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Abstract

Both biological and social sciences have identified contributing factors to human health. However,

health outcomes are unlikely to equal a simple sum of these identified factors. This article makes

an attempt to put together the information, methods, and technologies that relate to health

outcomes from biological, behavioral, and social disciplines. Much of this information was

obtained by controlling for the variations of the factors in “other” disciplines. For example,

genetic factors were controlled for in identifying the behavioral determinants of health. Looking

forward, better understandings of health outcomes may require exploiting the interactions of

health determinants that were identified from different disciplines. We propose the concept of

“systems health” studies, which take health outcomes as the outputs of a system, where the inputs

and their interactions from multiple disciplines are considered.

INTRODUCTION

Human health has been studied by inadvertently isolated disciplines, including biology,

behavioral and social sciences. This reductionist approach effectively narrowed down the

parameters to consider, facilitated technology developments, and led to the identification of

important contributing factors in each discipline to human health. These achievements

prompted this abridged overview of what is known and unknown about health. From

prevention and intervention perspectives, it would be good to know what parameters in

biological, behavioral, and social domains can be adjusted for promoting health outcomes.

Towards this goal, a systems approach that considers multiple domains of information and

their interactions is likely to be instrumental.
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BIOLOGICAL DETERMINANTS OF HEALTH

Genomic factors associated with physiological traits and health outcomes

Early evidence of genetic contribution of health outcomes came from familial diseases,

including cystic fibrosis [1–3] and others. These diseases are associated with and often

caused by polymorphisms in the genome, sometimes a single nucleotide polymorphism

(SNP). Not only the missense SNPs that changed protein coding sequences, but also the

SNPs that changed cis-regulatory sequences such as enhancers can alter health outcomes [4].

These Mendelian genomic loci represent the best known genomic determinants of health

outcomes [5,6]. Nevertheless, a larger variety of physiological traits are associated with

combinations of alleles at multiple genomic loci, and thus considered complex traits [7].

Genome-wide association studies (GWAS) were carried out to identify risk loci of the

genome to a variety of common diseases, including cardiovascular, mental, and autoimmune

diseases [8–11]. Common physiological traits have also been mapped, including height,

body mass index (BMI), HDL cholesterol, and others [11]. A recently added dimension of

research is mapping the variability in drug responses to genomic loci and alleles [12]. SNP

microarray has been the primary technical platform used in GWAS studies [13,14], partially

due to its cost advantage to genome sequencing.

Personal genome sequencing allowed for identification of rare and common genomic

variants associated with a disease. Sequencing based analyses were carried out around two

major experimental designs. The first is the comparison of genomes within an individual.

Two early studies on a skin cancer patient [15] and a lung cancer patient [16] sequenced and

compared the “normal” genomes of their lymphoblast cells and the “abnormal” genomes of

metastasized tumors. Comparing the normal and abnormal genomes of the same patient

allowed for identification of cancer associated somatic mutations. Single-cell sequencing

technology enabled sequencing the genomes or partial genomes of dozens and even

hundreds of single cells within a tumor or a normal tissue [17,18]. Using the frequencies of a

mutation or a copy number variation (CNV), multiple teams traced the earlier somatic

genomic changes in the cancer cells [19–21]. These early changes were reasoned to be

“driver” changes that have causal relationships with tumorigenesis [22]. Surprisingly,

normal neurons in the brain possess mosaic CNVs within the same person, posing a

challenge to redefine the concept of a “normal” genome [18].

The second major experimental design is to sequence individual genomes from a patient

cohort, and then summarize the shared genomic variations among these patients. Examples

include but not restricted to sequencing Autism cohorts [23–25] and cancer cohorts [26][27]

[28][29]. A major lesson learned from these studies is that there are much fewer shared

mutations [23] or CNVs [24] among patients of similar diagnoses than previously expected.

Considering the hallmarks of cancer are perturbations of molecular pathways, a

bioinformatics approach was developed to aggregate mutations on genes of the same

pathway and then cluster patients based on these aggregated impacts of mutations and

molecular pathways [30]. This approach stratified prostate cancer patients into subgroups

using genomic sequences alone, nevertheless these subgroups exhibited different survival

time.
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Beyond genomic sequences

Omics, the study of a total collection of a molecular species, revealed substantial amounts of

health-related information beyond the genomes. The transcriptome, epigenome, proteome,

and metabolome were four major data strata that exhibited strong associations with diseases.

Before the accomplishment of the human genome project, genome-wide gene expression

data were used to classify two types of leukemia (AML, ALL) [31]. Most strikingly the

physicians changed their diagnosis on one child in this study, after seeing the transcriptome

based results. With this proof of principle, gene expression differences have been

extensively utilized to narrow down disease candidate genes.

The epigenome, the chemical modifications on histones and DNA, appears to strongly

correlate with cellular behaviors and thus with health outcomes. The genome-wide

distributions of as few as 1–3 histone modifications were effective in predicting prognosis of

multiple cancer types [32]. Almost every cancer being analyzed exhibited hyper- and hypo-

modified regions in the chromosome of the tumor cells [32–34]. Perhaps most strikingly,

DNA methylation levels at a defined set of genomic locations are strongly predictive of

human aging [35,36]. Mechanistically, the epigenome interacts with the genome to modulate

the personal specific transcription factor binding, and thus directly contributes to personal

variation of gene expression [37]. Moreover, the temporal changes of the epigenomic

modifications (e.g. 5-hmC) during a biological process are predictive of gene expression

changes [38]. Because the epigenome is jointly determined by the genomic sequence and the

environmental signals, and the epigenome is likely to be less sensitive than the

transcriptome to transient environmental changes, the epigenome may serve as a preferred

molecular layer for quantifying personal responses to interventions.

Protein levels often correlate well with physiological outcomes, and sometimes with the

subtypes of a disease. Breast cancer is a case in point. The protein levels of estrogen

receptor, progesterone receptor, and Her2 are currently used to stratify patients for prognosis

and treatment purposes. Thus, high-throughput protein identification technologies,

especially mass spectrometry (mass-spec) hold the potentials for becoming diagnostic tools

[39]. Serum proteomic profiling is a heavily pursued approach for identifying disease

biomarkers, catalyzed by increasing sensitivity and specificity of mass spec.

Microbiome, our very close neighbors

“Within the body of a healthy adult, microbial cells are estimated to outnumber human cells

ten to one” [40]. The diversity and the social structure of the microbial community in

humans could hold the key to unexplained parts of health outcomes. The metagenomics

methods that utilize deep genomic sequencing to identify the microbial species as well as

their relative population sizes have started to reveal the personal variations of oral, nasal,

skin, gastrointestinal, and urogenital microbiomes. Emerging data have suggested

associations between the compositions of gut microbiome with obesity [41], inflammatory

bowel diseases (IBDs) [42], colon cancer [43], sepsis [44], and other diseases [45].

Metagenomic analyses may offer a new approach to test outstanding hypotheses of disease

etiology, including but not restricted to the hygiene hypothesis of asthma [46] and the

intestine-toxin hypothesis of fatty liver diseases [47].
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Environmental and behavioral impacts to biological determinants

Behaviors can impact health outcomes through modulating every layer of hitherto

mentioned biological factors, including the genome, epigenome, transriptome, protein

interactions and signal transduction, and gut microbiome (Figure 1). Sun tanning and

smoking can stimulate somatic genomic mutations which are found in skin and lung cancers

[15,16]. Smoking also induces DNA methylation at specific genomic loci [48]. Physical

activities correlate with breast cancer survival at least partially by modulating the epigenome

[49]. Early experience of children correlate with gene expression in the brain [50]. Dietary

restriction may affect insulin receptor signaling and is reproducibly correlated with

longevity [51]. Alcohol overconsumption results in the secretion of pro-inflammatory

cytokines and alters gut microbiome, which may be causally linked to liver diseases [47].

We proceed to summarize the framework and methods for studying the behavioral and

social determinants of health.

BEHAVIORAL AND SOCIAL DETERMINANTS OF HEALTH

Conceptual frameworks

Humans are social beings. A typical social science approach to identifying health

determinants is to analyze the correlation between the variations of social environment and

that of the health outcomes. It is suggested that the “conditions in which people are born,

grow, live, work and age” correlated to health outcomes, and “these circumstances are

shaped by the distribution of money, power, and resources at global, national and local

levels” [52]. Dahlgren and Whitehead in 1991 proposed a conceptual framework for

summarizing social determinants of health [53], including four highly interconnected

categories: 1) age, gender, and constitutional factors, 2) individual lifestyles, 3) social

interactions and communities, and 4) socioeconomic, cultural and environmental conditions.

Social and economic development has produced physical products that can modulate

behaviors, and in turn affect health outcomes. The man-made context for human activities

has been formalized into the notion of built environment [54], which may include local

facilities, infrastructures, and food environment. By incorporating the built environment,

Barton, Grant and Guise categorized the determinants of health into seven groups [55].

Adding together the proposed factors by Dahlgren and Whitehead [53] and Barton et al. [55]

would provide a relatively comprehensive list of behavioral and social factors that should be

considered in health studies. However, from a prevention or intervention perspective, we

recognize that not all factors are equal in their potentials to be changed for promoting better

health. Some factors can be changed by personal determinations, whereas some may require

policy and economic reforms. For this reason we propose a three-tier system to summarize

and categorize behavioral and social factors that may contribute to health outcomes (Figure

2). The first tier includes the factors directly associated with the individuals. The second tier

includes the local environment where individuals live and work. The third tier includes

macro environmental factors. The factors within each tier can interact with each other and

may independently or collectively interact with the factors of other tiers.
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The ongoing research of health-related behavioral and social studies can fit nicely into the

framework as described above. An example is the studies of obesity, the prevalence of

which has increased considerably during the past several decades [56]. Some studies

assessed individual and local characteristics associated with obesity [57–60], and suggested

that individual socioeconomic and lifestyle profile, local food access, and physical activity

environment have significant impacts. Some other studies looked at macro level

determinants (third tier), and reported that, price and taxation policies on food and other

relevant products accounted for the variation in obesity in addition to individual level

factors, and the level of urbanization mattered as well [61–64].

Analysis methods

In contrast to the flexibility of generating experimental data from model organisms, ethical

and practical constraints limit the capacity of experimentations that involve human subjects.

The ethical and practical constraints often require a correlation of the outcome and the

factors of interest as preliminary evidence for trials. Moreover, such correlations would be

likely to increase the cost effectiveness of the designed trials. Observational data, in which

human subject are observed in natural circumstances that cannot be controlled, is therefore

often used to detect correlations of health and explanatory factors, understand interactions of

factors, and provide support for hypothesis testing. Examples of observational data include

surveys that sample individual units from a population and ask a number of questions to the

respondents at one time point (cross-sectional survey) or repeated time points (longitudinal

survey); behavioral data extracted by electronic technologies such as pedometers,

smartphones, or internet; government administrative or surveillance data; and data collected

by public or private entities such as medical claims. Data from different sources can be

merged to enable a more thorough look of the determinants at multiple levels of a given

health outcome. Statistical power and representativeness of the data are essential, and they

can be achieved by large sample size and careful sampling of the study units.

A well-known problem of observational data is the presence of confounding factors, which

simultaneously contribute to the health outcome with the factors of interest [65]. To isolate

the effects of the factors of interest, statistical and epidemiological approaches are often

employed on the observational data to make the confounding factors “under control”. For

example, multivariate regression analysis is often used to determine the function that

describes how a vector of factors responds to the changes in others and how they

collectively affect the health outcome of interest. Factor analysis and principle components

analysis allow researchers to create a new set of synthetic variables and investigates the

contribution of each set to the outcome [66]. Cluster analysis groups population into clusters

so that individuals within cluster share more similar characteristics than individuals in other

clusters. Multilevel models are appropriate when observational data are organized at

multiple levels, such as individuals nested in local communities, which are further nested in

states and countries [67]. Case control studies are used to compare two groups that differ in

health outcomes but are otherwise similar, and cohort studies track a cohort of population

over time to observe the development of health outcomes [65].

Shi and Zhong Page 5

Curr Opin Biotechnol. Author manuscript; available in PMC 2015 August 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



The inferences derived from observational data are often “correlational”, because

confounding factors are not able to be observed in the observational data but are correlated

with the health outcomes being studied [68]. Biological factors are typical “unobserved

heterogeneities” acknowledged in behavioral and social sciences. Other examples are

individual preferences, intellectual capabilities, and coping skills. To correct for omitted

variable bias and establish “causal” inferences, experimental studies such as randomized

trials are still the “gold standard” when applicable. Randomized controlled trials balance the

observed and unobserved factors by randomly allocating human subjects to receive one or

other of the alternative interventions. Any change between intervention and control group,

therefore, is attributable to the intervention alone. The 1971–1982 RAND’s Health

Insurance Experiment assigned thousands of people to different health insurance plans. It

concluded that the cost sharing reduced medical expenditures, and in general, the reduction

in service had no adverse consequences on participants’ health [69–71]. The result of this

experiment has encouraged the restructuring of private insurance and the promotion in

managed care.

When randomized controlled trials are not considered, quasi-experimental design is often

perceived as an alternative [72]. The study design is similar to randomized controlled trials,

but lacks the component of random assignment. As a result, the characteristics of groups are

not equivalent at baseline and any differences observed after the intervention may not be

solely due to the intervention received [72]. A few statistical and econometrical strategies

have been developed to address this concern of internal validity. Developed by Paul

Rosenbaum and Donald Rubin [73], propensity score matching attempts to statistically

mimic the random assignment of the intervention by creating a control sample that has

comparable observed characteristics to the intervention sample. Instrumental variable is an

observed variable, usually policy changes, that does not affect health outcome itself, but is

correlated with the endogenous explanatory variables conditional on other covariates. It

allows consistent estimates of the regression relationship when the explanatory variables are

correlated with the error terms [74]. In regression discontinuity design [75], a threshold is

selected above or below which an intervention is assigned. The causal correlation between

the intervention and the health outcome is obtained by comparing people lying closely on

two sides of the threshold. Panel analysis utilizes longitudinal observational data which

collects repeated measures over time and over the same individuals [68]. The unobserved

factors, varying non-stochastically or stochastically over time, can be modeled or

differenced out. The health behaviors and health outcomes of siblings or twins are compared

assuming that genetic factors are shared and any variation observed would be attributable to

environmental contexts.

Key modifiable behavioral and social determinants

Special interests were given to the health determinants that are modifiable by policies or

interventions. Six key modifiable determinants have been proposed. These include

modifiable health risk behaviors, namely physical inactivity, poor nutrition, tobacco use,

and excessive alcohol use, account for much of the burden in morbidity and mortality

(CDC). Education is another modifiable health determinant. Quasi-experimental studies

have demonstrated causal influences of educational policies on health outcomes and that the
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improvement of education attainment can lead to improvement in health. Economic stability

is causally correlated with health in two ways [76]: through a direct impact on material

conditions and through an impact on social participation. Social environment such as social

capital, family structure, discrimination and civic participation affects health outcome by

modifying the inter-personal relationship, beliefs and perceptions. Health services, including

access to care, insurance coverage, and quality of care, are services directly dealing with the

diagnosis and treatment of disease, and the promotion, maintenance and restoration of health

(WHO). Built environment modifies the physical environment that we live and work. It is

associated with health behaviors such as physical activity and alcohol use, and health

outcomes such as obesity and depression [77].

FUTURE DIRECTIONS: A SYSTEMS HEALTH APPROACH

A holistic view of “systems health”

An alternative to the reductionist approach of studying biological and social factors of health

in separation is a holistic approach where “all things considered”. We take the liberty to

propose a name “systems health” for this emerging interdisciplinary research area. Systems

health concerns about any biological, behavioral, social factors as well as their interactions

that affect health outcomes. Its major goal is to derive mechanistic and predictive models of

health outcomes, and major applications are in prevention, intervention, and prognosis.

The central question of systems health is how gene-environment interactions relate to health.

This is a Nature vs. Nurture question [78] with special emphases (Figure 3). First, human

health is the outcome of interest. Second, the modifiable social and behavior factors receive

special attentions. Third, interventions and preventative procedures can be thought of as

feedbacks. One success of this type was made by Caspi and colleagues, who discovered that

a polymorphism in the gene encoding for a serotonin transporter protein modulates the

impact of life stress to depression [79]. This finding and others led to the idea that the

heterogeneities of health outcomes are primarily determined by behavioral and social

factors; however personal genomic variation modifies the extent of this correlation [80–82].

Challenges in data collection

The major challenges of systems health studies lie in collecting interdisciplinary data and

devising new research methods. Ethical and monetary cost issues need to be addressed. On

the data end, a few population surveys on health care topics, including the repeated cross-

sectional National Health and Nutrition Examination Survey, have incorporated laboratory

module to collect respondents’ physiological data. Add Health, a survey that followed

approximately 20,000 US adolescents through their adulthood, is currently genotyping

12,000 subjects of its cohort [83].

Electronic equipment including pedometers, personal digital assistants (PDA), and portable

personal computers have started to contribute data to behavioral science, opening the

possibility of collecting personal data at real time. Electronic data of personal physical,

dietary, and social networking activities are among the first to be reported [84–86]. These

devices and systems may reduce monetary and time costs of traditional surveys [87], but

will certainly bring new challenges in data handling and analyses.
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Candidate approaches for “systems health” studies

It is likely too early to speculate the most effective methods, but two general approaches

showed promises. The first is to leverage the knowledge of the other disciplines. An

example of the success is the process of revealing the mechanistic link between smoking and

lung cancer. The prevalence of lung cancer mortality increased dramatically from 5.3% of

cancer deaths in men and 2.0% in women in the 1930s to 33.1% in men and 22.8% in

women in the 1990s [88], posting a great puzzle to health researchers. Epidemiological

studies reported that cigarette consumption, increased from 54 cigarettes per capita per year

to 4166 in 1960s, has significantly contributed to the lung cancer epidemic. These evidences

led to the first U.S. Surgeon General’s Report in 1964 that “cigarette smoking is causally

related to lung cancer in men” [89]. Guided by this knowledge, the genomic mutations

resulted from tobacco exposure were analyzed and documented [16], revealing the chain of

events from smoking to genomic mutations and then to cancer development.

Biological knowledge may lend a hand to behavioral and social research of health outcomes

as well. It has been four decades since the 1973 report [90] on the effects of shift work on

worker health [90–94]. The next steps may take advantage of the biological findings on gene

expression [95] and metabolic outcomes [96] of the perturbation of circadian rhythms and

their mechanistic links to depression and obesity. Furthermore, the data on the role of

Melatonin on the regulation of human circadian rhythms and sleep [97] are perhaps worth

considering in future contemplation of intervention strategies.

Another approach is stratification, where the information of one discipline is used to stratify

the data analysis of another discipline. For example, stratifying the recruits by the

polymorphisms of their neural transporter genes may increase the chances of detecting

associations in a case control study of stress and depression where the sample size is limited

by monetary cost. A drawback of stratification is the potential difficulty of recruiting

sufficient respondents in a stratum. This difficulty may have to be addressed by an

integrated analysis.

Integrated data analysis may deploy machine learning methods that take both genomic and

survey data as inputs to learn information about the variation of health outcomes. These

methods are relatively mature as long as the desired data are collected for all subjects.

Incomplete data will likely to be a major challenge, in which case some individuals would

only have either social or genomic data. The computational methods that aim for unbiased

estimates under the missing data scenario can be useful [98].
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HIGHLIGHTS

• “Systems health” is an emerging interdisciplinary field.

• Systems health integrates biological, behavioral, social factors and their

interactions.

• Special emphases are given to health outcomes and modifiable social and

behavior factors.

• Intervention and preventative procedures can be regarded as feedbacks.
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Figure 1.
Examples of behavior-related health outcomes that were mediated by biological factors.
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Figure 2.
Three layers of behavioral and social determinants of health. Adapted from Dahlgren &

Whitehead 1991 and Barton et al. 2005.
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Figure 3.
“Systems health” studies gene-environment interactions, with special emphases on the

health outcomes and the modifiable input factors.
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