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Abstract

Liquid chromatography/mass spectrometry-based untargeted metabolomics is now an established

experimental approach that is being broadly applied by many laboratories worldwide. Interpreting

untargeted metabolomic data, however, remains a challenge and limits the translation of results

into biologically relevant conclusions. Here we review emerging technologies that can be applied

after untargeted profiling to extend biological interpretation of metabolomic data. These

technologies include advances in bioinformatic software that enable identification of isotopes and

adducts, comprehensive pathway mapping, deconvolution of MS2 data, and tracking of

isotopically labeled compounds. There are also opportunities to gain additional biological insight

by complementing the metabolomic analysis of homogenized samples with recently developed

technologies for metabolite imaging of intact tissues. To maximize the value of these emerging

technologies, a unified workflow is discussed that builds on the traditional untargeted

metabolomic pipeline. Particularly when integrated together, the combination of the advances

highlighted in this review helps transform lists of masses and fold changes characteristic of

untargeted profiling results into structures, absolute concentrations, pathway fluxes, and

localization patterns that are typically needed to understand biology.

Introduction

Liquid chromatography/mass spectrometry (LC/MS) provides a robust analytical platform to

assay a physiochemically diverse group of small molecules and is therefore widely used to

study the metabolome.[1] By using reversed-phase and hydrophilic interaction liquid

chromatography together with quadropole time-of-flight or Orbitrap mass spectrometers,

thousands of peaks are detected in the metabolic extract of biological samples.[2] Each of

these peaks, often referred to as a “feature”, has a unique pair of retention-time and mass-to-

charge ratios. Although experimental strategies to optimize metabolome coverage are still

being developed, the process of measuring thousands of metabolite features in a biological
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specimen is now routine and has been discussed in detail.[3] In contrast, the interpretation of

untargeted metabolomic data remains a challenge for many laboratories. This review focuses

on emerging technologies that can be applied downstream of untargeted metabolite profiling

to drive biological discovery.

Traditionally, untargeted metabolomics is performed by analyzing metabolic extracts

derived from two or more sample groups in MS1 mode. These raw data are then processed

with bioinformatic software and a “features table” containing all detected compounds is

produced. The most popular software for processing untargeted metabolomic data is the

freely accessible and platform-independent XCMS, but other programs are also available.

[4–6] A features table includes mass-to-charge ratios, retention time, statistical comparisons,

and relative peak intensities.[7] Current software, however, does not provide metabolite

identifications. Therefore, while the features table can be used to identify potential

biomarkers or to broadly compare the similarity of samples, the value of the features table is

relatively limited.[8,9] The question that inevitably arises is what the next step is after this

initial processing of untargeted metabolomic data. Most investigators perform targeted MS2

analysis on peaks of interest with the objective of making structural identifications.[10]

Given the time required for metabolite characterization and quantitation by LC/MS,

generally only a small number of features are pursued. When comparing samples in which

there are many metabolic differences, choosing the most relevant peaks to target for

identification is a challenge. Moreover, even once structures are determined, biological

interpretation is complicated because untargeted metabolomics only provides a relative

comparison of metabolite levels. Additionally, untargeted metabolomics does not provide

insight into pathway dynamics or spatial information with respect to tissue, cell type, or

organelles. Here we review technologies that can be readily integrated with the untargeted

metabolomic workflow to address these issues and facilitate data interpretation (Figure 1).

Post-Processing of Untargeted Metabolomic Data

A common strategy applied when prioritizing features to target for structural

characterization is data filtering. Often, for example, features that are not changing within

defined statistical thresholds are discarded. Additionally, features that have too weak of a

signal intensity to obtain high-quality MS2 data or features that are not of biological origin

can be removed.[11,12] In experiments where the sample groups being compared differ

greatly, there may still be thousands of features that meet the specified criteria. Here,

recently introduced software such as CAMERA and mummichog may facilitate further

feature refinement.[7,13] CAMERA is a Bioconductor package that is designed to accept

untargeted profiling data initially processed by XCMS. From the list of features detected by

XCMS and the raw LC/MS data, CAMERA identifies features that likely correspond to the

same metabolite. Given the tendency of metabolites to be detected as multiple features due

to naturally occurring isotopes, in-source fragmentation, and adduct formation, CAMERA

enables significant data reduction. In some cases, CAMERA reduces the number of features

by ~50%.[14] It is important to emphasize that removal of these features from the data

improves the likelihood of structurally characterizing a molecular ion with a fragmentation

pattern that is in a metabolomic MS2 database. Although here we have described the

filtering of a features table by manual inspection of statistical values and signal intensity
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followed by CAMERA processing, a freely available software package called MetShot was

introduced last year to automate these steps.[15]

Even after this filtering, the remaining list of features is often too large for targeted MS2

analysis. The next post-processing step is to search each feature’s mass-to-charge ratio in

metabolite databases. Databases with the largest number of mass-to-charge ratios for

metabolites include METLIN, the Human Metabolome Database, LIPID MAPS, and the

Madison Metabolomics Consortium Database.[16–20] These repositories can be manually

searched on an individual basis or searched simultaneously by using a recently developed

resource called MetaboSearch.[21] Database hits provide only putative feature assignments

that must be validated by subsequent MS2 analysis, but these candidate matches can be

assessed based on user interest and biochemical relevance. One strategy to assess features

based on biochemical relevance is to prioritize features that have candidates belonging to the

same metabolic pathway, a process that can be performed computationally by a program

called mummichog. In brief, the input of mummichog is the mass-to-charge ratios of features

determined to be unaltered between sample groups as well as those found to be statistically

different. The mummichog software then determines possible candidate matches, maps all

candidate matches onto a metabolic network (derived from KEGG, Recon1, and Edinburgh

human metabolic network), and searches unique pathways for enrichment. Features within

enriched pathways of interest may then be selectively targeted for MS2 analysis.

Taken together, the combination of post-processing technologies described above offers a

powerful approach to refine the features table that is output from LC/MS-based untargeted

metabolomics. The disadvantage of such a strategy is that it involves multiple software

packages that require familiarity with programming languages such as R and Python. As an

alternative, a web-based version of XCMS has been established called XCMS Online that

allows users to freely upload and process raw untargeted metabolomic data.[22] XCMS

Online generates a features table that is directly linked to the METLIN metabolite database.

Then putative candidates can be viewed by clicking on features of interest. Data analyzed by

XCMS Online is also processed by CAMERA and the features table is annotated

accordingly. As another bioinformatic solution with post-processing functionality, Agilent

Technologies has developed software called Mass Profiler Professional that can be used to

process untargeted metabolomic data. Mass Profiler Professional incorporates algorithms

similar to both CAMERA and mummichog, with pathway-enrichment analysis enhanced by

the ability of the software to map both transcriptomic and proteomic data onto the same

network.

Processing of MS2 data

After features are selected by using the post-processing described above, targeted MS2

experiments are typically performed on a single sample in which the peak of interest is

above an acceptable intensity threshold. The threshold of intensity that provides high-quality

MS2 data may vary and is determined by instrument sensitivity and settings. Ideally, MS2

spectra are acquired by using as narrow an ion isolation window as possible to reduce the

possibility of detecting fragments from multiple precursors simultaneously. In practice,

however, isolation windows greater than 1 Da are sometimes needed to analyze low-
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concentration compounds and can result in “mixed” MS2 spectra that contain fragments

from multiple co-eluting precursors.[23] In some cases where compound separation is

limited, even 1 Da isolation windows can lead to mixed MS2 spectra. Given that reference

MS2 data are unavailable for an overwhelming number of naturally occurring metabolites

and that fragmentation patterns are generally difficult to predict for small molecules, mixed

MS2 spectra in metabolomics are challenging to interpret intuitively. Currently, metabolite

identifications are validated by manually matching the MS2 data from a biological sample to

reference MS2 data from a purified model compound in databases such as METLIN,

MassBank, and mzCloud.[16,17,24,25] The presence of fragments from multiple precursors

can therefore prevent metabolite identification. A computational strategy for deconvolving

mixed MS2 spectra was recently developed called decoMS2.[23] While decoMS2 uses

chromatographic deconvolution approaches that have been successfully applied in GC/MS-

based metabolomics, it also deconvolves based on correlations between fragment and

precursor intensities as the mass-to-charge ratio targeted for MS2 analysis is shifted.[26]

Once targeted MS2 data are acquired and deconvolved, they can be searched against

reference MS2 databases. Although metabolomic MS2 databases have fragmentation spectra

for more than 11,000 standard metabolites and continue to grow rapidly, their coverage is

still incomplete.[17] Consequently, many queried MS2 spectra will return no database

matches. In an effort to increase the number of reference MS2 spectra, in silico

fragmentation approaches have been applied by software such as Mass Frontier, MetFrag,

and LipidBlast to generate hypothetical fragmentation patterns that can be used for

metabolite identification.[27–29] While these in silico approaches are less robust than

matching to standard experimental data, they greatly expand the number of metabolites that

can be searched with MS2 data and provide valuable leads that can be subsequently

confirmed with authentic standard compounds.

Targeted Quantitation and Pathway Dynamics with Stable Isotopes

Untargeted metabolomics only reports relative quantitation in the form of a fold change,

namely the average change in peak intensity between sample groups. Fold-change values

reported in a features table are not equivalent to changes in concentration. The ionization

efficiency of most metabolites is non-linear and matrix dependent, meaning that changes in

signal intensity do not necessarily correspond to equal changes in concentration. A large

fold change may represent only a small change in concentration or vice versa. Yet, the

biological effects of metabolites are concentration dependent. If glucose concentrations are

outside of a normal range in the blood, for example, the physiological consequences can be

severe and lead to the dysfunction of multiple organs. Therefore, in a biological context, it is

important to translate changes in signal intensity as reported in the untargeted metabolomic

features table to changes in concentration. The most reliable approach to determine absolute

concentration is to spike samples with a range of concentrations of a stable-isotope standard

and then construct a standard curve.[30] Historically, this method for absolute quantitation

has been performed by using triple quadrupole mass spectrometry. By the time that post-

processing of the features table is completed and MS2 matching performed, typically less

than 100 metabolites are structurally identified. From this list, researchers can perform a
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targeted analysis to determine the absolute concentration of selected metabolites key to

pathway regulation or fundamentally related to the biological hypotheses being investigated.

Interpreting untargeted metabolomic data in a biological context is also complicated by the

absence of information about pathway flux. As an example, consider a metabolite that is

identified to be strongly up-regulated in a group of samples representing a unique

phenotype. From this result, it is not possible to determine if the metabolite’s elevation

reflects increased utilization or decreased production/excretion.[31] Additionally, because

metabolites are consumed/produced by many reactions and many of those reactions have

substrates that may not be measured by untargeted metabolomics, identifying dysregulated

pathways can be challenging. To assess the flux of potentially dysregulated pathways as

implicated by untargeted metabolomics, a follow-up experiment involving stable isotopes

may be performed in which biological systems are provided with an isotopically enriched

nutrient and the distribution of the isotope into downstream products is subsequently

measured.[32,33] Several variations of flux analysis are commonly applied that involve

examining positional labeling patterns in isotopomers and/or the distribution of label in

isotopologues with time.[34–37] The latter approach is readily accomplished by the same

types of LC/MS instrumentation that is used for untargeted metabolomics and platform-

independent, freely available software called MAVEN has recently been introduced to

facilitate the associated data analysis.[38] Although MAVEN does not calculate metabolic

flux directly, flux values can be derived for targeted pathways by using the MAVEN output

as recently described.[39] It is now also possible to process stable-isotope LC/MS data in an

untargeted context by using the X13CMS software.[40] X13CMS does not report flux, but it

may be used to monitor how the distribution of isotope changes among all detected

compounds (including potential unknowns) after metabolic perturbation.

In Situ Imaging of Metabolites

When analyzing biological tissues by LC/MS-based metabolomics, the first step in the

workflow is metabolite extraction by sample homogenization.[41] This procedure mixes the

metabolome of all cells within the sample and therefore leads to an averaging effect that

prevents cell-specific quantitation.[42] To demonstrate the challenges of interpreting

LC/MS-based metabolomic data from intact tissue we refer to a recently published study in

which Caenorhabditis elegans worms with extended lifespan were compared to wildtype

controls.[43] Although the levels of multiple metabolites were determined to be altered in

long-lived worms, the cell types or tissues in the worm contributing to this metabolic

dysregulation could not be determined by LC/MS-based metabolomics. Here, the

application of technological advances in mass spectrometry-based imaging have great

potential for determining metabolite localization patterns.[44]

Mass spectrometry-based imaging is often accomplished by using matrix-assisted laser

desorption ionization (MALDI). Tissues are sectioned, transferred to a MALDI plate, a

matrix is applied, and mass spectra are acquired after systematic laser rastering. The signal

intensity of analytes of interest can then be plotted spatially to construct a two-dimensional

image. This approach has been successfully applied to determine the distribution pattern of

neuropeptides within nervous tissue, to discover that phosphatidylcholine species increase in
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the brain following ischemic insult, and to determine that triacylglycerol biosynthesis varies

across the tissues of a cotton embryo.[45–47] While MALDI has been effective for imaging

peptides and lipids, matrix interference in the low-mass region has complicated its

application to the measurement of some metabolites.[48] To image metabolites in the low-

mass region a technology has emerged known as nanostructure-imaging mass spectrometry

(NIMS, also referred to as nanostructure-initiator mass spectrometry).[49] NIMS is

compatible with MALDI instrumentation, but is a matrix-free approach and therefore

enables imaging of small molecules without background interference. NIMS has been

applied to study sugars, glycolytic intermediates, nucleotides, amino acids, and xenobiotics

as well as lipids.[50–52] In the example referenced above, the application of NIMS

suggested that metabolites altered in long-lived worms are localized to muscle tissue.[43]

While this level of anatomical localization provided by metabolomic imaging provides

important insight, future technological developments facilitating single-cell imaging within

a tissue or sub-cellular localization of metabolites will be of immense biological utility.

Conclusions

Currently, a major challenge in the field of metabolomics is interpreting untargeted profiling

results in the context of a biological problem. LC/MS-based untargeted metabolomics is

now an established technology that is routinely used to study biological systems. The output

of these experiments is a mass-to-charge ratios and relative intensity for each of the

thousands of peaks typically detected. One approach to data analysis is to consider the

metabolomic output as providing potentially interesting biological leads that can be pursued

with additional targeted experiments. In this review, we have described emerging mass

spectrometry-based technologies that facilitate the identification and prioritization of leads

as well as characterization of their structure, concentration, flux, and anatomical

localization. The integration of these technologies into the untargeted profiling pipeline

downstream of the conventional LC/MS steps will provide a much richer metabolic picture

to drive biological discovery. Ultimately, however, biological validation of metabolomic

data involves altering the phenotype of cell culture, animal models, or patients by pathway

manipulation. While in some instances investigators may be able to move to pathway

manipulation directly from untargeted metabolomic results, the technologies highlighted

here are likely to refine the biological hypotheses being tested. In summary, untargeted

metabolomics assays a broad portion of the metabolome for relative changes across

biological systems and therefore has a unique capacity to generate unanticipated leads and

biological questions. A particularly exciting application of this unbiased approach is the

ability to generate biological questions related to unknown metabolites, namely compounds

whose structures and pathways have not yet been discovered.[53] As with any scientific

question, however, additional experiments are necessary for hypothesis testing and

development. Of course, the specific experiments needed will be highly dependent upon the

system studied and the questions being investigated. Yet, the innovative advances

highlighted in this review provide an excellent framework of mass spectrometry-based

technologies that are available downstream to leverage untargeted profiling results and drive

biological discovery.
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1. Metabolomic data are information rich, but challenging to interpret biologically.

2. New software can guide hypothesis generation and direct further experiments.

3. Technologies for isotope analysis & metabolite imaging drive biological

discovery.
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Figure 1.
Schematic showing the possible integration of emerging, mass spectrometry-based

technologies into the untargeted metabolomic pipeline. The workflow starts with a features

table that is output from LC/MS-based untargeted metabolomics. Features likely

representing naturally occurring isotopes, adducts, and fragments of a single compound can

be grouped by using the CAMERA software. After data reduction, mass-to-charge ratios can

be searched in databases and interesting candidates chosen as targets for structural

identification. Alternatively, the data can be analyzed by mummichog to find candidates that

map onto related pathways. After acquiring MS2 data for features of interest, the spectra can

be deconvolved by decoMS2 and matched against the MS2 of authentic standards. These

pathway enrichments and identifications can be used to guide further experimentation that

involve construction of standard curves to determine absolute concentrations, stable-isotope

analysis to calculate metabolic flux, and mass spectrometry-based imaging to localize

metabolites within biological tissues.
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