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Abstract

Accurate assessment of a woman’s risk to develop specific subtypes of breast cancer is critical for

appropriate utilization of chemopreventative measures, such as with tamoxifen in preventing

estrogen-receptor positive breast cancer. In this context, we investigate quantitative measures of

breast density and parenchymal texture, measures of glandular tissue content and tissue structure,

as risk factors for estrogen-receptor positive (ER+) breast cancer. Mediolateral oblique (MLO)

view digital mammograms of the contralateral breast from 106 women with unilateral invasive

breast cancer were retrospectively analyzed. Breast density and parenchymal texture were

analyzed via fully-automated software. Logistic regression with feature selection and was

performed to predict ER+ versus ER− cancer status. A combined model considering all imaging

measures extracted was compared to baseline models consisting of density-alone and texture-alone

features. Area under the curve (AUC) of the receiver operating characteristic (ROC) and Delong’s

test were used to compare the models’ discriminatory capacity for receptor status. The density-

alone model had a discriminatory capacity of 0.62 AUC (p=0.05). The texture-alone model had a

higher discriminatory capacity of 0.70 AUC (p=0.001), which was not significantly different

compared to the density-alone model (p=0.37). In contrast the combined density-texture logistic

regression model had a discriminatory capacity of 0.82 AUC (p<0.001), which was statistically

significantly higher than both the density-alone (p<0.001) and texture-alone regression models

(p=0.04). The combination of breast density and texture measures may have the potential to

identify women specifically at risk for estrogen-receptor positive breast cancer and could be useful

in triaging women into appropriate risk-reduction strategies.
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1. INTRODUCTION

The personalization of breast cancer screening recommendations based on an individual

woman’s risk for breast cancer is becoming increasingly important for clinical practice and

patient care1, 2. The National Cancer Institute’s (NCI’s) risk assessment tool, often referred

to as the Gail model3, is one of the most commonly utilized breast cancer risk assessment

tools and has been used to establish guidelines for offering customized breast cancer

screening recommendations for women at an elevated risk of developing breast cancer4. For

example, the American Cancer Society (ACS) recommends that women with more than

20%–25% lifetime risk of breast cancer also be screened with breast magnetic resonance

imaging, which has been shown to detect mammographically occult breast cancers with

higher sensitivity than with screening mammography5. Furthermore, such models have also

been utilized in preventive, risk-reduction strategies for woman at risk of developing

specific sub-types of breast cancer, such as an estrogen-receptor positive (ER+) breast

cancer6. As a result, tamoxifen, a selective estrogen receptor modulator (SERM)

chemoprevention agent shown to reduce the risk of breast cancer by up to 48%7, has been

recommended for use in women with more than 1.67% 5-year Gail risk6. However, while

well calibrated at the general-population level, the Gail model has been shown to only have

a modest discriminatory accuracy at the individual level8, therefore being limited for

individualized clinical decision making. As such, it is estimated that of the 10 million US

women eligible for SERM chemoprevention only about 25% would actually benefit9,

exposing a considerable fraction of the population to substantial side effects.

Previous studies have identified several image-derived biomarkers associated with a

woman’s individual risk of developing breast cancer. Specifically, breast percent density

(PD%), the relative amount of mammographically-opaque fibroglandular tissue, has been

consistently shown to be a strong risk factor for breast cancer10. In addition, parenchymal

texture descriptors which describe localized properties of the parenchymal tissue patterns as

seen mammographically have also been shown to be associated with breast cancer, and may

contain complementary information about cancer risk (Figure 1)11. However, while most

studies have focused on the relationship between breast density and texture and a woman’s

overall risk for developing cancer, few have investigated the discriminatory capacity of

these features in determining a woman’s risk for developing specific sub-types of breast

cancer. Therefore, in the context of identifying sub-type specific biomarkers, the purpose of

this study is to investigate whether fully-automated measures of breast density and whole-

breast parenchymal texture are associated with estrogen-receptor positive (ER+) breast

cancer. Ultimately, sub-type specific risk assessment could help better guide

chemopreventative interventions for breast cancer.

2. METHODS

2.1 Study population and image dataset

In this IRB-approved, HIPAA-compliant retrospective study, we identified a cohort of 106

women over 40 years of age with unilateral primary invasive breast cancer with known

estrogen receptor (ER) status from a previously completed multimodality breast imaging

trial at our institution (National Institutes of Health P01 CA85484; PI: M. Schnall). For each
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woman, we obtained their raw (i.e., “For Processing”) full-field digital mammograms

(Senographe 2000D and DS; GE Healthcare, Chalfont St Giles, UK) for analysis. In this

study, we analyzed the mediolateral-oblique (MLO) view mammogram of the contralateral

(i.e., cancer-unaffected) breast as a surrogate of inherent tissue properties predisposing

women to have a higher risk for developing ER sub-type specific breast cancer12.

2.2 Breast density and parenchymal texture feature extraction

Absolute area density, non-dense area, and PD% were estimated using fully-automated,

validated software previously developed by our group13. The algorithm first segments the

breast region of a mammogram via an automated thresholding technique to remove the air-

region followed by a straight-line Hough transform to delineate and remove the region of the

mammogram containing pectoral muscle. The algorithm then clusters the pixels within the

breast region into groups of similar intensity via an adaptive, multi-class fuzzy c-means

clustering algorithm. Lastly, these sub-regions of the breast are classified as being either

dense or non-dense (i.e., fatty), with the dense clusters being merged into a final dense-

tissue segmentation. The absolute dense tissue area of the segmentation can be then be used

to obtain PD%:

(1)

where |MD| and |MB| are the area of the breast segmentation and dense tissue segmentation.

Example breast density segmentations for two women with approximately equal PD%

estimates are provided in figures 1A and 1C.

Whole breast parenchymal texture analysis was performed using our validated lattice-based

approach14. Briefly, using the breast mask generated by the density segmentation algorithm

above, a lattice of sampling points is overlaid on the breast region. At each lattice-point, a

63-pixel-square window is analyzed to extract a series of 19 first-order histogram15, run-

length16, gray-level co-occurrence17, fractal18 and structure19 features (previously also

shown to be robust to image-detector effects20). The average of value of each texture feature

within the breast tissue region of a given mammogram was used as the aggregate score of

that texture descriptor within the breast. The texture features, as well as their individual

correlations to area breast density estimates, are provided in Table 1. Sample texture maps

of the co-occurrence matrix entropy texture measure are shown for two women in figures 1B

and 1D.

2.3 Statistical analysis

The association between the 19 texture measures and the 3 breast density estimates, namely

absolute dense area, absolute non-dense (i.e., area adipose) and area percent density, was

assessed using Pearson’s correlation. To estimate the joint discriminatory capacity of the

breast density and texture features to distinguish between women with ER+ and ER− breast

cancer, logistic regression analysis with backward stepwise feature selection using standard

entry (p<0.05) and exit (p>0.10) criterion was performed. A model considering of all the

image-derived measures was compared to a baseline model consisting of only the three area
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density measures and a second model consisting of only the texture measures. In this

analysis, all area density measures were log-transformed and all texture measures were z-

scored. Area under the curve (AUC) of the receiver operating characteristic (ROC) and

Delong’s test were used to compare model performance in distinguishing between women

with ER+ versus ER− cancer.

3. RESULTS

The texture and breast density measures have different strengths of associations between

them. Non-dense area and skewness have the strongest association with a Pearson

correlation of r=−0.88 (p<0.001). In contrast, the kurtosis, energy and local binary pattern

texture features are not significantly correlated with any of the three breast density

measures. The complete list of correlations between the breast density and parenchymal

texture measures are provided in Table 1. In terms of the performance of the imaging

measures to distinguish between women with ER+ versus ER− cancer, the density-alone

model had a discriminatory capacity of 0.62 AUC (p=0.05). The texture-alone model had a

higher discriminatory capacity of 0.70 AUC (p=0.001), which was not statistically different

compared to the density- alone model (p=0.37). In contrast the combined density-texture

logistic regression model had a discriminatory capacity of 0.82 AUC (p<0.001), which was

statistically significantly higher than both the density-alone (p<0.001) and texture-alone

models (p<0.04). In the combined model, the absolute dense, non-dense, and PD% density

measures were retained after feature-selection (p<0.05), as were also the energy, local

skewness, local standard deviation, local binary pattern, edge radius, inverse difference

moment, entropy, cluster-shade and inertia texture features (p<0.05) (i.e., a total of 12 out of

the 22 density and texture features combined). The ROC curves of the three models are

provided in figure 2.

4. DISCUSSION

Our study demonstrates a novel application of parenchymal texture analysis, showing that

subtype-specific breast cancer risk assessment may be feasible using fully-automated

measures of parenchymal texture combined with breast density. We found that certain

measures of the parenchymal texture pattern, namely the kurtosis, energy and local binary

pattern features, have no correlation with area breast density measures, thus indicating that

they may be capturing different properties of the breast parenchymal tissue. Specifically in

the context of sub-type specific breast cancer risk assessment, texture measures may be

useful in capturing differences of underlying endogenous hormonal tissue exposure21 and

other biological factors which may be potentially related to a woman’s risk of developing

different sub-types of cancer as well as her risk to develop cancer in general. Furthermore,

we also found that breast density and texture measures may independently contribute to

measuring a woman’s risk to develop sub-type specific breast cancers. Future larger studies

will be focused on investigating the capacity of these imaging features to distinguish

between sub-type specific risk in the general population using independent sample

validation.
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5. CONCLUSION

In this work, we demonstrate that the combination of breast density and parenchymal texture

measures may have the potential to identify women specifically at risk for estrogen-receptor

positive breast cancer. Ultimately, sub-type specific breast cancer risk assessment models

may help to better guide chemoprevention for women at high-risk of breast cancer.
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Fig. 1.
Breast density segmentations (A, C) and entropy texture maps (B, D) from raw (i.e., “For

Processing”), contralateral mammograms of women diagnosed with ER+ (A–B) and ER−

breast cancer (C–D). These women have approximately equal breast percent density scores

(PD=23%) but different parenchymal patterns of the entropy texture measure (B and D).
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Fig. 2.
Receiver operating characteristic performance of the logistic regression models compared to

classify ER cancer status.

Keller et al. Page 8

Proc SPIE. Author manuscript; available in PMC 2014 July 27.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Keller et al. Page 9

Table 1

Pearson correlations between the parenchymal texture and breast density measures. Correlation values marked

with an ‘*’ indicate statistically significant associations at the α=0.05 level.

Texture Measure Dense Area Non-dense Area Area Percent Density

5th Percentile 0.07 0.23* −0.13

95th Percentile −0.44* −0.63* 0.21*

Cluster Shade −0.20* −0.31* 0.10

Correlation 0.24* −0.04 0.14

Edge Radius −0.16 −0.31* 0.16

Energy −0.04 −0.09 0.00

Entropy −0.28* −0.41* 0.18

Fractal Dimension 0.17 0.59* −0.38*

Grey Level Non-uniformity 0.00 0.20* −0.22*

Haralick Correlation −0.23* −0.50* 0.23*

High Gray Level Run Emphasis −0.36* −0.54* 0.21*

Inertia −0.48* −0.67* 0.22*

Inverse Difference Moment 0.22* 0.24* −0.09

Kurtosis −0.16 −0.16 0.02

Local Binary Pattern −0.08 0.14 −0.19

Maximum Value −0.45* −0.64* 0.21*

Minimum Value 0.17 0.35* −0.15

Skewness −0.26* −0.88* 0.49*

Standard Deviation −0.45* −0.67* 0.24*
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