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Abstract

This paper presents a patch-based non-parametric approach to the correction of intensity

inhomogeneity from magnetic resonance (MR) images of the human brain. During image

acquisition, the inhomogeneity present in the radio-frequency coil, is usually manifested on the

reconstructed MR image as a smooth shading effect. This artifact can significantly deteriorate the

performance of any kind of image processing algorithm that uses intensities as a feature. Most of

the current inhomogeneity correction techniques use explicit smoothness assumptions on the

inhomogeneity field, which sometimes limit their performance if the actual inhomogeneity is not

smooth, a problem that becomes prevalent in high fields. The proposed patch-based

inhomogeneity correction method does not assume any parametric smoothness model, instead, it

uses patches from an atlas of an inhomogeneity-free image to do the correction. Preliminary

results show that the proposed method is comparable to N3, a current state of the art method, when

the inhomogeneity is smooth, and outperforms N3 when the inhomogeneity contains non-smooth

elements.
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1. INTRODUCTION

Several core MR image processing tasks, like segmentation and registration, are heavily

dependent on the quality of the images, because they use intensity as the principal feature.

Any distortion of the intensities of the underlying tissue classes are reflected in the

performance of the algorithm. One such distortion is the intensity inhomogeneity (IIH), also

commonly known as the “bias field” or “gain field.” This is often caused by the presence of

non-uniformity in the radio-frequency (RF) coil. IIH is typically assumed to be a smooth

shading artifact in the image, as shown in Fig. 1(a). One of the major effects of IIH can be

Send correspondence to: Jerry L. Prince, prince@jhu.edu, Telephone: +1-410-516-5192.

NIH Public Access
Author Manuscript
Proc SPIE. Author manuscript; available in PMC 2014 July 27.

Published in final edited form as:
Proc SPIE. 2011 March 11; 7962: 79621F–. doi:10.1117/12.877466.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



seen in Fig. 1(b) as a poor segmentation, while the segmentation can be improved after

inhomogeneity correction, as shown in Figs. 1(d)–(e).

The IIH for low magnetic field strengths (1T–3T) has been extensively studied and

validated.1–4 It is common practice to assume that low magnetic field IIH is a smoothly

varying non-anatomic multiplicative field. The IIH correction algorithms can be broadly

categorized into two classes, prospective methods and retrospective methods. Prospective

methods5,6 try to correct IIH using the prior informations about the acquisition parameters

and the acquisition protocols used, usually by combining multiple datasets acquired under

different acquisition parameters. These methods are often not suitable to large scale studies

where the imaging parameters are not known or multiple datasets cannot be acquired with

pre-determined parameters. Consequently, retrospective methods, which are post-processing

techniques, are of importance. They usually exploit the smoothness assumption of the

multiplicative field. Landmark based histogram normalization7,8 and entropy

minimization9–11 techniques are common ways to estimate a smooth field. Another class of

correction techniques is based on modeling the field as a linear combination of low degree

polynomials,12–14 where the coefficients of the polynomials completely determine the field.

The coefficients can be determined by the smoothness constraints,13 or a maximum

likelihood type estimation using a statistical model on the image14 or by the frequency

content of the image.12 Many of these techniques are paired with image segmentation

techniques.

Here we propose an atlas based patch matching non-parametric IIH correction technique, in

which the estimated bias field is not explicitly modeled as a linear combination of smoothly

varying polynomials. As a result, our technique is more appropriate in situations where the

actual IIH is not necessarily globally smooth or cannot be expressed as low degree

polynomials, such as cases of systematic corruption of images and MR images acquired at

higher field strengths, e.g. 7T.

2. METHOD

Consider an inhomogeneity corrupted image y. The effects of B0 and B1 inhomogeneity can

be modeled as a multiplicative field and the image model is written as,

(1)

We do not assume any global parametric model of the field g; instead an estimate of g is

obtained using an atlas. Let us define the atlas as an inhomogeneity free MR image x,

having the same contrast and resolution as y. Let the image y and the atlas x be divided into

non-overlapping 3D p × q × r patches y(j), x(k), j ∈ Ωy, k ∈ Ωx. Ωy and Ωx are the image

domain of y and x, respectively. We want to find an IIH field g for the image y using the

atlas patches with an assumption that the patches y(j) and x(k) are small enough so that g is

constant for a patch. In other words, inhomogeneity field g is locally smooth.

For computational viability, The 3D patches are rasterized into d × 1 vectors, where d = pqr.

Thus y(j) and x(k) become d × 1 vectors, ∀ j ∈ Ωy, ∀ k ∈ Ωx. Then a patch dictionary, , is
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created using the collection of all such atlas patches,  = ⋃k∈Ωx {x(k)}, each column of 

being a patch from the atlas,  ∈ ℝd×N, N = |Ωx| = the cardinality of Ωx. We assume that

both x and y are normalized images such that their WM peak intensities are unity. Now,

with a locally smooth assumption of g, Eqn. 1 is reformulated as,

(2)

Here, the field g is also assumed to be composed of patches g(j), j ∈ Ωy, and for any jth

patch, g(j) = gj is assumed to be a constant.

The idea of the atlas based patch matching method is that the normalized and

inhomogeneous image patches y(j) can be written as a linear combination of a few

homogeneous atlas patches x(k) taken from ,

(3)

where N is the size of the dictionary  and the coefficients αkj should be mostly zero and

must be estimated. This model has been proven to be very effective in interpolation and

super-resolution,17 as well as intensity mapping.18 Combining Eqn. 2 and Eqn. 3, we see

that . Here we note that the set of atlas patches x(k) being

same for all j ∈ Ωy. Then, in absence of any inhomogeneity, a good approximation of the

inhomogeneity free patch ŷ(j) is the weighted average of the atlas patches x(k) with a

normalized version αkj’s,

(4)

Using this approximation of ŷ(j), Eqn. 2 gives an estimate for the gain field as,

(5)

To solve this equation for gj, αkj’s are first obtained by solving the linear program given in

Eqn. 3 using the simplex algorithm.19 Then an estimate of gj is obtained by a least square

approximation from Eqn. 5,

(6)

The final gain field g is obtained by combining all such gj’s ∀ j ∈ Ωy.
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Typically, for a 181 × 217 × 181 Brainweb phantom,20 usually N is very large, N ≈

100,000. It is computationally expensive to solve Eqn. 3 with such a large parameter space.

So to reduce the computation burden, we randomly choose M columns from  and solve

Eqn. 3 with those M patches x(j), j = 1, …, M. For computational feasibility, we use M =

1000. The patch based field sometimes contains “blockiness” because the patches are non-

overlapping and every patch is treated independently. We overcome this problem by

smoothing it by a Gaussian kernel of standard deviation σ.

3. RESULTS

3.1 Phantom Experiment

First, we show that when the inhomogeneity is smooth, our method gives comparable results

to a current state of the art method called N3.12 We used one phantom from Brainweb,20

which is an axial 181 × 217 × 181 image having 3% noise and a smooth inhomogeneity

field, referred to as “field C” on the website. A slice is shown in Fig. 2(a) and the actual gain

field is shown in Fig. 2(b). We used another inhomogeneity free Brainweb phantom having

0% noise as the atlas. As our method is patch based and each individual patch is treated

separately, the resultant field g becomes “blocky.” g is smoothed by a Gaussian filter of size

σ to get a smoothed version of the field g(σ). An optimal σ is estimated such that the squared

difference between the true field (field C, g0) and the smoothed field g(σ) is small,

(7)

Fig. 3 shows the plot of σ in mm and squared error, and the optimal σ = 6mm. We use this σ

for all the subsequent experiments.

The estimated field from N3 is shown in Fig. 2(c) and the 6mm Gaussian smoothed version

of our field is shown in Fig. 2(d). The difference between the actual field and the estimated

fields are shown in Fig. 2(e) and Fig. 2(f) for N3 and our method, respectively. To compare

the two fields, we use the coefficient of variation, defined as , where Be and Ba

are the estimated and the applied field, respectively. C = 0.0101 for the N3 field, and C =

0.0110 for our patch based field. Both of these results are comparable to the ones reported

earlier.9

For smooth low-frequency fields, our method does not give much improvement over N3. If

the field is locally smooth but not globally, our method gives better performance over N3.

To show this improvement, we generated an artificial sinusoidal inhomogeneity field and

used it on the Brainweb subject from the previous experiment. A slice of the image and the

applied field are shown in Fig. 4(a) and Fig. 4(e). N3 fails on this image, producing a very

smooth field (Fig. 4(f)), while our method produces a better approximation (Fig. 4(g)) of the

true field. This can also be observed from the corrected images (Fig. 4(c) and Fig. 4(d)). The

coefficient of variations are 0.34 and 0.09 for N3 and our method, respectively.
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3.2 Experiment on Real Data

We tested our algorithm on two IBSR (Internet Brain Repository System) datasets (Fig. 5(a)

and Fig. 5(f)), that contains a smooth inhomogeneity as well as a sinusoid like bias. As seen

in Fig. 5(b) and Fig. 5(g), N3 does not perform well on these highly corrupted images. Our

patch-based method, having no global smoothness assumption, captures the variability of the

inhomogeneity as well as the artifact and produces visually better correction, as seen in Fig.

5(e) and Fig. 5(j).

4. DISCUSSION AND FUTURE WORK

In some cases, the gain field in MR images has structural information present. In such cases,

methods that assume smoothly varying bias fields will not perform well. Preliminary results

show that our patch-based inhomogeneity correction method is more flexible to correct

locally non-smooth inhomogeneities. Although our method currently uses a small smoothing

kernel for postprocessing, this step can, in principle, be incorporated into the algorithm

using patch-based smoothing methods. Additional next steps include evaluation of our

method on 7T MR data, which is not necessarily smooth.21
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Figure 1.
(a) A slice of an MR volume obtained from a GE 4T scanner,15 (b) segmentation of the

volume into 3 classes—cerebral-spinal fluid (CSF), gray matter (GM) and white matter

(WM)—by Fuzzy C means (FCM),16 (c) estimated gain field using a non-parametric non-

uniform intensity normalization (N3)12 method, (d) the corresponding inhomogeneity

corrected image, (e) FCM16 segmentation of the N3 corrected image. The corrected image is

a better representation of the tissues, where the intensities are more homogeneoous. This is

reflected in the segmentation improvement in (e) from the gross error in (b).
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Figure 2.
(a) A Brainweb20 phantom, 20% inhomogeneity, (b) true gain field, (c) gain field obtained

from N3, (d) smoothed gain field obtained using the patch-based algorithm, (e) difference

between true field and N3 field, (f) difference between true field and the one obtained using

our method. For smooth fields, patch based method works comparably with N3, where the

coefficient of variation (CV) between (b) and (c) is 0.0101 and CV between (b) and (d) is
0.0110. These results are comparable to ones reported earlier.9
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Figure 3.
Plot of Gaussian filter size σ (in mm) vs the squared error between smoothed field and true

field (||g0 − g(σ)||2) for a Brainweb20 phantom, having 20% inhomogeneity and 3% noise.

Optimal σ = 6mm.
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Figure 4.
(b) Original inhomogeneity free Brainweb phantom, (b) phantom with artificial

inhomogeneity, (c) N3 corrected image, (d) patch-based correction, (e) applied true gain

field, (f) N3 field, (g) smoothed patch-based field, (h) difference between applied and N3

field, (i) difference between applied and our field.
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Figure 5.
(a) Original image, (b) gain field from N3, (c) corrected image using N3, (d) patch-based

gain field, smoothed using a 5mm Gaussian kernel, (e) the corrected image using the patch-

based gain field, (f) – (j) similar images for another IBSR subject with almost sinusoidal

inhomogeneity and an intensity artifact near temporal lobe. N3 cannot recover the sinusoid

looking field as well as the artifact, while our method recovers the field to some extent.
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