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Abstract

The mitochondrion plays a crucial role in the immune system particularly in regulating the

responses of monocytes and macrophages to tissue injury, pathogens, and inflammation. In

systemic diseases such as atherosclerosis and chronic kidney disease (CKD) it has been

established that disruption to monocyte and macrophage function can lead to chronic

inflammation. Polarization of macrophages into the pro-inflammatory (M1) and anti-inflammatory

(M2) phenotypes results in distinct metabolic reprograming which corresponds to the progression

and resolution of inflammation. In this review, we will discuss the role of the mitochondrion in

monocyte and macrophage function and how these cells specifically influence the

pathophysiology of atherosclerosis and CKD. We propose that assessing monocyte bioenergetics

in different disease states could (1) enhance our understanding of the energetic perturbations

occurring in systemic inflammatory conditions and (2) aid in identifying therapeutic interventions

to mitigate these disorders in patients.
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Introduction

In the innate immune system, monocytes and macrophages are derived from myeloid

progenitor cells and are vital in the resolution of inflammation caused by tissue injury or

infection. The early inflammatory signaling-mediated phenotypic changes induce

extravasation and differentiation of circulating monocytes to tissue macrophages, the

immune cells that are responsible for phagocytosis and tissue repair. (Luscinskas et al.,
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1996, Pardali and Waltenberger, 2012, Davies et al., 2013). These diverse functions are

carried out by two distinct classes, the M1 (classically activated) or M2 (alternatively

activated) macrophages. M1 macrophages mediate the pro-inflammatory response through

TNF-α, IL-1β, reactive oxygen species (ROS) and inducible nitric oxide synthase (iNOS)

derived nitric oxide. (Mills, 2012, Martinez et al., 2008). M2 macrophages are anti-

inflammatory in nature and secrete cytokines such as IL-10, IL-4 and TGF-β to aid in wound

repair and healing (Martinez et al., 2008, Novak and Koh, 2013). Metabolism, particularly

bioenergetics, plays a central role in regulating the physiological roles of the M1 and M2

phenotypes.

In contrast to their physiological function, the monocyte/macrophage system is perturbed in

a number of pathologies associated with chronic inflammation such as atherosclerosis and

chronic kidney disease (CKD). The role of monocytes and macrophages in the process of

atherosclerotic lesion formation has been widely studied and characterized along with

dysfunction of the M1 - M2 transition (Ghattas et al., 2013, Gui et al., 2012). Vascular

complications associated with atherosclerosis such as hypertension, tissue ischemia and

diabetes can lead to renal injury and result in CKD (Kokubo, 2013, Khatami, 2013,

Yamagishi and Imaizumi, 2005). In addition, microvascular complications in patients with

CKD can develop cardiovascular complications.

In this review, we will discuss the role of mitochondria in physiological monocyte and

macrophage function and this is altered in atherosclerosis and CKD. We will also describe

the potential benefits of evaluating monocyte bioenergetics as a translational approach to

monitor systemic disease progression and/or identify therapeutic strategies to mitigate

disease.

Function of monocytes and macrophages in physiology

Monocytes can be divided into three subtypes based on surface receptor expression. There

are 3 major populations of circulating monocytes which are classified by the expression of

cluster-determinant (CD) antigens. The “so called” classical monocytes are CD14++CD16−

and produce the highest levels of IL-10, a cytokine that mediates tissue repair, and reflects

the majority of circulating monocytes in healthy individuals (Wong et al., 2011). The non-

classical monocytes are CD14+CD16++ and have an important role in patrolling the vascular

endothelium and produce the highest levels of inflammatory cytokines, TNF-α and IL-1β, in

response to pathogens and are thought to be involved in phagocytosis (Wong et al., 2011).

The intermediate monocytes are CD14++CD16+ and produce the lowest levels of cytokines

and chemokines. It is postulated that the classical monocytes mature over time to

intermediate then non-classical monocytes (Wong et al., 2011).

Monocytes circulate in the bloodstream and patrol the endothelium for signs of

inflammatory distress. In atherosclerosis, inflammation, associated with accumulation of

oxidized LDL (oxLDL) in the arterial sub-intimal space, causes monocytes to infiltrate into

the tissue where they mature into macrophages (Imhof and Aurrand-Lions, 2004). The

macrophages also can be divided into different sub-types depending on their exposure to the

prevailing inflammatory microenvironment. Factors such as the cytokine milieu and
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pathogens dictate the polarization of the macrophages into either the M1 or M2 phenotype

(Fig. 1). Exposure to cytokines such as TNF-α IFN-γ leads to production of M1

macrophages, whereas TGF-β and IL-10 produce M2 macrophages (Martinez et al., 2008).

Pathogen associated molecular patterns (PAMPs) such as lipopolysaccharide, flagellin from

bacteria and double stranded RNA from viruses can activate the toll like receptor (TLR)

pathway to engage the NF-κB system to produce inflammatory cytokines that modulate the

M1 macrophage phenotype(Zhang and Wang, 2014). Macrophages can switch their

metabolism during inflammation from being dependent on glycolysis for ATP synthesis in

the M1 state, to relying on oxidative phosphorylation in the M2 state (Rodriguez-Prados et

al., 2010, Vats et al., 2006). Interestingly, M1 and M2 macrophages are dynamic and can

convert from one form to another, hence the oxidative phosphorylation remains intact in M1

macrophages and glycolytic machinery remains functional in M2 macrophages, allowing for

the pathways to be upregulated based on macrophage polarization(Davis et al., 2013,

Lumeng et al., 2007).

Tissue oxygen tension is also a critical modulator of phenotype switching and metabolic

alterations in tissue macrophages. HIF1α-mediated differentiation of macrophage to the M1

phenotype and corresponding upregulation of anerobic glycolytic genes in inflamed tissues

suggest critical roles for cellular metabolism and tissue oxygen levels in modulating cell

function (Nizet and Johnson, 2009, Shapiro et al., 2011). It is important to note that M1

macrophages can transform into M2 macrophages during the resolution phase of

inflammation (Fig.1). As oxygen levels increase, peroxisome proliferator activated receptor-

γ (PPAR-γ) is induced, which stimulates mitochondrial biogenesis and a shift from

anaerobic glycolysis to oxidative phosphorylation, particularly through fatty acid oxidation

(Huang et al., 1999, Vats et al., 2006). It has been shown that pharmacological inhibition of

the mitochondrial oxidative phosphorylation, inhibits the expression of markers of the M2

phenotype. (Vats et al., 2006). Bioenergetic analysis of murine macrophages demonstrated

that M1 mediators, but not M2, increased glycolysis, and decreased oxidative

phosphorylation (Haschemi et al., 2012).

The focus of this review is on the modulation of the metabolism of monocyte/macrophages

during their normal biological function in innate immunity. Interestingly, it is also clear that

lymphocytes or T cells which are part of the adaptive immune system also undergo a

metabolic switch during inflammation (Pearce, 2010). T cells are major regulators of the

inflammatory environment in atherosclerosis as they can produce INF-γ and other

inflammatory cytokines as well as anti-inflammatory cytokines depending on their effector

or suppressor status(Pastrana et al., 2012). Similar to macrophages, T-cell activation and the

resultant cytokine production requires a metabolic switch from a primarily oxidative

phosphorylation phenotype to one of aerobic glycolysis (Pearce, 2010).

Function of monocytes and macrophages in pathology

Atherosclerosis

Monocytes are precursors to atherosclerotic lesion macrophages, which are both

instrumental in the initiation and progression of the disease. Higher levels of circulating

blood monocytes are significantly associated with obesity and increased risk of peripheral
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arterial disease (Nasir et al., 2005, Kullo et al., 2002). A recent study found that high levels

of CD14++CD16+ intermediate monocytes predicted a high incidence of cardiovascular

events such as myocardial infarction (Rogacev et al., 2012). Monocyte mitochondrial DNA

damage and decreased complex I and IV activity along with increased cytokine release has

been identified in mouse models of atherosclerosis (Yu et al., 2013).

CD36 receptor on macrophages mediates phagocytosis of oxLDL, leading to formation of

foam cells. Uptake of oxLDL stimulates the switch to the M2 phenotype (Rios et al., 2013).

Clearance of foam cells is the next step in this inflammatory cascade, and this is

accomplished by other macrophages that engulf and clear the foam cells, a process termed

efferocytosis (Fig.2A). M2 macrophages promote efferocytosis, therefore the recruitment

and the M2 phenotype is important in foam cell homeostasis (Tabas, 2010). Efferocytosis

has been shown to induce production of IL-10 and TGF-β, anti-inflammatory mediators that

can help in tissue repair and resolution of inflammation (Henson et al., 2001). During

physiology, the uptake of oxLDL and the clearance of damaged cells by efferocytosis are

critical in prevention of plaque formation.

Increased levels of circulating monocytes has a direct effect on increasing the number of

macrophages that populate the intimal region, and studies have shown that there is increased

macrophage density in ruptured human atherosclerotic plaques (Lendon et al., 1991).

Macrophages produce ROS upon exposure to oxLDL, and it has been shown that a

substantial portion of the ROS is mitochondrially derived (Wang et al., 2014, Bae et al.,

2009, Park et al., 2009). ROS can damage various mitochondrial components such as TCA

cycle enzymes, electron transport chain proteins and mitochondrial DNA (Zeevalk et al.,

2005, Ide et al., 2001, Graziewicz et al., 2002). This may prevent the metabolic shift to

oxidative phosphorylation decreasing the numbers of M2 macrophages available to take part

in the clearance of lipid laden foam cells. Indeed, as illustrated in Figure 2B the increased

uptake of ox-LDL and oxidative damage may facilitate the M2 to M1 macrophage

transition. M2 macrophages have a lower propensity to become foam cells, but high

phagocytic activity demonstrating the protective role of M2 macrophages in atherosclerosis

(Chinetti-Gbaguidi et al., 2011). Further, mitochondrial damage can lead to cytochrome c

release and apoptosis in the foam cells (Fig. 2B), and disrupts the ability of neighboring

macrophages to ingest these apoptotic bodies (Eguchi et al., 1997). This causes enlargement

of the lesion, and an uncontrolled secondary necrotic cell death, plaque instability and

rupture (Seimon and Tabas, 2009).

Monocyte polarization plays a vital role in prognosis of atherosclerosis, yet their

mitochondrial regulation and dynamics has not been fully elucidated. Understanding the

metabolic regulation of the bioenergetic monocyte populations presents a novel therapeutic

target for atherosclerosis. There is also evidence that an intact mitochondrial system is

important for M2 macrophages that are involved in foam cell clearance, thereby indicating

modulation of macrophage metabolism as a therapeutic intervention.

Chronic Kidney Disease

Diabetes is a systemic disease associated with severe cellular bioenergetic dysfunction in a

broad range of tissues (Rains and Jain, 2011, Jagielski and Piesiewicz, 2011, Giacco and
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Brownlee, 2010, Locatelli et al., 2003, Ritov et al., 2005, Aneja et al., 2008). A common

secondary complication of diabetes is chronic kidney disease (CKD), where progressive

decline in renal function over time necessitates dialysis or transplantation. In addition, both

the innate and adaptive immune system show dysfunction in CKD patients which has been

linked to the increased risk of morbidity and mortality (Middleton and Pun, 2010). As

shown in Figure 2, monocytes from CKD patients have been shown to have impaired

adhesion and migratory capabilities and this is thought to contribute to the development of

atherosclerotic complications (Al-Chaqmaqchi et al., 2013). The intermediate monocytes

(CD14++CD16+) are the most prominent monocytes in the circulation of CKD patients and

have been used as selective predictors of adverse outcomes such as cardiovascular disease

and mortality (Heine et al., 2012).

As CKD progresses there is a chronic state of systemic inflammation that can further induce

oxidative stress and cellular bioenergetic dysfunction. Several reports have shown that pro-

inflammatory cytokines such as IL-6, IL-10 and TNFα are elevated in the circulation of

CKD patients (Himmelfarb et al., 2004, Sardenberg et al., 2004, Dounousi et al., 2012)

which can negatively affect immune cell mitochondrial function. In particular, mononuclear

cells from Type 2 diabetics have lower mitochondrial mass, higher mitochondrial membrane

potential and increased superoxide generation (Widlansky et al., 2010). It has also been

reported that mitochondrial respiratory complex IV (COX), subunits I and IV are

upregulated in PBMC from CKD patients; however, complex IV activity is significantly

decreased (Granata et al., 2009). The findings from these reports support the concept that the

inflammatory conditions during CKD can directly affect mitochondrial complexes within

peripheral blood cells. Notably, both the peroxisome proliferator-activated receptor gamma

coactivator 1 alpha (PGC-1α) and nuclear respiratory factor-1 (NRF-1) genes, involved in

mitochondrial biogenesis and function, respectively, are down regulated in PBMC in CKD

patients on peritoneal dialysis (Zaza et al., 2013). CKD patients on dialysis also have an

increased risk of developing sepsis (Sardenberg et al., 2004) and this is thought to be

influenced by alterations in monocyte mitochondrial function. Indeed, a reduction in F1Fo

adenosine-5’-triphosphate synthase activity was linked to dysfunctional mitochondrial

bioenergetics in immune cells from patients with septic shock (Japiassu et al., 2011).

This disruption in mitochondrial function can elicit further oxidative stress. It has been

reported that intracellular ROS and DNA oxidative damage is induced in PBMCs during

CKD (Granata et al., 2009). Consequently, these events can negatively affect other organs in

the body since monocytes accumulate both in the peripheral circulation and in sites of

interstitial inflammation (Wallquist et al., 2013). This is important because both elevated

oxidative stress and mitochondrial dysfunction can lead to increased apoptosis in CKD

monocytes (Dounousi et al., 2012) and tissues. Interestingly, the oxidative burst, which is

necessary for innate immunity, is suppressed in diabetics suggesting that decreased

oxidative burst activity could be related to the severity of renal dysfunction (Dickerson et

al., 2012), a suppressed immune response, accumulation of damaged monocytes, and disease

pathology. It is clear that mitochondrial homeostasis and gene expression is perturbed in

immune cells during diabetes and is likely a critical factor in the development of

atherosclerosis in these patients.
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Future Outlook

The emerging role of bioenergetic function in inflammation and monocyte activation in

CKD and atherosclerosis and its complications suggests that therapeutic interventions at the

level of the mitochondrion could be beneficial and that bioenergetic biomarkers maybe a

new approach to monitoring disease progression. The concept that circulating blood cells

can serve as a surrogate for the severity of systemic diseases such as diabetes and sepsis has

been recognized previously (Zharikov and Shiva, 2013, Avila et al., 2012, Guo et al., 2009,

Widlansky et al., 2010, Satoh et al., 2010). In turn this has led us to propose the

development of an integrated value of cellular mitochondrial function we have termed the

Bioenergetic health index (BHI) (Chacko et al, 2014). It is clear that has the field progresses

mitochondria in leukocytes and platelets are emerging as both biomarkers of metabolic

stress and mediators of the complex pathologies associated with diseases such as CKD and

atherosclerosis (Chacko et al., 2013, Kramer et al., 2014, Mitchell et al., 2013, Chacko et al.,

2011).
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Organelle Facts

• Mitochondrial oxidative phosphorylation and glycolysis support monocyte/

macrophage function.

• Macrophages undergo a metabolic switch from glycolysis to oxidative

phosphorylation during inflammation.

• Mitochondrial ROS are produced by macrophages following oxidized LDL

exposure

• Monocyte mitochondrial DNA and electron transport chain activity are damaged

in mouse models of atherosclerosis.

• Mitochondria in monocytes from patients with chronic kidney disease are

impaired.

• Genes involved in mitochondrial biogenesis (PGC-1α and NRF-1) are down-

regulated in PBMC's of CKD patients undergoing peritoneal dialysis.
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Figure 1. Differentiation and metabolism of monocytes and tissue macrophages
The circulating monocyte is shown exiting the vasculature and proceeding into the tissue

and differentiating into a tissue macrophage (M0). These cells utilize oxidative

phosphorylation to meet their energetic demand. Upon differentiation, the cytokine and

pathogen environment directs their fate to either the M1 or M2 phenotype in the presence of

TNFα, PAMPS, INFγ, or TGFβ and IL-10, respectively. M1 macrophages rely on glycolysis

for energy production and as such have a lower ratio of oxidative phosphorylation to

glycolysis. On the other hand, M2 macrophages preferentially utilize oxidative

phosphorylation, and so have a higher ratio of oxidative phosphorylation to glycolysis.
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Figure 2. Physiological and pathological fates of macrophages
A. Scheme depicting physiological monocyte extravasation into the subintimal space of a

vessel and differentiation into a macrophage to clear oxidized LDL (oxLDL) through the

CD36 scavenger receptor. These macrophages can then differentiate into M2 macrophages

to resolve the inflammation as well as clear damaged cells by efferocytosis. B. In
atherosclerosis, impaired recruitment and migration of monocytes facilitates increased

macrophage differentiation in the subintimal space. High levels of ox-LDL leads to

oxidative stress and bioenergetic dysfunction in macrophages which may proceed to

apoptosis or the M1 macrophage phenotype.
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