Skip to main content
. 2014 Mar 11;49(4):1088–1107. doi: 10.1111/1475-6773.12166

Table 3.

Model Predicting Conditional Hospital-Level Prevalence of Observation Stays

Coefficient
Hospital characteristics
 Bed count
  6–24 −1.582 (1.365)
  25–49 −1.609* (0.737)
  50–99 −0.247 (0.794)
  200–299 1.435 (0.861)
  300–399 2.346** (0.853)
  400–499 1.353 (0.964)
  500+ 0.665 (1.224)
 Medical school affiliation −0.641 (0.970)
 Critical access hospital −3.022** (1.106)
 Freestanding emergency dept. −1.238 (0.791)
 Freestanding outpatient clinic −1.589** (0.398)
 Outpatient surgery unit 1.866 (2.059)
 Urgent care clinic −0.682 (0.431)
 Ownership type
  Government, non-federal −1.447 (0.766)
  For-profit 0.899 (0.852)
 ED visits as% of outpatient visits 0.138** (0.018)
 Medicare length of stay 0.795 (0.494)
Patient characteristics
 Average age −0.190 (0.103)
 % Male 0.153* (0.076)
 % Black −0.051* (0.020)
 % Asian 0.118 (0.061)
 % Hispanic −0.087 (0.065)
 % Other race 0.148 (0.146)
 % Top 10 observation diagnoses 0.263** (0.079)
Local health system characteristics
 Physicians per 1,000 population 0.051 (0.242)
 Population (10,000) 0.005 (0.007)
 % of Beneficiaries in Medicare HMO 0.060 (0.042)
 No. of short-term general hospitals per 100,000 population 0.076 (0.048)
 Metropolitan area 1.121 (0.675)
 Micropolitan area −0.031 (0.818)
R2 0.65
Sample size (N) 3,024

Note. Coefficients for state dummy variables are not shown here but are available by request. Robust standard errors in parentheses.

*

Significant at 5%;

**

1%.