondary helix structure is unlikely to be disrupted, as the DNA 
mutation at this region was silent. For further visualization, we 
generated a representative protein crystal structure of physiologi-
cal Chk2 and superimposed the 7 mutated residues to study the 
sites of mutations, relative to its surrounding 3-dimensional con-
formation (Fig. 4C). From the initial crystallographic structure 
of Chk2 from Thr89 to Glu501 (PDB code 3i6u,39 resolved at 
3.0 Å), Modeler40 was used to complete the few missing loops 
and to extend the C-terminal region of the kinase until Leu543. 
Molecular dynamics (MD) simulations were performed to obtain 
the relaxed state conformation of the protein structure at 50 ns 
(Fig. 4C). From the figure, it could be observed that the mutated 
residues (represented by colored spheres) were mostly located at 
non-structured regions of the protein. Therefore, our results from 
protein modeling and MD simulations suggest that DNA muta-
tions of CHEK2 were unlikely to disrupt the protein structure 
and affect its physiological function.

Observed mutations of CHEK2 could affect nuclear import 
of the protein

Next, as Chk2 is a nuclear protein and nuclear import requires 
the presence of nuclear localization signals (NLSs) along the 

Table 1. Kappa correlation of (A) CHEK2 mutations and (B) non-silent CHEK2 mutations with therapy resistance. Values in the contingency 
table represents the number of unique sample IDs corresponding to the row and column labels

(A) For any CHEK2 mutations (including silent)

Progressive disease Complete response, partial response, or stable disease

Any CHEK2 mutation 5 17

No CHEK2 mutation 21 215

Kappa 0.1278

P value (one-sided, right-tailed) 0.05536

(B) For any CHEK2 mutations (excluding silent)

Progressive disease Complete response, partial response, or stable disease

Any CHEK2 Mutation (non-silent) 5 15

Silent or no CHEK2 mutation 21 217

Kappa 0.1422

P value (one-sided, right-tailed) 0.03769
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amino acid sequence, we investigate if modifications of such sig-
nals were possible among these TCGA HG-SOC patients. It was 
previously reported that karyopherin-α2 (KPNA2) could recog-
nize a NLS belonging to Chk2 and facilitate its nuclear trans-
location through the nuclear pore.41 Specifically, of the 3 NLSs 
studied, Zannini et al. identified NLS3 as the key NLS involved 
in the nuclear localization of Chk2 in cells. The monopartite 
NLS3, which was computationally predicted via PSORT II,42 
occupies a stretch of short amino acids, spanning from residues 
515–522 (amino-acid sequence: PSTSRKRP; Fig. 4B) of the pro-
tein. Mutation studies performed by Zannini et al. showed that 
mutation of this region resulted in the cytoplasmic localization 
of Chk2 protein, which suggested the inability of altered Chk2 
in translocating to the nucleus. Interestingly, our results reveal 
that along this short NLS sequence, there were 3 distinct nucleo-
tide (corresponding to 2 amino acid residues – R519 and P522) 
sites of mutation belonging to TCGA HG-SOC patients (Fig. 4; 
Table S10). The mutation observed at chromosomal coordinate 
chr22:27413951 was a silent mutation observed in 21 patients 
(P522P, labeled purple in Fig.  4A). The 2 non-silent muta-
tions at contiguous nucleotide positions chr22:27413961 and 
chr22:27413962 were present in 14 and 21 patients, respectively 
(R519Q/R519G, labeled brown in Fig. 4A). In total, 21 patients 
were observed to exhibit mutations at either of these 2 sites, and 

together with findings that CHEK2 mutation are detrimental to 
patient’s survival, our results suggest a possibility that mutations 
in the NLS region could adversely affect the nuclear import of 
Chk2, reduce the protein level of effective and functional Chk2, 
impact Chk2-associated repair pathways, and eventually contrib-
uting to poor patient survival.

As there were 2 other mutation sites downstream of the NLS 
identified by Zannini et al., we used an alternative computational 
tool, cNLS,43 to predict NLSs along the Chk2 protein sequence 
(isoform A, NP_009125 – 543 amino acid residues). Results 
revealed the possibility of a functional bipartite NLS from amino 
acid residues 517–538 (TSRKRPREGE AEGAETTKRP AV; 
Fig. 4B). This region encompasses 2 basic residue clusters con-
nected by a 12-amino acid residue linker. Interestingly, of the 
21 TCGA HG-SOC patients observed with mutations at the 
nucleotide coding for R519, concurrent mutations of nucleotide 
coding for R535 were observed for 90% (19 of 21) of the patients 
(labeled brown and pink in Fig. 4B). Results from this analysis 
suggest that the effective NLS region could be longer than the 
one identified by Zannini et al.41 Moreover, the co-occurrences of 
mutations coding for residues at both key components (basic resi-
dues) of a bipartite NLS further implied the possibility of positive 
clonal selection in the tumor tissue samples of these 19 HG-SOC 
patients.

Figure 4. (A) Locations of DNA mutations along genomic schema of the CHEK2 locus. The exon blocks are numbered sequentially from 5′ to 3′. Inverted 
triangles represent the locations of mutation on the exon. The numbers above the inverted triangles indicate the number of patients with the muta-
tion (inclusive of synonymous mutations). (B) Locations of the expected mutations on the amino acid sequence. The alphabet in the inverted triangle 
indicates the reference amino acid residue, whereas the numbers of patients with non-synonymous mutations are shown above the inverted triangle. 
The numbers in the rectangular blocks indicate the amino acid residues span. (C) A representative crystal structure of the relaxed state of Chk2 protein 
after computational modeling and molecular dynamics simulation. All Chk2 mutations are represented by colored spheres, which indicate the locations 
of residues corresponding to the DNA mutations after translation. The CHEK2 isoform 1 (NM_007194/NP_009125/O96017) was used as the reference 
isoform. The forkhead-associated (FHA) domain, kinase domain and nuclear localization signal (NLS) are marked in pink, blue and cyan, respectively. The 
Venn diagram compares the number of patients with the observed mutation at 2 distinct nucleotide positions. Figures are not drawn to scale.
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Supporting evidences that observed CHEK2 mutations are 
real events

Our current study investigated the spectrum of mutations 
reported by the TCGA Research Network and identified a prog-
nostic signature that could significantly stratify patients into 
low- or high-risk subgroups. About 87% of mutations (15346 of 
17639 mutations) reported by the TCGA Research Network have 
been validated. However, for CHEK2, only one SNP at nucleo-
tide position 27422947 of chr22 (hg18) was among those inde-
pendently validated by the TCGA Research Network (Table S1), 
and subsequent efforts should focus on experimental validation 
of CHEK2 mutations for either the same TCGA patient cohort or 
a new patient cohort. Nevertheless, several independent reports 
have indicated the presence of CHEK2 mutations in ovarian can-
cer as well as other diseases, which supports the possibility that 
the CHEK2 mutations observed in the TCGA ovarian cancer 
data could be real.

In an independent study by Walsh et al., they identified muta-
tions in several genes in inherited ovarian, fallopian tube, and 
peritoneal carcinoma via massively parallel sequencing.9 From 
their data, 16% (45 of 273) of ovarian cancer patients exhibited 
either BRCA1 or BRCA2 mutations, which compared similarly to 
our results from analysis of the TCGA HG-SOC study, where 57 
of 334 patients (17%) were reported with mutations in either gene 
(Table S4). While we observed that 7% (22 of 334) of TCGA 
HG-SOC patients exhibited non-silent CHEK2 mutations (Table 
S4), only 2% (5 of 273) of ovarian cancer patients studied by 
Walsh et al. exhibited loss-of-function CHEK2 mutations. The 
difference in observations for the CHEK2 genes could be due 
to the fact that only loss-of-function CHEK2 mutations were 
reported by Walsh et al., who only included “damaging” variants, 
defined by yeast cultures whose “growth was significantly poorer 
than that of WT-CHEK2 and did not differ significantly from 
the negative control.”9 Furthermore, as Walsh et al. only studied 
inherited germline mutations across all histological types (serous, 
carcinoma, undifferentiated, endometrioid, clear cell, and carci-
nosarcoma), these differences in study design and including all 
histological types could have resulted in the under-observed fre-
quency of Chk2 mutations in their study when compared with 
our analysis of HG-SOC data from TCGA. Nevertheless, we 

noted that 4 of the 5 CHEK2 mutations observed by Walsh et al. 
fell within the 10th and 11th exons of isoform A (NM_007194), 
which, interestingly, also contained mutations from the TCGA 
HG-SOC data, albeit at different amino acid residues (Fig. 5).

We next compared CHEK2’s mutation spectrum in other dis-
eases studied by TCGA. As CHEK2 is frequently regarded as a 
third breast cancer-specific gene,14 we investigated the spectrum of 
CHEK2 mutations in breast cancer patients. At exon 10 of isoform 
A (NM_007194), a nucleotide coding for arginine at residue 346 
(arg-346) was found to be somatically mutated in breast cancer. 
Interestingly in HG-SOC, mutation at the adjacent nucleotide 
within the same codon was observed, possibly leading to alteration 
of the same arginine residue (Fig. 5). Next, we compared the sites 
of CHEK2 mutations in TCGA HG-SOC with those observed in 
TCGA glioblastoma. Exon 11 of isoform A was observed to exhibit 
mutations in both HG-SOC and glioblastoma. Also remarkably, 
at the terminal exon of CHEK2 isoform A, all the mutated sites 
observed in HG-SOC were also observed in glioblastoma.

In view of these circumstantial supporting evidences of 
CHEK2 mutations in other independent studies of ovarian 
cancer or other diseases, it suggests that the CHEK2 mutations 
observed in TCGA HG-SOC could be true signals of real muta-
tional events.

Identification and characterization of a 21-gene mutational 
prognostic signature

Next, we studied the prognostic significance of the mutational 
status of 251 genes with observed mutations in the cancer tissue 
of at least 5 patients (accompanied with available patient sur-
vival information). Our results revealed that there are 21 genes 
that were non-silently mutated in the cancer tissues of at least 5 
patients and can independently stratify HG-SOC patients into 
prognostically significant subgroups (P ≤ 0.05, Table 2).

The top 3 mutated genes with prognostic significance among 
these 21 genes include CHEK2, RPS6KA2, and MLL4 with non-
silent mutations in 22, 23, and 20 patients, respectively (Table 2). 
Interestingly, our previous results from hierarchical clustering 
also revealed that these genes are clustered together (Fig.  2A). 
Quantitatively, kappa correlation analysis further revealed the 
high co-occurrences of CHEK2 mutations with RPS6KA2 or 
MLL4 mutations (kappa ≥ 0.75, P ≤ 5E-20; Table S4).

Figure 5. Locations of CHEK2 mutations on the expected amino acid residues for various cancers and data sets. The CHEK2 isoform A (NM_007194) is 
used as the reference isoform. Red boxes indicate the location of mutations.
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Overall, 13 genes (CHEK2, RPS6KA2, MLL4, ENAH, 
ADAMTSL3, RSU1, LRRN2, MET, MAP3K6, MAPK15, GYPB, 
GLI2, and PTK2B) of the 21-gene list were significantly enriched 
in the CHEK2-associated mutation sub-cluster (fold enrichment 
= 4.89; P = 6e-08, Fig.  6A). As patients with CHEK2 muta-
tions were generally observed to exhibit mutations of genes in 
the mutation cluster (Fig.  2A), we focused on these 21 genes 
to create a combined mutational prognostic signature. Among 
these 21 genes, the mutation status of 20 genes exhibited pro-
oncogenic behavior, where mutations were associated with poorer 
overall survival (Table 2). In contrast, only ERN2 exhibited 
tumor-suppressive behavior, where mutations were associated 
with better overall survival. Assuming the null hypothesis that 
each identified survival significant gene could either exhibit 
tumor-suppressive or oncogenic behavior with equal prob-
ability, results from the binomial test indicate that the bias is 

non-random and statistically significant (P = 1.049e-05). This 
indicates that the association of mutations with the prognostic 
function of these genes is biologically reasonable and relevant. 
Using these 21 mutational prognostic genes, the ovarian cancer 
patients were classified into the lower-risk subgroup if there were 
mutations in ERN2 or there were no mutations in all the 20 pro-
oncogenic genes. On the other hand, patients with mutations in 
any of the 20 pro-oncogenic genes and without ERN2 mutations 
were classified as higher risk. Results from the Kaplan–Meier 
survival plots revealed that the 21-gene mutational prognostic 
signature-defined patient subgroups were significantly stratified 
and associated with overall survival times (P = 7.31e-08, Fig. 6B). 
Specifically, the 5-y overall survival rates of the relatively low- 
and high-risk subgroups are 37% and 6%, respectively. We 
further studied the clinical characteristics of these 2 subgroups 
of patients, and our results revealed that the high-risk patients 

Table 2. Prognostic significance of the 21 survival significant genes based on non-silent mutational status (Log-rank statistic P value ≤ 0.05, #mutated ≥ 5 
and #non-mutated ≥ 5)

Gene symbol Gene name #Non-
mutated

#Mutated Median overall 
survival time 

(non-mutated)

Median 
overall 

survival time 
(mutated)

Log-rank 
P value

Effect of mutation 
on patient 
prognosis

ADAMTSL3 ADAMTS-like 3 299 12 3.67 2.43 1.029E-02 poorer prognosis

ATR ataxia telangiectasia and Rad3 
related

306 5 3.63 0.96 8.611E-05 poorer prognosis

CHEK2 checkpoint kinase 2 289 22 3.69 1.50 8.002E-05 poorer prognosis

ENAH enabled homolog (Drosophila) 304 7 3.63 1.48 1.026E-02 poorer prognosis

ERN2 endoplasmic reticulum to 
nucleus signaling 2

306 5 3.50 Not applicable 2.447E-02 better prognosis

GLI2 GLI family zinc finger 2 300 11 3.67 1.65 2.251E-02 poorer prognosis

GYPB glycophorin B (MNS blood 
group)

301 10 3.61 1.50 2.132E-02 poorer prognosis

KIAA1324L KIAA1324-like 306 5 3.63 1.57 3.257E-02 poorer prognosis

LRRN2 leucine rich repeat neuronal 2 306 5 3.67 2.43 1.576E-02 poorer prognosis

MAP3K6 mitogen-activated protein 
kinase kinase kinase 6

306 5 3.63 1.48 3.155E-04 poorer prognosis

MAPK15 mitogen-activated protein 
kinase 15

303 8 3.61 2.05 1.969E-02 poorer prognosis

MET met proto-oncogene 302 9 3.63 2.05 1.826E-02 poorer prognosis

MLL4 lysine (K)-specific 
methyltransferase 2B

291 20 3.69 2.05 7.566E-03 poorer prognosis

NIPBL Nipped-B homolog 
(Drosophila)

306 5 3.61 1.32 7.988E-04 poorer prognosis

PCDH15 protocadherin-related 15 306 5 3.67 2.59 1.431E-02 poorer prognosis

PPP1CC protein phosphatase 1, 
catalytic subunit, gamma 

isozyme

305 6 3.61 2.05 3.170E-02 poorer prognosis

PTCH1 patched 1 305 6 3.63 2.05 2.602E-03 poorer prognosis

PTK2B protein tyrosine kinase 2 β 300 11 3.63 2.43 3.419E-02 poorer prognosis

RPS6KA2 ribosomal protein S6 kinase, 
90kDa, polypeptide 2

288 23 3.71 2.05 1.555E-04 poorer prognosis

RSU1 Ras suppressor protein 1 298 13 3.67 2.43 1.278E-02 poorer prognosis

TNC tenascin C 306 5 3.63 1.48 1.914E-02 poorer prognosis
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defined by the 21-gene mutational prognostic signature are 
correlated with aggressive behavior of the disease. Specifically, 
patients defined as relatively high-risk of disease development by 
the 21-gene mutational prognostic signature was twice as likely 
to exhibit progressive disease in contrast to the relative low-risk 
subgroup (high risk: 8 of 50 patients = 15%; low risk: 18 of 208 
patients = 8.7%; Table 3). However, the statistical significance 
is borderline (kappa = 0.08984, P = 0.06065). Nevertheless, the 
trend suggests that mutations in these genes could be important 
factors in therapy resistance.

The detailed annotations of the genes in the 21-gene muta-
tional prognostic signature are listed in Table S11. Subsequently, 
we performed gene ontology analysis of the 21 genes of the sig-
nature using DAVID Bioinformatics. Results indicate that these 
genes are strongly enriched in functions associated with kinase 
activity, ATP binding, and phosphorylation (Table S12A). In 
parallel, analysis via MetaCore also revealed association of path-
ways associated with DNA damage-induced responses, as well as 
gene networks associated with cell cycle, DNA repair, and apop-
tosis (Table S12B and C).

Identification of 2 tumor subclasses from the signature-
defined high-risk subgroup

Next, to investigate if the prognostic significance of the 
21-gene mutational prognostic signature (Fig. 6B) could be due 
to the contribution of CHEK2 mutations alone, 
we excluded patients with CHEK2 mutations 
from the signature-defined high-risk subgroup. 
Our results indicated that patients diagnosed with 
either CHEK2 mutations, or mutations in any of 
the remaining 20-genes mutational prognostic sig-
nature (excluding CHEK2) exhibited rather simi-
lar overall survival patterns (Fig.  6C). The poor 
prognosis of patients exhibiting mutations in any 
of the genes in the 20-gene mutational prognos-
tic signature suggests that the aberrant function-
ing of these genes in the HG-SOC genome could 
inversely impact patients’ post-surgery response 

to therapy, independent and regardless of the effects of CHEK2 
mutations.

To study the possible heterogeneity of the poor prognosis 
patient subgroups identified via CHEK2 or the 20-gene muta-
tional prognostic signature, we generated a heatmap that repre-
sents the joint gene–patient mutation frequency matrix for the 
21 genes and 58 high-risk patients (Fig. S5A). We further char-
acterized these mutations in terms of germline, LOH, or somatic 
mutations, and our results showed that the mutations of genes in 
a subset of 22 patients with CHEK2 mutations appeared to be 
of germline or LOH origin, whereas that of the other 36 high-
risk patients appeared to be somatic (Fig. S5B–D). Specifically, 
in the subset of 22 patients with CHEK2 mutations, 16 of the 
patients (73%) exhibited non-silent germline CHEK2 mutations 
(Table 4). Interestingly among these 16 patients, strong co-
occurrences of germline mutations in RPS6KA2 and MLL4 genes 
were observed in 15 (94%) and 12 (75%) patients, respectively. 
Re-analysis of the entire joint gene–patient mutation matrix (of 
455 highly mutated genes and 334 patients) also revealed simi-
lar findings that genes from the CHEK2-associated mutation 
sub-cluster were associated with germline or LOH rather than 
somatic mutations (results not shown).

Thus, our analysis revealed that among the high-risk patients 
identified via our 21-gene mutational prognostic signature, there 

Figure 6. (A) Venn diagram of common genes between the identified gene mutation cluster and genes whose mutation status are prognostic signifi-
cant. (B) Prognostic stratification based on mutational status of 21-gene signature. (C) Prognostic stratification based on the mutation of the CHEK2 gene 
and 20-gene signature.

Table 3. Kappa correlation of patients classified by the 21 gene mutational signature with 
therapy resistance. Values in the contingency table represents the number of unique 
sample IDs corresponding to the row and column labels

Progressive 
disease

Complete response, 
partial response, 
or stable disease

Total

high-risk 8 42 50

low-risk 18 190 208

Total 26 232 258

Kappa 0.08984

P value (one-sided, 
right-tailed)

0.06065
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Table 4. Genetic and clinical characteristics of CHEK2-MLL4-RPS6KA2 determined EOC tumor sub-class (G, germline; S, somatic; L, LOH)

SampleID 
(n = 22)

Years 
to last 

follow up

Vital status 
(1:deceased, 

0: living)

Tumor 
Stage

Tumor 
Grade

CHEK2 Copy 
Number 
Variation

CHEK2 
Mutation

RPS6KA2 
Mutation

MLL4 
Mutation

CHEK2 
and/or 
RPS6KA2 
and/or 
MLL4

BRCA1 
Mutation

BRCA2

TCGA-
09–0364

2.43 1 II G3 - G G G 3G L G

TCGA-
09–0365

0.79 1 III G3 Deleted G,S G G 3G,1S - -

TCGA-
09–0366

4.81 1 III G3 - S G G 2G,1S - -

TCGA-
09–0367

1.50 1 III G3 - G G G 3G - -

TCGA-
09–0369

2.96 1 III G3 - S G G 2G,1S - -

TCGA-
13–0714

0.52 1 IV G3 - G,L,S G - 2G,1L,1S - -

TCGA-
13–0717

2.05 1 III G3 - G,L,S G G 3G,1L,1S - -

TCGA-
13–0723

3.30 1 III G3 - L G G 2G,1L - -

TCGA-
13–0724

0.23 1 IV G3 - S G G 2G,1S - -

TCGA-
13–0725

1.03 1 III G3 Deleted G L G 2G,1L - -

TCGA-
13–0727

1.27 1 III G3 Deleted G,L,S G G 3G,1L,1S - -

TCGA-
13–0730

1.48 1 III G3 - G G G 3G S -

TCGA-
13–0751

4.60 1 III GX Deleted G,S G G 3G,1S - -

TCGA-
13–0755

0.21 1 IV G3 - G,S G G 3G,1S - -

TCGA-
13–0757

0.93 1 III G3 Deleted G G G 3G - -

TCGA-
13–0758

0.95 1 IV G3 - G,L,S G G,S 3G,1L,2S - -

TCGA-
13–0760

0.96 1 IV G3 - G,S G - 2G,1S - -

TCGA-
13–0761

2.84 0 IV G3 Deleted G G - 2G S G,L

TCGA-
13–0762

2.69 0 III G3 - S G G 2G,1S G,L -

TCGA-
13–0765

2.38 0 III G3 - G,L G G 3G,1L - -

TCGA-
13–0766

1.78 0 III G3 - G,S G - 2G,1S - G

TCGA-
24–1562

3.79 1 III G3 Deleted S - - 1S - G

mean: 
1.98 ± 
1.303

81.8% 
deceased

Stage 
III-IV

G3
33.3% 

deleted
72.7% 

germline
90.9% 

germline
77.3% 

germline
95.5% 

germline
4.5% 

germline
18.2% 

germline
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could be 2 distinct tumor subclasses whose pathogenesis could be 
initially driven by either inherited germline mutations pre-deter-
mined by CHEK2, RPS6KA2, and MLL4, or mostly somatic 
mutations of the other signature genes (Fig. S5B–D).

Allelic changes in prognostic genes and high-risk patients 
are unique

From the entire list of 17639 mutations studied in this work, 
a subset of 313 mutations was associated with our 21-gene muta-
tional prognostic gene signature and relative high-risk patients 
(Table S1). For both the entire and subset list of mutations 
(hereby termed “background set” and “high-risk subset”, we cal-
culated the frequencies of tumor allelic changes with respect to 
the reference genome (Table S13). Fisher exact tests were per-
formed to assess the enrichment of each variant in the high-risk 
subset (of genes and patients) when compared with that observed 
for the entire background set (Table S13). Our results indicate 
that while G- > A, C- > T, G- > C, C- > G, G- > T and C- > 
A mutations were mostly commonly observed in both the back-
ground as well as the high-risk subset, there were insignificant 
differences in their relative ratios (P ≥ 0.05). On the other hand, 
G- > GG insertion observed for MLL4 and PPP1CC genes in the 
background set were almost entirely found in our high-risk sub-
set (94.7%, 18 of 19, fold-change = 53.4, P = 3.45E-31). Other 
variants such as T- > (C/C) and C- > (T/T) mutations were 
enriched in the high-risk subset. The 13-fold enrichment of the 
T- > (C/C) mutation (P = 9.22e-19) corresponds to 22 mutations 
(20 in RPS6KA2 and 2 in ATR); the 10-fold enrichment of the 
C- > (T/T) mutation (P = 8.8e-17) corresponds to 23 mutations 
(12 in CHEK2, 8 in PTK2B, 1 in GLI2, MET and TNC). Such 
strong deviations from background set appeared to be character-
istics of the mutations associated with the poor disease outcome 
prognosis in HG-SOC. In future, the detailed study of enriched 
allelic variants in the high-risk subset (e.g., G- > GG, T- > C, 
C- > T, G- > C, G- > A, C- > G etc.) in these susceptible genes 
could potentially unravel upstream mechanisms contributing to 
these variants that are associated with poor patient prognosis in 
HG-SOC.

Discussion

This study focused on identification of mutational biomarkers 
which: (1) could be risk predictors of hereditary ovarian cancers 
distinct from those with BRCA1/BRCA2 germline mutations or 
mutations associated with Lynch syndrome and simultaneously; 
(2) can be used as novel prognostic factors for HG-SOC.

Overall, our results indicated that: (1) mutation of CHEK2 
gene could be an important risk and poor prognostic factor for 
patients with HG-SOC; (2) a mutational signature compris-
ing of 58 relatively frequent mutated genes in 7% of HG-SOC 
could identify HG-SOC patients significantly associated with 
poor prognosis; (3) a combined mutational signature compris-
ing of 21 genes can significantly stratify a cohort of HG-SOC 
patients into relatively low- or high-risk subgroups; and (4) germ-
line mutations of CHEK2 and/or RPS6KA2 and/or MLL4 genes 

could be used as risk factors in predicting healthy women’s risk to 
HG-SOC initiation and development.

Mutations of CHEK2 in HG-SOC could affect nuclear 
localization and lead to poor clinical outcomes

Many published mutational studies focus only on specific 
classes of mutations such as somatic or germline variants. The 
focus on germline or somatic mutations would be appropriate 
for specific studies when one is interested in inherited risk of 
developing a particular disease upon birth, or identification of 
driver mutations for disease development at later stages of life, 
respectively. For prognosis purpose, whether the mutation is due 
to early inheritance or later-stage environmental factors is of less 
relevance in our studies. As a result, we included all classes of 
mutations during prognosis stratification.

Interestingly, HG-SOC patients that carry Chk2 mutations 
are at higher risk of mortality. But importantly, it could also 
prompt further studies into alternative targeted therapy for these 
patients. A possible explanation of why Chk2 mutations are asso-
ciated with adverse patient prognosis could be due to induction 
of chemo-resistance, of which we reported significant correlation 
of CHEK2 with therapy response (kappa = 0.1422, P = 0.03769, 
Table 1B). In fact, CHEK2 mutations’ contributions to chemo-
resistance and continued disease progression could be inferred 
from a study of breast cancer. Epirubicin, as a chemotherapy 
drug, is one of the drugs used to treat breast cancer via slowing or 
stopping the growth of cancer cells. Chrisanthar et al. reported 
that germline CHEK2 mutations contributed to therapy resis-
tance, and the mutation Arg95Ter completely abrogated Chk2 
dimerization and kinase activity.31 We observed that this mutated 
region corresponds to a β-strand structure (amino acid residues 
94–98, ARLWA). However, in TCGA HG-SOC patients, there 
were no observed mutations within this region. Additionally, none 
of the observed mutations in TCGA HG-SOC patients occurred 
in annotated secondary structures, ATP-binding site, active site, 
FHA domain, or kinase domain (Table S10). Therefore, there 
appears to be insufficient evidence that CHEK2 mutations 
observed in TCGA HG-SOC patients could disrupt the protein 
structure or kinase activity and contribute to chemo-resistance. 
In ovarian cancer, cisplatin rather than epirubicin was used as the 
chemotherapeutic agent, and evidence of Chk2-induced chemo-
resistance upon cisplatin treatment in ovarian cancer has been 
reported. Zhang et al. reported that cisplatin treatment could 
degrade Chk2 protein, and the reduced level of Chk2 could hin-
der cell cycle control, prevent cell apoptosis, and contribute to 
chemo-resistance of the tumors.44 Chk2 degradation may be one 
of the primary mechanism by which a large number of clinically 
relevant tumors develop the acquired resistance to DNA damage 
agent. With regards to the patients who exhibited CHEK2 muta-
tions, the loss of function of one copy via either somatic or germ-
line mutation could result in reduced copies of CHEK2 in the 
nucleus, and subsequently upon cisplatin treatment, the effects 
of CHEK2 degradation could be accentuated and ultimately det-
rimental for patient survival. Interestingly, the reason why the 
observed mutations of CHEK2 might initially contribute to loss 
of protein functions could be attributed to the lack of protein 
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localization in the nucleus. The lack of nuclear localization of 
Chk2 is likely to contribute to deviation from physiological activ-
ity and leads to undesirable effects. Our analysis revealed that in 
21 HG-SOC patients of the TCGA cohort, CHEK2 mutations 
occurred within a NLS that was previously reported by Zannini 
et al. to be critical for nuclear import of the protein (Fig. 4B). 
Mutations of the NLS were reported to inhibit nuclear import 
of the Chk2 protein,41 leading to reduced functional copies of 
Chk2 in the nucleus. It appears plausible that mutations along 
the NLS of the CHEK2 gene could lead to reduced levels of Chk2 
proteins in the nucleus, and upon cisplatin treatment, the protein 
levels would be further depleted, which could potentially lead to 
chemo-resistance of the tumors and adverse patient survival. Our 
results showed that HG-SOC patients who exhibited CHEK2 
mutations were significantly associated with poor clinical out-
comes and did not survive beyond 5 years after initial diagnosis 
(Table 1; Fig. 3A).

Observed CHEK2 mutations are unlikely to affect post-
translational modifications

Next, we studied if CHEK2’s association with poor patient 
prognosis could be due to modification of the phosphorylation 
sites. However, none of the observed mutations in CHEK2 occur 
along any currently known and annotated phosphorylation sites. 
Therefore, we collected computationally identified phosphoryla-
tion motifs from the literature,45,46 and investigated if any of the 
key residues along the motifs are mutated in TCGA HG-SOC 
patients. Our results revealed that despite their close proximity, 
none of the observed mutations occurred at the phosphorylation 
sites or the key motifs surrounding the phosphorylation sites. 
Furthermore, our analysis revealed that the region surrounding 
the CHEK2 mutations does not seem to contain strong protein 
secondary structure, and therefore it may currently seem unlikely 
that aberrations of post-translational modification of the Chk2 
protein are contributory factors leading to poor survival progno-
sis of affected patients. However, the effect of CHEK2 mutations 
on protein dimerization or physical interaction with other pro-
tein partners could be investigated in future studies.

Possible influences of silent mutations
While we hypothesize that the mutations observed along the 

CHEK2 could affect nuclear translocation of the translated pro-
tein, other mechanism involving silent mutations could also be 
involved.

In our study, we observed that 21 HG-SOC patients exhib-
ited silent mutations at chr22:27413951 (P522P; Fig.  4). 
Traditionally, silent DNA mutations which encode for the same 
amino acid residues were assumed to have negligible effect on 
a protein function. However, recent studies have suggested that 
silent mutations could affect downstream protein functionality 
via various mechanisms. For instance, alterations to the DNA 
triplet codon could alter the binding sites of miRNA, leading to 
alteration in translational repression efficiency and downstream 
signal networks.21 When we investigated whether the mutation at 
chr22:27413951 (P522P; Fig. 4) could potentially alter miRNA 
binding sites, our results from sequence alignment indicate 
that the specific region was not targeted by any of the currently 
known human mature miRNAs (results not shown). Therefore 

in our study, alteration of miRNA target sites via synonymous 
mutation is unlikely to have any effect on mRNA stability and its 
subsequent translation.

Next, single synonymous DNA mutation can affect mRNA 
secondary structure, folding, stability and, consequently, the reg-
ulation of the translated protein as was reported for the human 
dopamine receptor D2 gene.22 It was also suggested that synony-
mous mutations could affect translational efficiency of the amino 
acid residue due to the variation and asymmetry of tRNA abun-
dance in cells.21 Even in cases where synonymous mutations do 
not affect mRNA or protein levels, the function of the translated 
protein could be altered. In MDR1 gene, it was shown that a syn-
onymous polymorphism resulting in a rare triplet codon can alter 
substrate specificity of the MDR1 protein, possibly due to decel-
eration of the translation rate at that amino acid residue, which, 
in turn, affects protein folding.23 The strong overlap in 14 com-
mon patients exhibiting both the silent mutation and non-silent 
mutation at the last exon (Fig. 4A) appears to suggest a possible 
positive selection of these mutations, and future studies could 
focus on elucidating the possible influence of silent mutations on 
eventual protein expression and functionality.

Potential clinical application of the 21-gene mutational sig-
nature for prognosis and therapeutics design

While CHEK2 mutation appears to be the most important 
with respect to patient classification based on their survival 
patterns, we identified a total of 21 genes that could indepen-
dently and significantly stratify patients into low- or high-risk 
subgroups based on their mutational status (Table 2). Applying 
the 21-gene mutational prognostic classifier to the TCGA patient 
cohort resulted in significant stratification of patients into 2 sur-
vival significant subgroups where the 5-y overall survival rates for 
the low- and high-risk subgroups are 37% and 6%, respectively 
(P = 3.8E-09, Fig. 6B). Furthermore, stratification based on the 
mutational status of CHEK2 alone, or of the remaining 20-gene 
signature, allows us to reject the hypothesis that the prognostic 
value of the 21-gene mutational prognostic signature was due to 
the contribution of CHEK2 alone (Fig. 6C). Rather, this shows 
that a poor prognosis subgroup could be identified based on a 
20-gene signature even in the absence of CHEK2 mutations. 
For prognosis purpose, while the use of our 21-gene mutational 
prognostic signature in patient risk prediction appears promising 
from our retrospective study of the TCGA patient cohort, pro-
spective studies would be eventually required to validate the use 
of the signature in a clinical setting.

Interestingly, among the 21 genes whose mutational statuses 
were most suitable for prognostic applications, gene functions 
associated with protein kinase activity, ATP-binding, phos-
phorylation, DNA damage response, apoptosis, or cell cycle 
regulation were enriched (Tables S11 and S12). Our results are 
perhaps unsurprising, as it has been reported that many kinases 
are potentially oncogenes and could contribute to etiology of 
cancers or other diseases.47,48 The design of inhibitors for various 
protein kinases is therefore an active field of cancer therapeu-
tics research today.49,50 Our findings that kinases such as CHEK2 
or RPS6KA2 are associated with patient survival are not only 
important for patient stratification, but probably could also spur 
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future efforts in designing inhibitors if the deleterious influences 
of mutated copies are validated and confirmed. However, patients 
with characterized mutations of CHEK2 or RPS6KA2 only rep-
resent a subset of the HG-SOC patients. Generally, we observed 
that most HG-SOC patients were characterized by mutations in 
only a few genes (Figs. S2 and S5), which is consistent with the 
general consensus that patient–gene mutational profiles are het-
erogeneous and sparse.51 Nevertheless, it has been postulated that 
individual patients could exhibit mutations in different genes 
that are functionally related via gene networks corresponding to 
cancer hallmarks.10,51 Therefore, any particular biological process 
could be impacted via aberrations of any of its member genes. 
The understanding of the heterogeneous nature of mutations in 
HG-SOC patients could present an opportunity for more effec-
tive and targeted treatments in future.

Potential clinical application of the 21-gene mutational 
prognostic signature for risk prediction of developing HG-SOC

Our analysis of 58 high-risk HG-SOC patients identified via 
the 21-gene mutational prognostic signature also revealed 2 dis-
tinct tumor subtypes, which could arise from 2 different tumor 
etiological factors. The first tumor subclass (or patient subgroup) 
was clearly characterized by germline mutations or LOH of genes 
such as CHEK2, RPS6KA2, and MLL4 (Fig. S5). In contrast, for 
the other tumor subclass (or patient subgroup), germline muta-
tions of these genes were not observed. Rather, this tumor sub-
class appears to be the result of spontaneous somatic mutations of 
the other signature genes in the presence of TP53 mutations that 
typically characterized HG-SOC tumors.

In fact, ovarian cancer is highly heterogeneous, with vari-
ous driver genes involved in the development of several cancer 
subtypes (Fig.  7A).7 Our results suggest that around 11.6% of 
HG-SOC tumors could possibly be initiated due to spontaneous 
somatic mutations of the genes in the signature in the presence of 
TP53 mutations. Also, within HG-SOC that is characterized by 
TP53 point mutations and genome instability, inherited germ-

line CHEK2 mutations may confer susceptibility and be 
involved in the initiation, development, and progression 
of tumors in about 7.1% of HG-SOC patients (Fig. 7A). 
Our results also suggest the possibility that germline 
mutations of CHEK2, RPS6KA2, and MLL4 could be 
used as risk factors to predict a person’s risk of developing 
HG-SOC. For CHEK2, studies have been conducted to 
study the effect of gene variants on ovarian susceptibility, 
but associations were reported to be insignificant, possi-
bly due to the rare occurrence of CHEK2 mutations, small 
tumor sample size, lack of appropriate HG-SOC patient 
samples, or low resolution of variant detection of available 
samples.12-14,52 Nevertheless, our results from analysis of a 
high quality HG-SOC data set from TCGA has enabled 
us to uncover a potential but previously uncharacterized 
association of disease susceptibility due to CHEK2 germ-
line variants.

Potential clinical application of CHEK2 expression 
in early diagnosis of HG-SOC

Also, as our results revealed that CHEK2 mRNA was 
upregulated in tumor samples relative to normal tissues of 
the fallopian tube (Fig. 7B), it also suggests the possibil-
ity that elevated CHEK2 mRNA expression may be used 
as early diagnostic marker of high-grade serous ovarian 
cancer. The elevated expression of CHEK2 could possi-
bly due to response to DNA damage or genome insta-
bility associated with TP53 mutations in HG-SOC. The 
potential of Chk2 inhibitors as therapeutics has been pro-
posed due to evidence that the levels of Chk2 in some 
human tumor cells may be elevated.53 Specifically, it has 
been reported that inhibition of Chk2 expression could 
promote apoptotic response in human kidney embryonic 
HEK-293, breast adenocarcinoma MCF-7, colon adeno-
carcinoma HCT116, prostate adenocarcinoma PC3, or 
human epithelial ovarian carcinoma Caov-4 and SKOV-3 
cell lines in the presence of cytotoxic agents such camp-
tothecin or cisplatin.54-56 The induction of apoptosis in 
tumor cells via inhibiting Chk2 could be beneficial in 

Figure 7. (A) Key genes involved in etiology of various ovarian cancer subtypes. 
(B) Expression of CHEK2 mRNA across HG-SOC samples of various tumor grades 
and stages (denoted in red boxplots). Differential expression between the normal 
and tumor samples were calculated via Mann–Whitney test.
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preventing uncontrollable cell proliferation, which consequently 
could lead to better patient survival. However, a recent study 
found that Chk2 depletion in ovarian cancer cell lines dimin-
ished platinum sensitivity and raised further suspicions if Chk2 
could be an effective therapeutic target in platinum-treated 
HG-SOC patients.57 Further new studies should be performed 
to address the inconsistencies of the effects of Chk2 depletion.

Conclusion
While there is a general consensus within the scientific com-

munity that CHEK2 mutations are unlikely to confer additional 
risk of ovarian cancer development, the effect on survival progno-
sis of patients already diagnosed with HG-SOC is less clear. Our 
results revealed that CHEK2 mutations in HG-SOC patients are 
strong adverse indicator of patient survival prognosis and associ-
ated with therapy resistance. We hypothesize that it could be due 
to mutations of the nuclear localization signal, which prevents the 
nuclear import of the protein and subsequently leads to haploin-
sufficiency. We also identified a 21-gene mutational prognostic 
signature, which highly correlates with patient’s survival pat-
terns (P = 7.311e-08). Among these genes, protein functions such 
as kinase activity or ATP binding are enriched, which possibly 
indicate that these processes play crucial roles in carcinogenesis, 
and targeting these processes might be an attractive therapeutic 
strategy to restore the imbalance in dysregulated cell prolifera-
tion associated with the higher-risk subgroups. Also, we observed 
unique allelic changes in the genes of 21-gene mutational prog-
nostic signature in prognosed high-risk HG-SOC subgroup, 
proposing that future analysis of such enriched allelic changes 
could be important in studying upstream mutation mechanisms, 
leading to poor patient prognosis in HG-SOC. Finally, we identi-
fied 2 novel sub-classes of HG-SOC, which are characterized via 
either germline mutations of CHEK2, RPS6KA2, and MLL4 or 
mostly somatic mutations of the other signature genes. The pres-
ence of a subset of tumors characterized via germline mutations 
or LOH of CHEK2 could guide future potential screening efforts 
to identify women with high-risk of developing HG-SOC.

Materials and Methods

TCGA HG-SOC data source and pre-processing
Processed mutation data belonging to 334 TCGA HG-SOC 

patients were downloaded from the TCGA data portal on 24th 
November 2010. The sequences were generated by Human 
Genome Sequencing Centers (HGSCs) at Baylor College of 
Medicine (BCM), Broad Institute Genome Center (BI), and 
Genome Institute at Washington University (WUSM) based 
on either Illumina or ABI SOLID sequencing technologies. We 
analyzed Level 2 data downloaded from the TCGA data por-
tal, and this release included putative mutations for 105 171 and 
88 patients from BCM, BI and WUSM, respectively (Fig. S1). 
In total, 21 978 mutations spanning across 334 patients and 
10489 RefSeq gene symbols were reported. 4339 mutations with 
unknown mutation status were removed. The remaining 17 639 
mutations were observed in 9083 genes and these mutations are 
of either germline, somatic, or loss-of-heterozygosity (LOH) 

origins (Table S1). The variant types of these mutations include 
deletion, insertion, SNP, or DNP. The mutation statistics are 
shown in Table S2. The clinical information corresponding to 
each HG-SOC patient was also downloaded (Table S9).

In addition, mRNA expression data of 463 primary solid 
ovarian cancer tissue samples were obtained (from 11 batches 
of 21–47 samples each). Quality assessments were performed 
within each batch to identify poor-quality chips. Seventy-four 
poor-quality chips were removed from subsequent analysis. 
Background correction and normalization were done within each 
batch. Finally, batch effects were eliminated across batches using 
the non-parametric ComBat software.58

Copy number variation analysis
Three hundred and five (305) tumor-blood paired samples 

downloaded from TCGA portal have been used in this study. The 
blood copy number variations have been used for normalization 
and estimation of the fold change enrichment/under-representa-
tion of copy number variation data for matched tumor samples. 
TCGA SNP array data (CNV platform 6) were processed via 
PARTEK 6.5 program at the parameters recommended by the 
company. Using PARTEK software, we identified genomic coor-
dinates of the copy variation segments, which form statistically 
significant deleted or amplified genome regions. For each tumor 
sample these significant regions were mapped on the human 
genome coordinates, and normalized fold change of such sig-
nals were visualized via USCS Genome browser custom tracks. 
Changed copy numbers in ovarian tumors exhibit a high level of 
chromosomal instability. 20 573 genes representing about 70% 
of RefSeq protein-coding genes were overlapped with significant 
altered copy number regions.

Processed RNA-sequencing expression data
Processed RNA-sequencing expression data of genes and gene 

isoforms were downloaded from the Sage Bionetworks’ Synapse 
database.38 This data set contains RNA-Seq expression data for 
73598 gene isoforms and 266 samples corresponding to 263 
patients. Of the 266 samples, 262 samples (from 262 patients) 
were collected from primary solid tumor, whereas the rest were 
collected from recurrent solid tumor.

Secondary data source
Mutational data of 273 ovarian cancer patients analyzed 

via massively parallel sequencing were collected from Walsh 
et al.9 Mutation data of breast cancer and glioblastoma of the 
TCGA patient cohorts were downloaded from the International 
Cancer Genome Consortium (accessed on 30th October 2012).59 
Wherever necessary, all genomic coordinates were converted to 
reference hg18 (NCBI36) using the Batch Coordinate Conversion 
(liftOver) utility provided by the UCSC Genome Bioinformatics 
Group.60

Protein annotation data comprising important functional 
sites, secondary structure, natural variants, mutagenesis experi-
mental data, and phosphorylation sites was obtained from 
UniProt.33 Additionally, known phosphorylation sites were down-
loaded from validated database Phopho.ELM.34 Phosphorylation 
sites were further predicted using online tools NetPhos and 
PHOSIDA, which were based on machine learning techniques 
such as artificial neural network or support vector machine.36,37 
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NLSs were predicted via online computational tools PSORT II 
and cNLS Mapper.42,43

Mutation matrix across patients and genes
The mutation spectrum across the patients and genes are rep-

resented in a 2-dimensional matrix, M, comprised of 9083 rows 
and 334 columns, which represent gene symbols and patient sam-
ple IDs, respectively. Each entry in the matrix, M

ij
 represents the 

number of unique mutation sites in the ith gene of the jth patient 
sample. The matrix is shown in Table S3.

Analysis of the frequency distribution of the number of 
mutated tumor samples for a susceptible gene

The Kolmogorov–Waring (K–W) probability function is used 
to fit the distribution of the number of mutated tumor tissue 
samples.24,25 The function is described as:

(Eq1): 

where m = 0,1,2,… and b,a and q are parameters of our model. 
B(x) is the Beta function as previously described.24,25 In the case 
where b > a > 0, the probability of non-observed events is esti-
mated by the formula:

Equation 1 can be presented in the form of the following 
recursive formula for easy computational estimate of the model 
parameters:

(Eq2):

In order to apply the probability function (Eq1) or (Eq2) 
to the observed data, we assume that the random variable X is 
restricted to sample size and the rarest events are non-observed. 
Thus, random variable X is doubly truncated, i.e., the range 
1,2,…, J (J < ∞). Using (Eq1), the probability distribution func-
tion of the resulting truncated distribution function is written as 
the following:

(Eq3)

This probability distribution function corresponds to a typi-
cal situation in analysis of mutagenesis data in a limited cohort 
where the occurrence values 0 and J+1, J+2,… are not detected. 
Details of the curve-fitting computational algorithm has been 
previously published.24

Hierarchical clustering
A numerical matrix that represents the mutation pattern 

across patients and genes are generated. Rows and columns cor-
respond to genes and patients, respectively. Each numerical value 
in the matrix represents the number of distinct locations with 
reported mutations for that patient and gene. Hierarchical clus-
tering analysis was performed using Kendall-Tau as the similar-
ity metric and complete linkage as the clustering method. The 

mathematical procedure was implemented in Gene Cluster 3.0 
and visualized via Java TreeView.61,62 The intensity of the plot 
corresponds with the number of distinct mutated locations for 
that patient and gene.

Gene enrichment and network analysis
Gene functional enrichment analysis was performed via 

DAVID Bioinformatics and MetaCore from GeneGo Inc.63 The 
default human genome genes were used as the background set. 
Default parameters were used. The gene network was generated 
via MetaCore via direct interacting network algorithm. The 
legend of the network figure can be assessed from (http://ftp.
genego.com/files/MC_legend.pdf).

Survival analysis
Survival analyses of patient subgroups were performed with 

reference to their overall survival times (years to last follow up) 
and survival event (vital status at last follow up). Comparative 
survival times and events of patient subgroups were visualized 
using Kaplan–Meier survival curves, which represent the prob-
ability of patient survival at a given time after initial diagnosis.64 
The statistical significance of patient subgroup stratification 
across the full survival time range was evaluated using the log-
rank test, which is based on the chi-sq distribution. The pro-
cedures were implemented using open source R programming 
language and packages.

Measure of agreement test
The correlations between ordered patient subgroups with clin-

ical parameters such as therapy response were calculated using 
weighted kappa correlation measure. The statistical significance 
was estimated using Mantel–Haenszel (MH) test. The calcula-
tions were implemented using StatXact-9 (computed weight: 
quadratic difference, scores: equally spaced). All P values are one-
sided (right-tailed), which indicates the probability that a ran-
dom kappa correlation measure is greater than actually observed.

Protein structure modeling
The initial structure was taken from the crystal structure of 

the serine/threonine protein kinase Chk2. (PDB code 3i6u,39 
resolved at 3.0 Å). The crystallographic unit contains a dimeric 
protein (chains A and B). The crystal construct comprises from 
residue Thr89 to Glu501. The program Modeler40 has been used 
to complete few missing loops and to extend the C-terminal 
region of the kinase until Leu543, in order to include the nuclear 
localization signal motif. PDB2PQR65 was used for protonation 
of residues. MD simulations were set up using the antechamber 
and LEaP modules in the AMBER 12 package.66 The system was 
solvated in a truncated octahedron TIP3P water box and neu-
tralized with sodium ions. Minimization and MD simulations 
using the amber ff99SB all-atom force field,67 were performed 
with the Sander module of the Amber12 package using the GPU-
accelerated version of the program.68 We followed a multistep 
scheme as previously described.69 We have extracted the confor-
mation at 50 ns and assumed that along the trajectory the kinase 
and especially the C-termini tail have adopted a relaxed state. 
PyMOL70 has been used to visualize and generate the figures.
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