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Background—Atherosclerosis, the precursor to coronary heart disease and stroke, is

characterized by accumulation of fatty cells in the arterial intimal-medial layers. Common carotid

intima media thickness (cIMT) and plaque are subclinical atherosclerosis measures that predict

cardiovascular disease events. Previously, genome-wide association studies demonstrated

evidence for association with cIMT (SLC17A4) and plaque (PIK3CG).

Methods and Results—We sequenced 120kb around SLC17A4 (6p22.2) and 251kb around

PIK3CG (7q22.3) among 3,669 European ancestry participants from the Atherosclerosis Risk in

Communities Study, Cardiovascular Health Study, and Framingham Heart Study in the Cohorts

for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium. Primary

analyses focused on 438 common variants (minor allele frequency [MAF] ≥ 1%), which were

independently meta-analyzed. A 3’ UTR CCDC71L variant (rs2286149), upstream from PIK3CG,

was the most significant finding in cIMT analyses (p= 0.00033) and plaque (p=0.0004). A

SLC17A4 intronic variant was also associated with cIMT (p=0.008). Both were in low LD with the

GWAS SNPs. Gene-based tests including T1 count and SKAT for rare variants (MAF < 1%), did

not yield statistically significant associations. However, we observed nominal associations for rare

variants in the CCDC71L and SLC17A3 with cIMT and of the entire 7q22 region with plaque

(p=0.05).

Conclusions—Common and rare variants in the PIK3CG and SLC17A4 regions demonstrated

modest association with subclinical atherosclerosis traits. While not conclusive, these findings

may help to understand the genetic architecture of regions previously implicated by GWAS and

identify variants within these regions for further investigation in larger samples.
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Atherosclerosis, a precursor to clinical coronary artery disease and some strokes, is

characterized by an accumulation of fatty and inflammatory cells and fibrosis in the intimal-

medial layers of the arteries. Common carotid intima media thickness (cIMT) and plaque,

reflecting a thickening of the carotid artery wall or the presence of large irregular arterial

wall deposits, respectively, are established measures of subclinical atherosclerotic disease

that can be detected non-invasively and with reasonable precision in population samples

using high resolution ultrasound techniques. Multiple independent studies have established

consistent association of abnormal carotid phenotypes with coronary events and stroke in

prospective studies of young, middle-aged, and older adults,1, 2 and recent consensus

prevention guidelines cite cIMT as a potentially useful measure for prediction of these

outcomes.3

We have previously identified two regions that demonstrated evidence for association with

cIMT (SLC17A4) and carotid plaque (PIK3CG) in a large-scale genome-wide association

meta-analysis conducted among over 40,000 participants from population-based studies of

European-ancestry adults.4 Recent studies have shown that targeted genome sequencing can

identify a significant excess burden of functional variants underlying GWAS signals. 5 To

identify the causal variants accounting for these signals, we performed a targeted sequencing

of these loci using next generation technology. The first region is a 120kb window on
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chromosome 6p22.2 including the SLC17A4, SLC17A1, and SLC17A3 genes that showed

suggestive evidence for association with common cIMT in the GWAS (rs4712972,

MAF=0.12, β=0.0099, p = 7.8 × 10−8).4 The second targeted region is a 251kb stretch of

chromosome 7q22.3 including the PIK3CG gene that was significantly associated with

increased risk of carotid plaque in the GWAS (rs17398575, MAF=0.25, OR=1.18,

p=2×10−12). 4 In addition to association with plaque, this region was also selected for

sequencing on the basis of its association in recent GWAS with both platelet volume 6 and

aggregation 7 as well as pulse pressure. 8.

Rather than identifying new susceptibility loci, our aim was to better characterize the

landscape of common and rare variation in these previously associated regions and to

determine whether novel or low frequency variation therein was associated with cIMT and

carotid plaque. Such fine-mapping across the full spectrum of allele frequencies may help to

explain previous genome-wide associations and provide new information on potential

mechanisms of atherosclerosis that could contribute to subclinical cardiovascular disease.

Methods

Participating studies

Our analyses were performed within the Cohorts for Heart and Aging Research in Genomic

Epidemiology (CHARGE) Consortium’s9 Targeted Sequencing Study, which included

3,688 European ancestry participants from the Atherosclerosis Risk in Communities Study10

(ARIC), the Cardiovascular Health Study11 (CHS), and the Framingham Heart Study12, 13

(FHS). This sample included a sex-stratified subset of approximately 200 individuals that

were selected for elevated measures of age-adjusted cIMT (see Supplementary Note). The

remainder of the participants in this study was selected as part of a large random sample or

for extreme values of 13 other cardiovascular related phenotypes. Institutional review boards

at all participating centers approved the study, and participants gave informed consent.

Additional information about the design of these studies is included in the Online Data

Supplement.

Carotid artery phenotypes

Each study evaluated the carotid arteries using high-resolution B-mode ultrasonography,

using previously described reading protocols to define phenotypes, as per our previous

report.4 For these analyses, we used data from the baseline examination or the first

examination in which carotid ultrasonography was obtained. Our primary analysis

concerned the common carotid artery using the intima media thickness, typically

summarized as the mean of the maximum of several carotid measurements. For most

studies, this was an average of multiple measurements from both the left and right arteries.

All studies measured the far wall, and several also included the near wall. We also examined

the atherosclerotic thickening of the carotid artery wall, defined in two studies by the

presence of plaque (CHS, ARIC) or the proxy measure of luminal stenosis greater than 25%

(FHS). Specific details for each study’s ultrasound, reading, and plaque definition protocols

are provided in the Online Data Supplement.
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Sequencing

The methods of the CHARGE Targeted Sequencing Study have been described fully in a

separate manuscript (Lin H, Wang M, Brody JA, Bis JC, Dupuis J, Lumley T, et al.,

submitted to Circ Cardiovasc Genet along with this manuscript). Briefly, the Study

sequenced a total of 77 target regions that harbor genetic variants associated with 14

phenotypes implicated by GWAS within the CHARGE Consortium. Two of the selected

genes were particularly relevant to subclinical atherosclerosis. First, the Subclinical

Phenotype Group used the University of California at Santa Cruz (UCSC) Genome Browser

to select target sequence upstream and downstream of the SLC17A4/3/1 genes. Secondly, the

Pleiotropy Phenotype Group selected the PIK3CG region with the aim of capturing both the

gene as well as the upstream CCDC71L gene and other untranslated regions that harbored

SNPs identified in several GWAS.

Approximately 2Mb of target regions were captured by a customized NimbleGen Capture

array and sequenced using the ABI SOLiD V4.0 platform. The raw short reads were aligned

to the reference human genome (NCBI Genome Build 36, hg18) by BFAST.14 Samtools15

was used to pile up aligned reads and call variants with quality filters. The resulting data was

then subjected to quality control procedures. Variants were categorized as known or novel

by comparison with the dbSNP database and the 1000 Genomes Project. The functional

impact of identified variants on the encoded proteins was predicted by the ANNOVAR

software package.16

Statistical analysis within studies

Each study independently implemented a predefined and standardized analysis plan, as

described below.

For the continuous measures of cIMT, we evaluated cross-sectional associations of natural

log of cIMT [ln(cIMT)] and genetic variation using linear regression models (or linear

mixed effects models in FHS to account for family relatedness). For the dichotomous

outcome of plaque, each study used logistic regression models (or general estimating

equations clustering on family, to account for familial correlations). In our primary analyses,

all studies were adjusted for age, sex, and principal components to account for population

substructure (as needed). Some studies made additional adjustments including study site

(CHS, ARIC) or familial structure (FHS). For cIMT, we expressed the association of each

SNP and ln(cIMT) as the regression slope (β), its standard error [SE(β)] and a corresponding

p-value. For the presence of plaque, we calculated a log odds ratio (OR), 95% confidence

interval, and p-value. In this case, the OR represents the increase or decrease in the odds of

plaque for each additional copy of the variant ’s coded allele. Each study repeated these

analyses weighted by each participant’s sampling probability to obtain valid estimates of

effect size. (Lumley T, Dupuis J, Rice KM, Barbalic M, Bis JC, Cupples LA, et al. http://

stattech.wordpress.fos.auckland.ac.nz/files/2012/05/design-paper.pdf)

We applied two methods of analysis within each region for each of these traits. For each

variant with a MAF ≥ 1% in the combined population, each study fit additive genetic

models, regressing trait on genotype dosage (0 to 2 copies of the variant allele). For rare
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variants, our primary analyses aggregated rare alleles, i.e., those with MAF < 1% into a T1

count statistic, which was defined as the number of variant sites in the target at which a

person has at least one rare allele with MAF < 1%. In secondary rare variant analyses of our

target regions, we used two approaches: (1) First, we used a Madsen-Browning (MB) type

test, which aggregates all variants with MAF< 1% in a genomic region, weighting each

variant by a function of its MAF.17 (2) Second, to explore the possibility that rare variants

within a gene did not have the same direction or magnitude of association, we implemented

the Sequence Kernel Association Test (SKAT)18, which approximates the score test that

would be obtained fitting a model that includes all the variants.19

We then conducted a meta-analysis of regression estimates and standard errors using an

inverse-variance weighting approach, implemented in METAL20 or, for SKAT, using

customized R scripts. (Lumley T, Brody J, Dupuis J, Cupples LA http://

stattech.wordpress.fos.auckland.ac.nz/files/2012/11/skat-meta-paper.pdf). For the meta-

analysis of common variants we excluded SNPs observed in only one study and discarded

results with heterogeneity p-values less than 1× 10-5. As described above, meta-analysis of

unweighted regression coefficients was used to determine significance and meta-analysis of

weighted regression coefficients were used to estimate effect size for single variants.

Our primary hypotheses focused on descriptive analyses of genetic sequence variants in the

SLC17A4 and PIK3CG regions. Given the prior evidence for these two regions, we used a p-

value threshold of p<0.01 to identify common variants of potential interest. However, we

also performed exploratory analyses across the remaining 75 sequenced targets. Given the

hypothesis-free nature of these analyses, we considered only regions satisfying a more

stringent “target-wide significance” threshold (p<1×10-5 for common SNPs: 0.05/4800

common variants across the entire sequencing project; or p<0.00067, 0.05/75 targets for

burden tests).

Regulatory function of SNPs

We used HaploReg21 to evaluate regulatory function for variants identified in the study

(www.broadinstitute.org/mammals/haploreg/haploreg.php). HaploReg is a tool for exploring

annotations of the noncoding genome at variants on haplotype blocks that uses LD

information from the 1000 Genomes Project. Linked SNPs and small indels are visualized

for conservation across mammals, and their effect on regulatory motifs from the ENCODE

project, and their predicted chromatin state in nine cell types: embryonic stem cells (H1 ES);

erythrocytic leukemia cells (K562); B-lymphoblastoid cells (GM12878); hepatocellular

carcinoma cells (HepG2); umbilical vein endothelial cells (HUVEC); skeletal muscle

myoblasts (HSMM); normal lung fibroblasts (NHLF); normal epidermal keratinocytes

(NHEK); and mammary epithelial cells (HMEC).

Results

Our analysis included 3,669 participants who had carotid ultrasound measures and

successful targeted sequencing; characteristics of these participants are shown in Table 1

according to whether they were sampled into the study for extreme values of cIMT, extreme

values of another cardiovascular phenotype, or as part of the Cohort Random Sample. As
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expected, participants sampled from the cIMT extremes had greater cIMT and were more

likely to have plaque, while those sampled for other cardiovascular traits resembled the

Cohort Random Sample in terms of these subclinical atherosclerosis phenotypes.

The overall CHARGE Targeted Sequencing Study identified 52,736 variants across all

successfully sequenced participants – most were rare variants (only 4,800 had a minor allele

frequency greater than 1%). Our primary analyses focused on 3,767 variants in two genomic

regions – 6p22 (110 common, 656 rare) and 7q22 (328 common, 2,673 rare) – that had

previously associated with subclinical atherosclerosis traits. A summary of the genomic

annotation for these variants is shown in Supplementary Table 1.

Common Variants Results

Figure 1 displays the regional plots with results of the meta-analysis for common variants in

the 6p22 and 7q22 regions; Supplementary Tables 2A and 2B present the results for

individual common variants with p-values less than 0.01 for either cIMT or plaque.

Supplementary Figures 1A and B shows the Manhattan plot of all common variant

associations across the 77 target regions for cIMT and plaque, respectively.

For the 6p22 region spanning SLC17A4, the strongest finding was for a newly-discovered

intronic variant with cIMT (rs141877104, MAF=0.015, p=0.008). This variant was in low

LD (r2=0.003) with the common GWAS signal SNP, rs4712972, which was only nominally

associated with cIMT in our sequenced subsample (p=0.04). In the analysis of plaque

another intronic SLC17A4 variant (rs76788698, MAF=0.021) was modestly associated with

the presence of plaque (p=0.04) and was in low LD with rs4712972 (r2=0.1). While the

correlation-based estimates of LD for these SNPs and the GWAS signal variant were low,

there is little evidence of recombination in this region (D’>0.9, Figure 1) suggesting that the

signal GWAS SNP could be tagging underlying rarer variant associations. Although neither

of these variants were present in the Phase II HapMap CEU panel, they have been reported

in the latest version of the 1000 Genomes data.

In the chromosome 7q22 region, we observed the smallest p-value for a common variant

rs2286149 (MAF=0.12) for both cIMT (β= 0.018, p-value= 0.0003) and plaque (O.R.=1.4;

p-value=0.0003). This variant falls in the 3’ UTR of CCDC71L, upstream from the targeted

PIK3CG gene. The plaque GWAS signal variant (rs17398575) is located between these two

genes, but was not significantly associated with the presence of plaque (p=0.5) in this subset

sample of the large GWAS and is in low LD (r2 = 0.002, D’= 0.11) with rs2286149 in our

sequenced sample.

Functional follow-up of the common variants

Applying HaploReg, we evaluated regulatory function for variants shown in Supplementary

Table 2A. We found that rs2190093 affects the HP1-site-factor motif, which is necessary to

generate a liver-specific promoter, and is in perfect LD with rs2286149, itself strongly

associated with both cIMT (p=0.0007) and plaque (p=0.0004) in this sequencing study. This

common variant is located in the 3’UTR region of gene CCDC71L, upstream from the

targeted PIK3CG gene. The implicated promoter binds to a liver-specific transcription
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factor, hepatocyte nuclear factor 1 (HNF1A) which is also known as HNF1 and

HNF-1alpha. HNF1A is known to regulate the expression of several liver-specific genes.

We queried TRANSFAC (http://www.biobase-international.com/product/transcription-

factor-binding-sites), a unique knowledge-base of published data on eukaryotic transcription

factors, their experimentally-proven binding sites, and regulated genes, we found that target

genes of HNF1A include those related to coagulation, lipids, C-reactive protein,

inflammation and toxic stress (Supplementary Table 3).

Rare variants

We conducted gene-based rare variant analyses for each of the two chromosomal regions as

well as for the five sub-regions within these loci defined by the UCSC gene boundaries

(Table 2). We did not observe any statistically significant findings for association between

cIMT or plaque with any of these gene-based tests, although we noted suggestive

associations of the SLC17A3 sub-region with cIMT (MB p=0.04), the CCDC71L sub-region

with cIMT (T1 p=0.05; SKAT p=0.05) and the overall 7q22 region with plaque (T1,

p=0.05). Further, limiting the SKAT tests to a set of potentially functional variants (non-

synonymous, splice sites, or non-coding SNPs with some evidence of regulatory function

defined by RegulomeDB.org score < 6) with MAF < 0.05 did not improve the evidence for

association for these genes.

For the remaining 75 regions identified by the CHARGE Targeted Sequencing Study, no

common variants or T1 rare variant burdens showed statistically significant associations

between cIMT or plaque.

Discussion

In the meta-analysis of association between common sequence variants and subclinical

atherosclerosis traits, a variant in the 3’ UTR of CCDC71L, rs2286149, showed the smallest

p-value in both analyses of cIMT and plaque (p-value=0.0003). This variant is located

upstream of the targeted PIK3CG gene. For the 6p22 region, the strongest finding was for

anintronic SLC17A4 variant (rs141877104) with cIMT (p=0.008), which provides modest

evidence toward localizing the broad GWAS peak to one member of the three-gene cluster.

The 7q22 region targeted for sequencing in this study contains two genes, PIK3CG and

CCDC71L. In addition to the association with plaque in our previous GWAS, variants in this

region are also strongly associated with mean platelet volume 22, 23. In particular, variants in

the CCDC71L, (coiled-coil domain containing 71-like) have been previously associated with

expression of the PIK3CG gene as a platelet eQTL. 6 PIK3CG encodes one of the pi3/pi4-

kinase family of proteins, important modulators of extracellular signals, including those

elicited by E-cadherin-mediated cell-cell adhesion, which plays an important role of

endothelin in maintenance of the structural and functional integrity of epithelia. In our

sequencing study a common variant in the CCDC71L was strongly associated with both

cIMT and plaque. This variant, rs2286149, shows only modest evidence of regulatory

function as it alters the Zfp105 regulatory motifs; is in an active promoter for chromatin

states in several cell types (HMEC, Uuvec, K562, and NHLF), polycomb repression in

HepG2, and falls within a DNAseI hypersensitivity peak in hepatocytes. In the 3’UTR
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region of gene CCDC71L, another common variant, rs2190093, is in perfect LD with the top

associated SNP rs2286149 (r2=1.0), and is also found to be strongly associated with both

cIMT and plaque in this sequencing study. rs2190093 affects the binding site of a liver-

specific transcription factor, hepatocyte nuclear factor 1 (HNF1A). Reported targets of

HNF1A include CRP, APOB, APOA2 and coagulation factors including F2, F8, and β-

fibrinogen (FGB).2425. ITGA2B, platelet glycoprotein IIb, is also a target of HNF1A.

Although rs2190093 is in 3’UTR of CCDC71L, it is also located in 5’ upstream regulatory

region of PIK3CG, which harbors variants associated with both carotid phenotypes as well

as platelet number and volume 26and aggregation 27in large GWAS. These results generate

the hypothesis that PIK3CG may be an HNF1A target expressed in platelets. Rare variant

tests in the CCDC71L gene showed borderline evidence for association with cIMT and rare

variant tests across the entire 7q22 region showed borderline association with plaque.

The chromosome 6p22 region, targeted in this study on the basis of a suggestive association

of rs4712972 with common carotid IMT in our previous GWAS, includes SLC17A4,

SLC17A1, and SLC17A3; the products of these genes are involved in renal phosphate

homeostasis. Serum phosphate has been associated with subclinical atherosclerosis: 2829.

SLC17A1 is located in the proximal tubules in the kidney and is responsible for renal

excretion of Ph; SLC17A4 is located in the intestine. In addition, two GWAS have

associated this region with uric acid levels (SLC17A1 30, SLC17A3 31). The association peak

was broad in our GWAS that used imputation to the Phase II HapMap CEU reference panel,

and the strongest associations in this sequenced subset were for intronic variants in the

SLC17A4 gene that were not present in the HapMap. There is little evidence for regulatory

potential for these two variants, though one (rs112544908), which modifies a Pax-3 binding

site, was associated with cIMT (p=0.009) and modestly, with higher risk of plaque (p=0.09).

The GWAS that originally identified these loci as associated with subclinical atherosclerosis

traits included a much larger sample size and relied on imputation to the Phase II HapMap

reference panel. In the current targeted sequencing study, conducted among a subset of

participants from three cohorts that comprised the large-scale discovery effort, neither of the

prior GWAS top SNPs that identified these loci as targets was strongly associated with

either of the subclinical traits. This effort was primarily a comprehensive, descriptive

analysis targeted at better characterize variation in regions identified by GWAS; as such, we

reported results for variants with p<0.01. However, we acknowledge that few of the findings

we have described would satisfy a conservative Bonferroni correction for the total number

of tests (p=0.0001, 0.05/~450 common variants) or for one expected false positive

accounting for the correlation between the variants (p=0.007, or 1/~140 effectively

independent tests). In part, this lack of association could reflect diminished power,

particularly for the dichotomous analyses, of this smaller sample size. For instance, our

power in the targeted sequencing analysis to discover common variants was excellent (99%)

for a single SNP that explained 1% of the overall variance in the trait, but was only

moderate (69%) for a variant that explained 0.5% of the trait variance. Nevertheless, these

findings from fine-mapping may better localize associations. For instance, the original

GWAS signal for plaque fell in an apparent recombination region between PIK3CG and
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CCDC71L. The sequencing data showed no evidence for association of this GWAS variant

with plaque, instead exposing CCDC71L, as the potentially relevant locus.

In summary, sequencing of the PIK3CG and SLC17A4 regions within a limited number of

participants from three CHARGE cohorts demonstrated evidence of association between

plaque and the PIK3CG region for both common and rare variants. While not conclusive,

these findings may help to better understand the genetic architecture of two regions

previously implicated in subclinical atherosclerosis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Regional association plots for common sequence variants and subclinical atherosclerosis

phenotypes. Associations of sequenced common variants for the 6p22 (SLC17A4, a & c) and

7q22 (PIK3CG, b & d) regions and subclinical atherosclerosis phenotypes are plotted

according to their chromosomal position on the x-axis (NCBI Genome Build 37, 2009). The

y-axis provided the -log10 P value of each variant’s association with cIMT (a & b) or plaque

(b & d). Variants are colored based on the linkage disequilibrium (r2) to the most significant

SNP (red diamond) in each region. Genes are indicated by green arrows and the

recombination rate is shown with blue lines.
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