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Review

Introduction

Over the last decade, accumulating evidence suggests that 
ubiquitination of proteins by E3 ligases is a novel and crucial 
regulation mechanism in innate and adaptive immunity.1,2 The 
gene of Casitas B-lineage lymphoma proto-oncogene-b (Cbl-b), 
an E3 ubiquitin-protein ligase and an adaptor protein, was ini-
tially cloned and characterized by Keane et al. in 1995.3 Cbl-b 

belongs to the Cbl family, which consists of c-Cbl and Cbl-3 
in addition to Cbl-b and has a broad spectrum of biological  
functions.

Recent studies using gene-targeting approaches have yielded 
convincing evidence that Cbl-b negatively regulates the signaling 
pathways derived from the T-cell receptor (TCR),4,5 B-cell recep-
tor (BCR), CD40,6,7 and FcεR1 (high affinity immunoglobulin 
epsilon receptor).8 Because of the diversities of substrates of Cbl-b 
in different cell types, it appears that Cbl-b regulates various sig-
naling pathways in a cell type-dependent manner. In this review, 
we will summarize the most recent progress on Cbl-b-related 
studies in immune systems, which encompass Cbl-b structure, 
regulation of Cbl-b expression, and its role in innate and adap-
tive immune responses. We will also discuss the potential roles of 
Cbl-b in various diseases including autoimmune and inflamma-
tory diseases, infection, and cancer.

Genetics, Tissue Distribution, and Subcellular 
Location of Cbl-b

The mammalian Cbl family of proteins is highly conserved 
throughout evolution from nematodes to humans and consists 
of c-Cbl, Cbl-b, and Cbl-3 (Fig. 1). The Cblb gene is located on 
chromosome 3q13.11 in humans and chromosome 16B5 in the 
mouse. Cbl-b is abundantly expressed in a variety of immune 
cells.9,10 In T cells, Cbl-b is predominantly expressed in peripheral 
T cells, whereas c-Cbl is mainly expressed in thymus, suggesting 
a distinct role of c-Cbl and Cbl-b in T-cell development and tol-
erance induction.11 In T cells, Cbl-b is located in the cytoplasm 
but can be translocated to the plasma membrane upon TCR 
stimulation.12
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Casitas B-lineage lymphoma proto-oncogene-b (Cbl-b), 
a RING finger E3 ubiquitin-protein ligase, has been demon-
strated to play a crucial role in establishing the threshold for 
T-cell activation and controlling peripheral T-cell tolerance via 
multiple mechanisms. Accumulating evidence suggests that 
Cbl-b also regulates innate immune responses and plays an 
important role in host defense to pathogens. Understanding 
the signaling pathways regulated by Cbl-b in innate and adap-
tive immune cells is therefore essential for efficient manipu-
lation of Cbl-b in emerging immunotherapies for human 
disorders such as autoimmune diseases, allergic inflammation, 
infections, and cancer. In this article, we review the latest devel-
opments in the molecular structural basis of Cbl-b function, 
the regulation of Cbl-b expression, the signaling mechanisms 
of Cbl-b in immune cells, as well as the biological function of 
Cbl-b in physiological and pathological immune responses in 
animal models and human diseases.
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Structural Components of Cbl-b and Their 
Functions

The Cbl family of ubiquitin ligases in mammals share highly 
conserved regions in their N-terminal halves, which encom-
pass their TKB (protein tyrosine-kinase-binding), linker (L), 
and RING (really interesting new gene) finger (RF) domains 
(Fig. 1). The unique feature of the TKB domain is that it recog-
nizes specific substrates of Cbl-b, which is achieved by binding to 
proteins containing specific phosphorylated tyrosine-containing 
motifs, such as Syk and Zap-70, and a range of receptor tyrosine 
kinases.6,13 Interaction of proteins with the TKB domain of Cbl is 
mediated by 3 distinct subdomains consisting of a 4-helix bundle 
(4H), a calcium-binding EF hand, and a variant SH2 domain, 
all 3 of which are functionally required to form a unique PTB 
(phosphotyrosine-binding) module.14 SH2 domain within the 
TKB recognizes tyrosine-phosphorylated proteins for ubiquitin 
conjugation.15 A highly conserved α-helix of the L domain plays 
an important role in maintaining E3 activity.16,17 The crystal 
structure shows that the L region contacts the TKB, RF, and 
E2 ubiquitin-conjugating enzymes.16 The RF domain has intrin-
sic E3 ubiquitin ligase activity and binds to ubiquitin-E2 for the 
transfer of ubiquitin to specific substrates.18-20 Recent studies also 
indicate that the phosphorylation of Y363, located in the L region 
between TKB and RF domains, regulates the E3 activity of 
Cbl-b by 2 mechanisms: one is to remove the masking of the RF 
domain from the TKB domain, and the other is to form a surface 
to enhance binding affinity to E2s.21,22 Consistent with this find-
ing, the equivalent tyrosine in c-Cbl, i.e., Y371, has been shown 
to regulate its E3 ubiquitin ligase activity in a similar fashion.23

In contrast, the C-terminal regions of this family of proteins 
are less conserved. The proline-rich (PR) domain in the C termi-
nus of c-Cbl and Cbl-b refers to a PX(P/A)XXR motif that binds 
to SH3 domains of the CIN85/RUK (regulator of ubiquitous 
kinase)/CD2AP (C2-associated protein) family of proteins.24,25 
The tyrosine residues at the C termini of c-Cbl and Cbl-b are 
phosphorylated by protein tyrosine kinases (PTKs) following 
stimulation of a diverse array of cell surface receptors.26,27 c-Cbl 

can bind Vav-family guanine nucleotide exchange factors (GEFs), 
the p85 regulatory subunit of phosphoinositide 3-kinase (PI 3K), 
and the Crk-family of adaptor proteins that link Cbl proteins to 
C3G through interactions with phospho-Y700, Y731, and Y774, 
respectively.28-31 Likewise, Cbl-b is phosphorylated at Y655 and 
Y709 upon TCR stimulation. However, the phosphorylation 
of Cbl-b is weaker compared with that of c-Cbl in response to 
this stimulation.10,32 It is noted that the Y731EAM motif provides 
c-Cbl a docking site for the SH2 domains of p85, thus enabling 
c-Cbl to function as a positive regulator of PI3K activity.33-36 
Indeed, Akt and c-Cbl Y737 (mouse) are highly phosphorylated 
in lineage-negative bone-marrow (BM) cells upon stimulation 
with stem cell factor (SCF) or FLT3 ligand, whereas c-Cbl−/− BM 
cells display defective phosphorylation of Akt, possibly due to 
loss of c-Cbl, which results in the uncoupling of PI3K p85 from 
the membrane.37 The absence of this p85-binding motif in Cbl-b 
highlights a potentially important divergence in the role and 
mode of action of these 2 highly similar regulatory proteins.33 
In support of this notion, Cbl-b has been documented to inhibit 
Pten inactivation via Nedd4 (neuronal precursor of cell expressed 
developmentally downregulated gene 4) independently of its E3 
ubiquitin ligase activity in T cells.12

Both c-Cbl and Cbl-b have an ubiquitin-associated (UBA) 
domain at their C-terminal end, which interacts with ubiquitin 
and ubiquitin-like domains of proteins such as Nedd8,38,39 and 
is present in a variety of proteins involved in ubiquitin-mediated 
processes. Moreover, c-Cbl and Cbl-b also can form homo- and 
hetero-dimers through interaction between their UBA domains. 
Cbl-b dimerization is regulated by ubiquitin binding and requires 
tyrosine phosphorylation of Cbl-b and ubiquitination of Cbl-b 
substrates.40 However, Cbl-b, rather than c-Cbl, constitutively 
coimmunoprecipitates with high molecular weight ubiquitinated 
proteins.41 Furthermore, the UBA domain of Cbl-b has a much 
greater affinity for polyubiquitin chains than for monoubiqui-
tin, and inhibits a variety of ubiquitin-mediated processes, such 
as degradation of ubiquitinated proteins.41,42 This difference in 
ubiquitin-binding reflects distinct regulatory functions of Cbl-b 
from c-Cbl.

Figure 1. Functional domains of the Cbl family (c-Cbl, Cbl-b, and Cbl-3) in mammals. All three (3) members of the Cbl family of proteins share a highly 
homologous N-terminal region that serves as the structural platform for direct binding to specific pY-containing peptide motifs in activated PTKs and 
is accordingly referred to as the tyrosine kinase-binding (TKB) domain; this domain is assembly of a 4-helical (4H) bundle, an EF hand domain, and a 
variant SH2 domain. The TKB domain is followed by a highly conserved helical linker (L) domain and a RING (really interesting new gene) finger (RF) 
domain, which bind to ubiquitin-conjugating enzymes (E2). The proline-rich motifs (PR) bind to SH3 domain containing signaling and endocytic pro-
teins. Induced tyrosine phosphorylation sites (major sites at Y700, Y731, and Y774 in c-Cbl) recruit SH2 domain-containing signaling proteins. The leucine 
zipper (LZ)/ubiquitin-associated (UBA) domain near the C terminus is involved in ubiquitin binding and dimerization. Cbl-c lacks most of the C-terminal 
regions except for a short PR region for potential interactions with SH3 domain-containing proteins.
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Biochemical Function and the Expression 
Modification of Cbl-b

The ubiquitin–protein ligase system consists of 3 classes of 
enzymes known as ubiquitin-activating enzymes (E1), ubiquitin-
conjugating enzymes (E2), and ubiquitin–protein ligases (E3). 
The ubiquitination reaction is initiated when 76-amino acid 
ubiquitin is activated by E1. A thioester bond forms between the 
active cysteine residue of E1 and the C terminus of ubiquitin in 
an ATP-dependent reaction. Following ubiquitin activation, acti-
vated ubiquitin is transferred to E2 in another ATP-dependent 
reaction. As an E3 ubiquitin-protein ligase, Cbl-b transfers ubiq-
uitin from specific E2 to the ε-amino group of a lysine (K) residue 
on the protein substrate. (Fig. 2). The fate of the tagged substrate 
depends on the number of ubiquitin molecules added (mono-
ubiquitin vs. poly-ubiquitin) as well as the K residue involved 
in the formation of the polyubiquitination chains. Generally, 
proteins polyubiquitinated through K48 are degraded in the 26S 
proteasome,43,44 whereas mono-ubiquitination (or multi-ubiq-
uitination) usually marks membrane proteins for endocytosis 
and subsequent degradation in lysosomes.45 Polyubiquitination 
through K11, 29, 63 may endow substrate proteins new func-
tions,46 which serves as a signal for functional modification of 
the substrate, including transcriptional regulation,47-49 ubiquiti-
nation-dependent processing of precursor proteins,50 and kinase 
activation.51 Much less is known about the precise function and 
topology of unconventional polyubiquitin chains linked through 
K6, K11, K27, K29, or K33,52 which may target proteins for deg-
radation.53 Given that Cbl-b interacts with many proteins in vari-
ous immune cells,10,54-61 Cbl-b is thought to play important roles 
in maintaining the homeostasis of the immune system through 
elaborate signal transduction pathways.

The tyrosine and serine residues of Cbl-b are phosphory-
lated upon stimulation of an vast array of cell-surface receptors, 
including the TCR,10,40,56,59,62-66 a process that is essential for 
Cbl-b function. Cbl-b also undergoes ubiquitination upon CD28 
costimulation in T cells, resulting in its proteasomal degrada-
tion. CD28 costimulation potentiates TCR-induced Cbl-b deg-
radation, whereas CTLA-4-B7 interaction is required for Cbl-b 
re-expression.67,68 Thus, CD28 and CTLA-4 tightly regulate 
Cbl-b expression, which is critical for establishing the threshold 
for T-cell activation and tolerance induction. The proteasomal 
degradation of Cbl-b may be mediated by Nedd4, which has 
been shown to target Cbl-b for ubiquitination and degradation,69 
and PKC-θ, which phosphorylates Cbl-b at Ser282 in the TKB 
domain, facilitating Cbl-b ubiquitination.59 In keeping with this, 
it was reported that Nedd4 promotes adaptive T-cell responses in 
vitro and in vivo.12,69

Signaling Pathway of Cbl-b in Innate and Adaptive 
Immune Cells

Genetic and biochemical studies have shown that Cbl family 
proteins, including those from Drosophila and Caenorhabditis ele-
gans, attenuate intracellular signaling induced by the engagement 

of cell surface receptors.57 Cbl-b plays a negative regulatory role 
by targeting proteins for ubiquitination or by interacting with 
other proteins via its PR region, TKB domain, or UBA domain. 
For example, Cbl-b interacts with phospho-tyrosine-containing 
proteins via its TKB domain,10,13 E2-ubiquitin complexes via its 
RF domain,20,70 binds to SH3 domain-containing proteins via its 
PR region,57 SH2 domain-containing proteins via its C-terminal 
tyrosine residues,10 and polyubiquitinated proteins via its UBA 
domain.40,41 It has been documented that dimerization of Cbl-b 
is required for the binding of Cbl-b to poly-ubiquitin but not 
for mono-ubiquitin.9,10,41,56,57,71-73 Thus, Cbl-b plays an important 
regulatory role in innate and adaptive immune cells through its 
involvement with many signaling pathways.

Cbl-b in innate immune responses
The responses of innate immune cells to extracellular matrix 

proteins, cytokines, pathogens, cellular damage, and many other 
stimuli are regulated by a complex network of intracellular sig-
nal transduction pathways, most of which are either initiated or 
modulated by Src-family or Syk tyrosine kinases present in innate 
cells.74 Cbl-b has been implicated in the major signaling path-
ways of macrophages, dendritic cells, natural killer (NK) cells, 
and NKT cells and mast cells in innate immunity.

Integrins are critical for the migration and function of mac-
rophages during inflammation, and Cbl-b plays an important 
role in integrin signal transduction. Cbl-b deficiency facilitates 
activation of β2-integrin leukocyte function-associated antigen-1 

Figure 2. Overview of the ubiquitin pathway utilized by RING type E3 
ligases. Three types of enzyme are required for substrate ubiquitination: 
ubiquitin-activating (E1), ubiquitin-conjugating (E2), and ubiquitin–pro-
tein ligase (E3) enzymes. The E1-E2-E3 cascade mediates ubiquitina-
tion of the substrate with the substrate specificity provided by the E3 
enzyme. The substrate protein can be tagged with just one ubiquitin, or 
polyubiquitin chains, which determines the fate of target proteins. –S–, 
thiolester bond.
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(LFA-1) and LFA-1-mediated inflammatory cell recruitment. 
Cblb−/− mice display increased macrophage recruitment in thio-
glycollate-induced peritonitis, and Cblb−/− bone marrow-derived 
mononuclear phagocytes (BMDMPs) show increased adhesion to 
endothelial cells resulting from activation of LFA-1, which medi-
ates adhesion of BMDMPs to ICAM-1. Cbl-b deficiency also 
results in increased phosphorylation of T758 in the β2-chain, 
thereby enhancing the association between 14–3-3β protein 
and the β2-chain, leading to activation of LFA-1.75 Cbl-b is also 
implicated in the Toll-like receptor (TLR)-triggered PI3K-RapL-
integrin-α(M), CD11b activation pathways.76 The initial study 
that suggests that Cbl-b is involved in innate immune responses 
came from evidence that Cbl-b participates in acute lung injury 
by negatively regulating TLR4 signaling in mouse monocytes. 
Loss of Cbl-b markedly aggravates acute lung inflammation and 
leads to 100% lethality upon polymicrobial sepsis induction.76 
However, no additional studies by other investigators verified 
this finding. Subsequently, Cbl-b was shown to target MyD88 
and TRIF, which is potentiated by activating the tyrosine kinases 
Src and Syk in macrophages upon TLR stimulation including 
TLR4.77 However, Nrdp1 has also been shown to ubiquitinate 
MyD88 and TBK-1 in macrophages upon TLR4 ligation.78 Since 
these studies did not examine macrophages from mice lack-
ing Cbl-b, or expressing a Cbl-b RF mutation, it is currently 
unknown whether Cbl-b is indeed the E3 ubiquitin ligase for 
MyD88 in a physiological setting. Therefore, the physiological 
substrates for Cbl-b in innate immune cells are largely unknown.

Cbl-b also plays an important regulatory role in dendritic 
cells, NK, NKT cells, and mast cells. Cbl-b functions not only as 
a negative regulator of signaling, but also as a positive modulator 
of TNF receptor superfamily signaling. TRANCE and CD40L-
mediated Akt activation is defective in Cblb−/− dendritic cells,35 
suggesting that Cbl-b positively regulates these pathways. It was 
reported that Cbl-b may target CARMA1, a critical signaling 
molecule in NF-κB activation, for mono-ubiquitination in NKT 
cells.79 Ubiquitin conjugation to CARMA1 disrupts its complex 
formation with Bcl10 without affecting its protein stability, sug-
gesting that this process is mediated by a proteolysis-independent 
mechanism.79 It has been recently reported that a novel inhibi-
tory role of Cbl-b in the regulation of NK cell functions via TAM 
receptors. Releasing the inhibition imposed by this TAM/Cbl-b 
pathway would render NK cells capable of rejecting tumor metas-
tases.80 Furthermore, Cbl-b negatively regulates IgE-mediated 
activation of mast cells as well as the activation and tissue infil-
tration of macrophages.81,82 The molecular mechanism by which 
Cbl-b inhibits IgE-mediated mast cell activation remains to be 
defined.

Signaling pathways of Cbl-b in B cells
Direct target molecules of Cbl-b such as tyrosine kinase Syk, 

phospholipase C-gamma2 (PLC-γ2), p85/PI3K, Rho-family 
GTP-GDP exchange factor Vav, and growth-factor receptor-
bound protein-2 (Grb2) are involved in BCR signaling during 
the normal response course.83 Syk and its substrate BLNK (also 
called SLP65) and Cbl-interacting protein of 85 kDa (CIN85) 
are key components of the BCR-associated primary transducer 
module required for the onset and progression phases of BCR 

signal transduction. Syk-mediated complex formation consisting 
of Vav, Btk, BLNK, and PLC-γ2 is required for effective down-
stream signaling including MAPKs, Akt, Ca2+ influx, and NF-κB 
activation.83 CIN85 also interacts with SH2-containing inositol 
phosphatase 1 (SHIP-1), an inositol 5-phosphatase expressed in 
hemopoietic cells, which acts by hydrolysing the 5-phosphates 
from PtdIns(3,4,5)P(3) and Ins(1,3,4,5)P(4), thereby negatively 
regulating the PI3K pathway.84 Thus, multiple signaling path-
ways of Cbl-b are coordinating in response to BCR stimulation.

Studies using Cblb−/− mice have yielded more definitive results 
that support the notion that Cbl-b is a negative regulator of BCR 
signaling.6 Cblb−/− B cells display sustained phosphorylation of 
Igα, Syk, and PLC-γ2 in response to BCR stimulation, which 
leads to prolonged Ca2+ mobilization and increases extracellular 
signal-regulated kinase (ERK) and JNK phosphorylation, and 
surface expression of the activation marker, CD69.6 This height-
ened BCR signaling is possibly mediated by ubiquitination and 
proteasomal degradation of Syk and Igα by Cbl-b. In accordance 
with these data, B cell-specific ablation of both c-Cbl and Cbl-b 
(Cbl−/−Cblb−/−) results in enhanced tyrosine phosphorylation 
of Syk, PLC-γ2, and Vav, and Ca2+ mobilization and substan-
tial attenuation of tyrosine phosphorylation of adaptor protein 
BLNK.7

Cbl-b is also involved in the germinal center formation. Loss 
of Cbl-b restores Ig class switching and germinal center forma-
tion in Vav1 mutant mice in response to an in vivo viral chal-
lenge.85 Genetic inactivation of Cbl-b also rescues impaired 
antiviral IgG production rather than germinal center formation 
in Cd28−/− mice.85 It has been shown that Grb2 is degraded in 
a Cbl-b-dependent fashion and plays an important role in ger-
minal center formation in the spleen.55 Ablation of Grb2 in B 
cells results in enhanced BCR signaling, and Grb2−/− B cells do 
not form germinal centers in the spleen after antigen stimula-
tion.86 Therefore, it is assumed that the Cbl-b/Grb2 signaling 
pathway might play an important role in germinal center forma-
tion. In addition, we have previously shown that Cblb−/− mice 
display enhanced thymus-dependent antibody responses and 
germinal center formation, whereas introduction of CD40 defi-
ciency abolishes these effects.87 Cbl-b selectively downmodulates 
CD40-induced activation of NF-κB and JNK. Cbl-b associates 
with TRAF-2 upon CD40 ligation and inhibits the recruitment 
of TRAF-2 to CD40. These data suggest that Cbl-b attenuates 
CD40-mediated NF-κB and JNK activation, thereby suppress-
ing B-cell responses.87

Signaling pathways of Cbl-b in T cells
Cbl-b acts as a gatekeeper that prevents excessive T-cell acti-

vation initiated by the engagement of TCR, thus setting the 
threshold for T-cell activation and regulating peripheral T-cell 
tolerance. The signaling pathways that are regulated by Cbl-b in 
T cells have been more extensively studied than those of other 
immune cells (Fig. 3).

In naïve T cells, Cbl-b regulates CD28-dependent T-cell acti-
vation by selectively restraining the TCR-mediated Vav1–Wiscott 
Aldrich syndrome protein (WASP) signaling pathway.4,88-90 Loss 
of Cbl-b in T cells frees TCR-triggered receptor clustering, lipid 
raft aggregation, and sustained tyrosine phosphorylation from 
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the requirement for CD28 costimulation. The Rho family GDP/
GTP exchange factor, Vav1, GTPases Rac1, CDC42, and RhoA, 
and CDC42-associated WASP constitute a signaling pathway 
that links antigen receptor engagement to cytoskeletal reorga-
nization, receptor clustering and cap formation, and effective 
T-cell activation.91 Vav1 is optimally tyrosine phosphorylated by 
co-stimulation of TCR/CD28. Loss of Cbl-b results in hyper-
activation of Vav1 upon TCR stimulation and uncouples the 
requirement for optimal Vav activation from CD28 costimula-
tion. Further study suggests that Cbl-b suppresses the activation 
of Vav, thus attenuating the extent of actin reorganization and 
TCR clustering via a CDC42/WASP-dependent mechanism.92 
Introduction of the Cbl-b deficiency into a Vav1−/− background 
relieves the functional defects of Vav1−/− T cells and causes spon-
taneous autoimmunity.90 In further support of the notion that 

Cbl-b regulates the CD28 dependence of T-cell activation, T 
cells deficient for Cbl-b do not require CD28 costimulation for 
T-cell proliferation and IL-2 production, and Cbl-b deficiency 
fully restores defective T-cell proliferation, IL-2 production, and 
T cell-dependent antibody responses in Cd28−/− mice.88 WASP 
is a key regulator of actin dynamics during cell motility and 
adhesion. The studies using Cblb−/−Wasp−/− and Cblb−/−Vav1−/−

Wasp−/− mice reveal that WASP deficiency abrogates hyper-T-cell 
responses and TCR clustering.90 WASP phosphorylation at tyro-
sine 291 results in recruitment of Cbl-b, which, together with 
c-Cbl, ubiquitinates WASP at lysine residues 76 and 81, located 
at the WASP WH1 domain. Disruption of WASP ubiquitina-
tion causes WASP accumulation and alters actin dynamics and 
the formation of actin-dependent structures.93 Taken together, 
these data suggest that Cbl-b negatively regulates the Vav–WASP 

Figure 3. Model of Cbl-b action on T-cell activation Upon TCR stimulation, Pten is inactivated via Nedd4, which targets Pten for K63-linked polyubiquiti-
nation, and this process is inhibited by Cbl-b. Inactivation of Pten leads to the accumulation of PtdIns(3,4,5)P3, which recruits PDK-1, Vav-1, and Akt to the 
plasma membrane via its interaction with the PH domains within these molecules. Therefore, Cbl-b inhibits Vav-dependent activation of WASP, which 
leads to actin reorganization and TCR clustering. In addition, Vav1 links PKC-θ to PDK-1, the former coupling IKKs, to the CBM complex. Activated Akt 
also facilitates the formation of the CBM complex possibly by phosphorylating CARMA1. Thus, Cbl-b inhibits NF-κB activation via PKC-θ and Akt. One of 
the important outcomes for Akt is that Akt can phosphorylates Foxo1/3a, which excludes them from the nucleus, thus inhibiting Foxp3 expression. In 
anergic T cells, Cbl-b targets PLC-γ1 and PKC-θ for ubiquitination, thus promoting T-cell anergy induction. The expression of Cbl-b in T cells is controlled 
by CD28 and CTLA-4. CD28 costimulation induces Cbl-b ubiquitination and proteasomal degradation, which is possibly mediated by Nedd4 and PKC-θ. 
In contrast, CTLA-4-B7 interaction induces Cbl-b expression.
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signaling pathway downstream of CD28 but upstream or at the 
level of WASP. In addition to deregulated actin reorganization 
and TCR clustering, the loss of Cbl-b selectively results in aber-
rant activation of NF-κB upon TCR ligation, which is mediated 
by Akt and PKC-θ 94.

In an effort to define the molecular mediator(s) that regulates 
Vav activation in T cells, Cbl-b was suggested to promote the 
ubiquitination of p85, the regulatory subunit of PI3K, through 
an interaction with the C-terminal PR domain, resulting in 
the inhibition of the binding of p85 to TCRζ and CD28, thus 
attenuating the activation of the downstream targets Vav and 
Akt.57 However, this finding, although well-cited, has not been 
independently verified by other investigators. Rather, our recent 
study revealed that Cbl-b does not regulate PI3K but rather 
inhibits the ubiquitin ligase activity of Nedd4, which targets 
Pten for K63-linked polyubiquitination, thus suppressing inac-
tivation of Pten. Cbl-b may exert its effect on Pten by impeding 
the binding of Pten to Nedd4, which is independent of its E3 
ubiquitin ligase activity.12

Cbl-b also plays a negative role in Crk-L-C3G-mediated Rap1 
and LFA-1 activation in T cells. Cbl-b affects the association 
between Crk-L and C3G, rather than the stability of Crk-L by 
ubiquitinating Crk-L. In Cblb−/− T cells, the interaction between 
Crk-L and C3G, and the activity of the small GTPase Rap1, are 
increased. Cblb−/− T cells also display increased adhesion and cell 
surface binding to ICAM-1 by the enhanced clustering of LFA-1 
in response to TCR stimulation.95 By contrast, ICOS upregula-
tion, germinal center (GC) formation, and production of IFN-γ 
and IL-4 are under the control of signaling pathways indepen-
dent of Cbl-b-regulated Vav1 activity.85

In addition to the above signaling pathways regulated by 
Cbl-b in primary naïve T cells, Cbl-b also ubiquitinates PLCγ 
1 and PKC-θ in anergic T cells, attenuating the activation of 
PLCγ 1 and PKC-θ, which suppresses calcium mobilization and 
the activation of transcription factors that lead to IL-2 produc-
tion.59,69,70 Therefore, Cbl-b appears to be crucial for the induc-
tion of T-cell anergy which we will discuss below.

Roles of Cbl-b in Immune-Related Diseases

Cbl-b in tolerance induction
E3 ubiquitin ligase Cbl-b is involved in maintaining a bal-

ance between immunity and tolerance by functioning as a gate-
keeper.88,89 It has been demonstrated that CD28 and CTLA-4 
may regulate the threshold for T-cell activation by controlling 
Cbl-b expression.67,68 In support of this notion, Cbl-b has been 
shown to be a key mediator involved in T-cell anergy induc-
tion in vitro and in vivo.70,96 In addition, CD4+CD25- effector 
T cells from Cblb−/− mice are resistant to TGF-β, Cblb−/− and 
wild-type CD4+CD25+ regulatory T cells.97 Furthermore, Cbl-b 
has been shown to facilitate the conversion of naïve CD4+CD25- 
T cells into inducible CD4+CD25+Foxp3+ T cells (iTregs) via 
a Foxo1/3a-dependent mechanism.98 Using both in vitro and 
in vivo approaches, we demonstrated that the T-cell activation 
threshold regulated by Cbl-b determines the fate of iTregs, and 

that this process is mediated by an Akt-2-dependent mecha-
nism.99 These results suggest that Cbl-b regulates peripheral 
T-cell tolerance by multiple mechanisms.

Cbl-b in autoimmunity and allergic airway inflammation
Cbl-b has been implicated in various diseases in a range 

of animal models. Cblb−/− mice,89 Cbl-b RF mutant mice,20 
C-terminal-truncated Cbl-b in rats,100 and c-Cbl/Cbl-b dou-
ble mutant mice (Cbl− /−Cblb− /−) mice4 all develop spontane-
ous autoimmunity or are highly susceptible to experimental 
autoimmune encephalomyelitis (EAE) (a model of a human 
demyelinating disease, multiple sclerosis [MS])101 and murine 
collagen-induced arthritis (CIA) (a mouse model of rheumatoid 
arthritis).102,103 Mice with B cell-specific Cbl− /−Cblb− /− muta-
tions also develop a systemic lupus erythematosus (SLE)-like 
autoimmune disease,7 further indicating that Cbl-b is essential 
for promoting immune tolerance. The importance of Cbl-b in 
peripheral T-cell tolerance is further supported by the fact that 
Cbl-b deficiency exacerbates disease development (exocrine 
pancreatitis) in mice deficient for AIRE (autoimmune regula-
tor), which is essential for clonal deletion in the thymus.104 In 
further support of this notion, Cbl-b deficiency subsequently 
precipitates type 1 diabetes in most 3A9 TCR:insHEL dou-
ble transgenic mice.105 In a mouse model of allergic asthma, 
we recently found that Cblb−/− mice display increased airway 
inflammation upon OVA/alum immunization, which is due to 
aberrant Th2 and Th9 responses. At the molecular level, Cbl-b 
was found to target Stat6, a transcription factor involved in 
both Th2 and Th9 cell differentiation, for ubiquitination and 
proteasomal degradation.106

Prominent autoimmune phenotypes in mice with Cbl-b (or 
Cbl plus Cbl-b) deletion have prompted analyses of polymor-
phisms/mutations of Cbl-b in animal models and human patients 
with autoimmune diseases. Polymorphisms of Cbl-b have been 
found in some autoimmune diseases, such as rat type 1 diabetes 
(T1D),100,107,108 human MS,109 SLE,110 and asthma.111 A nonsense 
mutation in Cbl-b has been identified from the Komeda dia-
betes-prone (KDP) rat, and wild-type Cbl-b significantly sup-
presses development of the KDP phenotype.100,107 Furthermore, 
one SNP in exon 12 of the Cbl-b gene was significantly dem-
onstrated to be associated with T1D in a large Danish T1D 
study of 480 families,108 although further verification should be 
performed using large, well-characterized populations. A recent 
genome-wide associated study (GWAS) indicated an association 
of CBLB gene variants with MS, which was confirmed in 1775 
cases and 2005 controls.109 These data together with data that 
mice lacking the ortholog are prone to EAE88 strongly support 
the involvement of Cbl-b in MS development. Consistent with 
this finding, a significant association between the 2126(A/G) 
SNP of Cbl-b gene and SLE was detected,110 suggesting that 
Cbl-b may contribute to the deregulated activation of T lym-
phocytes observed in SLE. A Cbl-b D454A variant associated 
asthma was found the in asthmatic children by whole-exome 
sequencing.111

Cbl-b, a target for tumor immunotherapy
Although genetic inactivation of Cbl-b clearly has detri-

mental consequences, e.g., sensitizing the mice to develop 
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autoimmunity, these mice do have the enviable ability to spon-
taneously reject various types of solid and hematopoietic tumors 
and viruses. Cbl-b deficiency in mice elicits an efficient and 
spontaneous rejection of xenografted TC1, EL4, and E.G7 
tumorigenic cell lines,92,112 and shows a markedly lower inci-
dence of skin cancer than the wild-type control cohort upon 
chronic exposure to UV-B light.112 In support of these observa-
tions, Cblb−/− mice crossed to an ataxia telangiectasia mutated-
deficient background (Atm−/−) exhibits a significantly reduced 
incidence and delayed onset of spontaneous T-cell lymphomas 
compared with Cblb+/+Atm−/− controls.92 The enhanced anti-
tumor immunity in Cblb−/− mice has been ascribed to increased 
activity of CD8+ T cells.113 Indeed, transfer of siRNA Cbl-b-
silenced CD8+ T lymphocytes augments tumor vaccine efficacy 
in a B16 melanoma model.114,115 Thus, abrogating Cbl-b expres-
sion in effector T cells may improve the efficacy of adoptive 
therapy of some human malignancies. The recent report that 
an inhibitory role of Cbl-b on rejecting tumor metastases of NK 
cell functions would give rise to potential therapeutic effect spe-
cific for Cbl-b to tumor metastases.80

Perspective

Although the roles of Cbl-b in adaptive immunity have been 
extensively studied, the involvement of Cbl-b in innate immunity 
and infection has only recently been appreciated. Studies using 
various animal models of immune diseases will unveil the poten-
tial cellular and molecular mechanisms for Cbl-b in these dis-
ease processes, and determine whether Cbl-b is a drug target for 
the treatment of immune-related diseases, such as autoimmune/
inflammatory diseases, infectious diseases and tumors.
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