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Background and Purpose—Ischemic stroke (IS) and coronary artery disease (CAD) share

several risk factors and each have a substantial heritability. We conducted a genome-wide analysis

to evaluate the extent of shared genetic determination of the two diseases.

Methods—Genome-wide association data were obtained from the METASTROKE,

CARDIoGRAM, and C4D consortia. We first analyzed common variants reaching a nominal

threshold of significance (p<0.01) for CAD for their association with IS and vice versa. We then

examined specific overlap across phenotypes for variants that reached a high threshold of

significance. Finally, we conducted a joint meta-analysis on the combined phenotype of IS or

CAD. Corresponding analyses were performed restricted to the 2,167 individuals with the

ischemic large artery stroke (LAS) subtype.

Results—Common variants associated with CAD at p<0.01 were associated with a significant

excess risk for IS and for LAS and vice versa. Among the 42 known genome-wide significant loci

for CAD, three and five loci were significantly associated with IS and LAS, respectively. In the

joint meta-analyses, 15 loci passed genome-wide significance (p<5×10-8) for the combined

phenotype of IS or CAD and 17 loci passed genome-wide significance for LAS or CAD. Since

these loci had prior evidence for genome-wide significance for CAD we specifically analyzed the

respective signals for IS and LAS and found evidence for association at chr12q24/SH2B3

(pIS=1.62×10-07) and ABO (pIS =2.6×10-4) as well as at HDAC9 (pLAS=2.32×10-12), 9p21 (pLAS

=3.70×10-6), RAI1-PEMT-RASD1 (pLAS =2.69×10-5), EDNRA (pLAS =7.29×10-4), and

CYP17A1-CNNM2-NT5C2 (pLAS =4.9×10-4).

Conclusions—Our results demonstrate substantial overlap in the genetic risk of ischemic stroke

and particularly the large artery stroke subtype with coronary artery disease.

Introduction

Stroke and coronary artery disease (CAD) are among the most common causes of premature

death and loss of disability-adjusted life years worldwide.1, 2 Both conditions are risk factors

for one another 3, 4 and in combination they are used for assessment of risk or as a

therapeutic target in clinical trials. Stroke and CAD share several risk factors and many

aspects of their underlying pathophysiology. This shared biology applies to ischemic stroke

(IS) and particularly to the sub-type of atherosclerotic stroke (large artery stroke, LAS).4, 5

Twin and family studies have demonstrated that both IS and CAD are highly heritable6, 7

with some evidence of a shared heritability for both diseases.8

Recent genome-wide association studies (GWAS) have identified some common genetic

variants that are associated with IS 9-11 and multiple loci that are associated with CAD.12, 13

Interestingly, some of the variants that were originally found to affect CAD risk also

associate with LAS 14, 15 suggesting a shared genetic architecture. However, there has been

no systematic study assessing shared genetic susceptibility to both IS and CAD or to LAS

and CAD on a genome-wide level in large datasets.

Combining genome-wide data from the METASTROKE, CARDIoGRAM, and C4D

consortia we examined whether IS and its subtype LAS share genetic risk with CAD with

respect to common genetic variation. We further explored the most robustly associated

variants for CAD for their association with both IS and LAS and vice versa. Finally, we
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conducted a joint meta-analysis of IS and CAD to search for variants that are associated with

the combined and thus broader vascular phenotype.

Methods

Participating studies and study design

The study sample consisted of GWAS case-control samples from the METASTROKE 9,

CARDIoGRAM 12, and C4D 16 consortia (Supplementary Table I). All participating studies

used a case-control or nested case-control design. Most participating studies were cross-

sectional, whereas some were prospective, population-based studies.

The METASTROKE consortium included 15 GWA studies involving 12,389 IS cases and

62,004 controls. Among them were 2,167 LAS cases and 49,159 LAS controls, and 2,365

cardioembolic stroke (CES) cases and 56,140 CES controls. Genotyping in individual

cohorts was carried out using Affymetrix or Illumina platforms, and approximately 2.5

million imputed genotypes were generated. Individual METASTROKE results of the

association analyses from every center were analyzed using a fixed-effects inverse-variance

weighted model with METAL.9, 17 All data were quality-controlled as previously

described.9

The CARDIoGRAM consortium included 14 GWA studies involving 22,233 CAD cases

and 64,762 controls. The genotyping platforms used and imputation approach was similar to

METASTROKE. The C4D consortium included 3 studies involving a total of 11,165 CAD

cases and 10,964 controls. Genotyping was carried out using Illumina arrays containing a

common set of about 575,000 genotyped SNPs.16 The meta-analysis of all CAD studies was

carried out using a fixed-effects or random-effects model depending on the extent of

heterogeneity as described previously.18 All data were quality controlled as previously

described.16, 18

Phenotype definitions of stroke and CAD are described in the original reports.9, 12, 16 In

brief, stroke was defined as a typical clinical syndrome with radiological confirmation.

Stroke subtyping was done using the Trial of Org 10172 in Acute Stroke Treatment

(TOAST) classification system. Definitions for CAD slightly varied between cohorts but

usually included myocardial infarction, symptoms of angina pectoris, and/or >50% coronary

artery stenosis. Participating studies were approved by relevant institutional review boards,

and all participants provided written or oral consent for genetic research using protocols

approved by the relevant institutional body.

Statistical analysis

For the analysis of variants showing a nominal threshold of significance (p<0.01) for IS,

LAS, or CAD, data were taken from the METASTROKE (for IS and LAS) and in the

combined CARDIoGRAM and C4D (for CAD) sample. Variants with a p-value<0.01 for a

given phenotype were then tested for association with the alternate phenotype(s) to

determine whether the observed distribution of p-values significantly deviated from the

expected distribution. To ensure that only independent loci are incorporated in the analysis,

we performed LD-based pruning with an r2- cut off of 0.3 retaining the SNP with the lowest
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p-value in the original study for each locus. QQ plots were drawn to plot –log (p-values)

where SNPs with effects in opposite directions were plotted separately from SNPs with

effects in the same direction. To determine the deviation of the p-value distribution shown in

the QQ plots, p-values were z-transformed. Under the null hypothesis, the z-transformed

effects follow a standard normal distribution. One-tailed significance was determined by

comparing the absolute values of the z-scores to a random normal one-tailed distribution

using a standard t-test 2×2 contingency tables were constructed for different p-values and r2-

cutoffs and Fisher’s exact test was used to evaluate the significance of the contingency

tables.

Directionality of effects (OR associated with the minor allele) of top variants for the three

phenotypes (IS, LAS, CAD) in other phenotypes (CAD for IS and LAS variants; IS and

LAS for CAD variants) were examined by calculating the proportion of effects going in the

same direction and comparing this proportion to that expected by chance (50%). For this, an

exact binomial test was performed. The analysis was repeated on the LD-pruned data to

ensure independence of tested SNPs. Bonferroni correction was applied to determine study-

wide significance.

To rule out that the agreement in p-values at individual risk loci is limited to single variants

we calculated the correlation of p-values using Spearman’s rank correlation for defined

genomic regions (consistent drop of p-values <0.05) for each potentially shared risk locus.

This allows to quantify the agreement between the p-value distributions of the different

phenotypes using Spearman’s rho as a read out, where rho=1 is defined as a perfect positive

correlation and rho=-1 as a perfect inverse correlation.

Meta-Analysis methods

We performed meta-analyses of the combined data from CARDIoGRAM (for CAD) and

METASTROKE (for IS and LAS) using two methods. First, we performed subtype-specific

meta-analyses using the protocol published by Mägi and colleagues.19, 20 This method was

originally developed for sex-specific genome-wide association studies but can also be

applied to other dichotomous covariates. The algorithm is implemented in the GWAMA

software 19, 20 and accounts for possible heterogeneity between study subgroups by formally

allowing for interaction between genotypes and subgroups under an additive model. Here a

subgroup-differentiated p-value below individual p-values for individual subgroups is

indicative of an association with both sub-phenotypes. To evaluate whether the resulting

meta-analysis p-values are significant after correcting for multiple testing, we evaluated the

false discovery rate (FDR) of these p-values. The R package “fdrtool” was used to estimate

q-values, a direct measure of the proportion of false positive results in the presence of a

statistically significant result.

Second, we used the method of Zaykin and Kozbur 21, which is similar to the method by Lin

and Sullivan22 to account for overlap of an estimated ~38,000 controls between the

CARDIoGRAM and METASTROKE samples from the KORA, WTCCC2, CHARGE and

deCODE studies (the exact number of overlapping controls could not be determined in the

absence of individualized data) which may lead to the inflation of meta-analysis p-values.

This program compensates for this lack of independence in test statistics created by the use
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of the same controls by computing the correlation between studies and using this measure

for correction of p-values obtained from a standard meta-analysis. In the absence of exact

numbers for overlapping controls we simulated different scenarios of overlapping controls.

Results

Analysis of variants meeting a low threshold of significance of association with CAD, IS,
and LAS

We first tested whether single nucleotide polymorphisms (SNPs) with some evidence for

association with CAD also associate with IS, and vice versa. Specifically, we constructed a

QQ plot in the IS GWAS meta-analysis using variants that displayed a p-value of <0.01 for

CAD in CARDIoGRAM/C4D.12, 16 We next constructed a QQ plot in the CAD GWAS

meta-analysis using variants that displayed a p-value of <0.01 for IS in METASTROKE.9

For both analyses, deviation of the observed from the expected distribution was highly

significant with p <10-82 (Figure 1A).

Next, we generated corresponding QQ plots for LAS and CAD. Again, deviation of the

observed from the expected distribution was highly significant in both analyses (p <10-27)

(Figure 1B). Corresponding QQ plots for cardioembolic stroke (CES) and CAD also showed

some deviation of the observed from the expected distribution (Figure 1C). However, the

deviation was less pronounced than for LAS and CAD. Focusing on variants with a p-value

of <0.0001 revealed a significant excess of shared signals between IS and CAD (3.75×10-8)

and between LAS and CAD (p=3.4 × 10-3) but not between CES and CAD (p=1.0)

(Supplementary Figure I).

Cross-analysis of robustly associated variants for CAD and IS

We next analyzed directionality of effects (OR associated with the minor allele) for all

variants that have previously shown genome-wide significance for association with CAD in

CARDIoGRAMplusC4D 13 in the METASTROKE GWAS for IS and LAS. Among 46

CAD variants from 42 loci, 33 variants [72%] from 31 loci showed point estimates for IS

that were directionally consistent for CAD (p=0.0045; exact binomial test, two-sided;

Supplementary Table II). Three variants from three loci were significantly associated with

IS (Table 1) at the 95% confidence level following Bonferroni correction (p<0.00108 for

testing of 46 variants). The effects for IS were in the same direction as for CAD for all three

of the variants. Corresponding results for LAS were 34 variants from 31 loci (74%;

p=0.0016) and 5 variants from 5 loci with study-wide significance (Table 1 and

Supplementary Table II). When considering LD-pruned SNPs (r2<0.3) the results were very

similar with only two SNPs (rs11203042 and rs3217992) at two loci being removed from

analysis. Among 44 CAD variants from 42 loci, 31 variants from 31 loci [70%] showed

point estimates for IS that were directionally consistent (p=0.0096). Corresponding results

for LAS were 32 variants from 31 loci (73%; p=0.0037).

We further analyzed all variants that showed p-values < 10-5 with IS in METASTROKE

(N=6 variants) for directionality of effects in the CARDIoGRAM meta-analyses for CAD.

The choice of a more liberal p-value (p<10-5) was based on the paucity of variants reaching
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genome-wide significance for IS. In all cases point estimates for CAD were directionally

consistent for IS (p=0.0313; for directionality; exact binomial test, two-sided;

Supplementary Table II). One variant was significantly associated with CAD at the 95%

confidence level following Bonferroni correction for testing of multiple variants (Table 1).

Finally, we analyzed variants that showed p-values < 10-5 with the LAS subtype in

METASTROKE (N=11 variants) for directionality in the CAD dataset. Again, the majority

(82%) showed effects going in the same direction (p=0.065; Supplementary Table II). One

variant was significantly associated with CAD (Table 1). Considering LD-pruned SNPs did

not change the results. None of the three loci that showed p-values <1x10-5 with

cardioembolic stroke were associated with CAD (all pCAD>0.2).

Meta-Analyses of combined data from CARDIoGRAM and METASTROKE

As a further step we carried out meta-analyses for the combined data from CARDIoGRAM

(for CAD) and from METASTROKE (for IS and LAS) to identify variants that are

associated with the broader vascular endpoint. This meta-analysis revealed 15 loci that

exceeded the threshold for genome-wide significance for the combined CAD/IS phenotype

(Table 2 and Figure 2A) and 17 loci that exceeded the threshold for genome-wide

significance for the combined CAD/LAS phenotype (Table 2 and Figure 2B). All of these

loci have been published previously for genome-wide significant association with CAD.13

Of note however, in the combined datasets several loci showed p-values that were more than

one order of magnitude lower than those in individual meta-analyses on the individual

diseases. This applied to 3 loci of the CAD/IS meta-analysis and 5 loci of the CAD/LAS

meta-analysis (Table 2). All loci were still significant following FDR correction (Table 2).

We next focused on loci that showed the strongest independent association with IS or LAS

in addition to their genome-wide significance in the combined data set. For IS these were

chr12q24/SH2B3 (pIS =1.62×10-7) and ABO (pIS=2.65×10-4)(Table 2). For LAS, these were

HDAC9 (pLAS=2.39×10-12), 9p21 (pLAS=3.85×10-6), RAI1-PEMT-RASD1

(pLAS=2.69×10-5), CYP17A1-CNNM2-NT5C2 (pLAS=4.92×10-4), and EDNRA

(pLAS=7.29×10-4)(Table 2). In all cases p-values for individual variants within the respective

genetic regions (defined as a consistent drop of p-values <0.05) significantly correlated

between CAD and stroke phenotypes suggesting that the association signals originate from

the same genetic variants (chr12q24/SH2B3: Spearman’s rhoIS/CAD=0.68; p=3.8×10-87;

ABO: rhoIS/CAD =0.82, p=2.2×10-08; HDAC9: rhoLAS/CAD =0.83, p=4.8×10-12; 9p21:

rhoLAS/CAD =0.85; p=2.9E-35; RAI1-PEMT-RASD1: rhoLAS/CAD =0.78; p=5.6×10-17;

CYP17A1/CNNM2/NT5C2: rhoLAS/CAD =0.46, p=7.5×10-15; EDNRA: rhoLAS/CAD =0.85;

p=6.5×10-13)(Supplementary Figure II).

A closer look at loci that were significant in the combined meta-analyses revealed that some

loci showed a strong association with both phenotypes reaching a similar level of

significance for the IS and CAD phenotypes (Figure 3 and Supplementary Figure II),

whereas for other loci the association was largely confined to a single phenotype (Figure 4

and Supplementary Figure II).

To account for the overlap in controls between the stroke and CAD samples, we further

performed conventional sample-size dependent meta-analyses 21 for two different scenarios
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covering the estimated number of controls that overlapped between the two samples

(Supplementary Table III). The results compared well with the primary subtype-specific

meta-analysis except for HDAC9 (for all IS/CAD) and SORT1 (for LAS/CAD), which

reached genome-wide significance in the respective subtype-specific meta-analyses but not

in the conventional sample-size dependent meta-analyses.

Discussion

This study demonstrates that common variants at a substantial number of genetic loci

influence risk of both ischemic stroke and coronary artery disease. This conclusion is

supported by the results of several approaches: First, selecting common variants that had

reached a nominal threshold (p<0.01) of significance in previous studies and testing them

for association with the respective other vascular phenotype; second, analyzing common

variants that had reached a high threshold of significance in previous studies; and third,

meta-analysis of the combined vascular endpoint of CAD and IS as well as CAD and LAS.

The QQ-plots suggest that multiple variants at multiple loci including variants reaching a

low threshold of significance for association with IS, CAD, or both, and thus not previously

reported as risk loci for arterial disease, contribute to shared genetic susceptibility to IS and

CAD. This agrees with the growing evidence that common traits are affected by a large

number of causative alleles with very small effects.23 As illustrated both by the QQ-plots

and the analysis of variants meeting a high threshold of significance the excess of shared

signals between CAD and LAS was more pronounced than the excess of signals between

CAD and cardioembolic stroke. This might indicate, that some of the shared risk variants for

CAD and LAS act through mechanism that are relatively specific for atherosclerotic disease.

A number of loci thus far not identified in isolated GWAS of IS or LAS showed a strong

and consistent signal when considered jointly with CAD. Several lines of statistical evidence

support a role for these loci in ischemic stroke risk: i) p-values for individual variants were

<1×10-3, ii) the combined p-value in the joint meta-analysis with CAD was genome-wide

significant and at least one order of magnitude below the p-value found for CAD alone, and

iii) p-values for individual variants significantly correlated between CAD (where these loci

reached genome wide significance) and IS or LAS.

Loci reaching genome-wide significance in the joint meta-analyses can be broadly classified

into three categories: loci that showed a clear signal for both IS and CAD (e.g. chr12q24/

SH2B3; Figure 3A), loci that showed a clear signal for both LAS and CAD (e.g. RAI1-

PEMT-RASD1; Figure 3B), and loci for which the association was confined to CAD (e.g.

SORT1 or TCF21; Figure 4).

The locus with the strongest association signal for IS was at chr12q24/SH2B3 and had so far

not been reported for this phenotype. This locus also showed one of the strongest signals in

the combined meta-analysis indicating that chr12q24/SH2B3 is a major susceptibility locus

for cardiovascular disease. Variants in this region have previously been shown to be

associated with various other traits including blood pressure 24, 25, blood lipids 26, platelet

count 27, and type-1 diabetes.28 Several of these traits are linked to IS, CAD, or both. Odds
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ratios for IS and CAD were similar and p-values for individual variants for IS and CAD

significantly correlated indicating that the association signals for the two phenotypes

originate from the same genetic variants.

Variants at ABO, the locus with the second strongest signal for IS, have likewise been

associated with a variety of traits including low-density lipoprotein (LDL-C)26, von

Willebrand factor 15, and venous thromboembolism 29. Again, p-values for individual

variants for IS and CAD significantly correlated and the odds ratios for IS, CAD, and LAS

were all very similar with no significant heterogeneity (Supplementary Table II). Several

observations suggest that the effects of this locus on vascular risk are mediated by an

influence on end-stage coagulation and thrombosis 15, 29, 30, which would be consistent with

shared mechanisms in CAD and the broader phenotype of IS.15

Loci significantly associated both with CAD and the more restricted phenotype of LAS

included 9p21.3, the locus with the strongest signal in the combined meta-analysis, HDAC9,

and several loci not previously reported to be associated with LAS. Among the most

significant loci is RAI1-PEMT-RASD1 (17p11.2), which to date has not been reported as a

risk locus for LAS. Once again, p-values for individual variants for LAS and CAD

significantly correlated at this locus. Variants at RAI1-PEMT-RASD1 also significantly

associated with IS but the OR and level of significance was lower than for LAS, suggesting

that the association with IS is driven by the association with LAS. Interestingly, the RAI1-

PEMT-RASD1 locus has so far not been associated with other traits or diseases known to

relate to the vascular system. Another locus significantly associated with both LAS and

CAD and not previously reported as being associated with LAS is EDNRA. This locus has

been associated with carotid artery atherosclerosis 31 suggesting that this locus acts by

promoting early atherogenesis.

Finally, several loci displayed highly significant associations with CAD, while showing no

association with LAS or IS. This included TCF21 (6q23.2), PHACTR1 (6p24.1), and

WDR12 (2q33.1), which are among the strongest signals for CAD.12, 13 The finding

suggests partially distinct mechanisms by which common genetic variants contribute to the

risk of CAD and LAS.

Our findings must be interpreted in light of the known comorbidity between IS and CAD.

We did not control for comorbid vascular disease because the information was not available

for most of the participants. However, the pattern of association between established CAD

loci and IS differs from what would be expected based on comorbidity or referral bias in that

the chr12q24/SH2B3 locus displayed a similar strength of association with IS and CAD, and

RAI1-PEMT-RASD1 (17p11.2) showed a similarly strong association with LAS and CAD.

Also, several of the top signals for CAD displayed no association with IS or LAS. We can

largely exclude a referral bias favoring the selection of stroke patients with a diagnosis of

CAD since the majority of subjects included into METASTROKE were recruited through

acute stroke services or through population-based studies. There may have been some

enrichment for patients with a history of stroke among subjects recruited into

CARDIoGRAM/C4D. However, with the exception of HDAC9, all top signals in the
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combined meta-analysis showed stronger associations with CAD than with IS, which cannot

be explained by comorbidity or referral bias.

Our data add to the understanding of familial aggregation of IS and CAD. A parental history

of CAD is a risk factor for stroke and a family history of stroke is a risk factor for CAD and

acute coronary syndromes.8 In fact, a family history of stroke was found to be as common in

acute coronary syndromes as in patients with acute cerebrovascular events.8 Our finding of

shared genetic influences between IS and CAD provides some explanation for the

aggregation of different arterial phenotypes within families.

Translating findings from genetic association studies into clinical practice remains a

challenge. Recent GWAS have revealed a large number of loci that are associated with

classical vascular risk factors 24 and genetic risk scores based on multiple SNPs for blood

pressure 24 or lipid levels are associated with vascular endpoints including stroke and CAD.

Up to know, however, the clinical utility of such scores in predicting vascular risk is rather

limited. This may change as additional information from even more markers is added. More

importantly, identification of the biological pathways and mechanisms by which shared

genetic influences modulate vascular risk might eventually lead to novel therapeutic

strategies with a broad impact on vascular disease.

Our study has limitations. First, sample sizes for IS and CAD differed substantially. Second,

there was some overlap in controls between the IS and CAD studies. We attempted to

account for these limitations through the use of appropriate analytic algorithms and found

that our results were remarkably stable when performing meta-analyses assuming a wide

range in the proportion of overlapping controls. The statistical strength of the subtype-

specific meta-analysis 19 is illustrated by the results for HDAC9, which showed a strong

association in the joint subtype-specific meta-analysis despite a weak signal in CAD.

In conclusion, this is the first study examining shared genetic influences between ischemic

stroke and coronary artery disease by meta-analyzing GWAS data. Our data provide insights

into shared mechanisms and may in part explain why vascular events in one organ predict

vascular events in the other organ.
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Figure 1.
QQ plots for individual vascular phenotypes considering variants reaching a low threshold

of significance (p<0.01) in alternate vascular phenotypes: CAD variants in all IS (left) and

all IS variants in CAD (right) (A), CAD variants in LAS (left) and LAS variants in CAD

(right) (B); CAD variants in CES (left) and CES variants in CAD (right) (C). SNPs with

effects going into the same direction in the respective samples are shown in black. SNPs

with effects going into opposite directions in the respective samples are shown in light blue.

Data were drawn from METASTROKE, CARDIoGRAM and C4D. Red line: expected line

corresponding to a normal distribution; black lines represent 95% confidence intervals of the

expected distribution. For display purposes variants from the 9p21 locus are omitted from

the figure. p-values correspond to the analysis of directionally consistent SNPs (black line).
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Figure 2.
Manhattan plots of –log10(p) against genomic position: Results are shown for (A) the

combined endpoint of all IS or CAD and (B) the combined endpoint of LAS or CAD.

Genome-wide meta-analysis association results by genomic position at autosomal SNPs.

Data were drawn from METASTROKE and CARDIoGRAM.
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Figure 3.
Regional association plots (left) and corresponding Spearman correlation plots (right) of p-

values for individual variants of (A) the chr12q24/SH2B3 locus for IS and CAD and (B) the

RAI1-PEMT-RASD1 locus for LAS and CAD. For clarity, only a subset of variants is

displayed (see Supplementary Figure II for all variants). Data were drawn from

METASTROKE and CARDIoGRAM.
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Figure 4.
Regional association plots (left) and corresponding Spearman correlation plots (right) of

(A) the SORT1 locus for IS and CAD, (B) the TCF21 locus for LAS and CAD, and (C) the

HDAC9 locus for LAS and CAD. For clarity, only a subset of variants is displayed (see

Supplementary Figure II for all variants). Data were drawn from METASTROKE and

CARDIoGRAM.
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