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Abstract

We propose a deformable image registration algorithm that uses anisotropic smoothing for

regularization to find correspondences between images of sliding organs. In particular, we apply

the method for respiratory motion estimation in longitudinal thoracic and abdominal computed

tomography scans. The algorithm uses locally adaptive diffusion tensors to determine the direction

and magnitude with which to smooth the components of the displacement field that are normal and

tangential to an expected sliding boundary. Validation was performed using synthetic, phantom,

and 14 clinical datasets, including the publicly available DIR-Lab dataset. We show that motion

discontinuities caused by sliding can be effectively recovered, unlike conventional regularizations

that enforce globally smooth motion. In the clinical datasets, target registration error showed

improved accuracy for lung landmarks compared to the diffusive regularization. We also present a

generalization of our algorithm to other sliding geometries, including sliding tubes (e.g., needles

sliding through tissue, or contrast agent flowing through a vessel). Potential clinical applications

of this method include longitudinal change detection and radiotherapy for lung or abdominal

tumours, especially those near the chest or abdominal wall.

Keywords
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I. Introduction

THE GOAL of deformable image registration [1] is to establish correspondence, i.e., to find

the spatial mapping from anatomical locations in one image to their matching coordinates in

the other image. Accurate correspondence detection is relied upon for nearly every clinical
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application of image registration. These include: 1) change detection in longitudinal patient

datasets, to quantify disease progression or treatment effectiveness [2]; 2) image-based

mapping of preoperative surgical plans onto the intraoperative patient in image-guided

surgery and radiotherapy [3]; and 3) transfer of population atlas information such as

expected functional site locations onto patient images [4]. In this paper, we focus on

estimating respiratory motion between computed tomography (CT) images of the lungs and

abdomen acquired at inhale and exhale, which is important for building respiratory motion

models [5] and for eliminating the confounding effects of respiratory motion when

accomplishing the three tasks listed above.

Medical images often contain large regions of nearly homogeneous intensity. In noncontrast

CT, these include large organs such as the liver, and lung patches between visible vessels

and airways (which are often 1–2 cm apart). In these regions, local deformations are

unobservable, and correspondence detection is difficult because of the aperture problem [6].

Since deformable image registration based on image match alone is ill-posed, a

regularization term is added to the registration cost function to encourage plausible

displacement fields based on some prior knowledge [7]. Therefore, the resulting

transformation is a compromise between image similarity and spatial regularity, the

regularization completely dictates motion estimation within homogeneous regions, and the

regularization forms a very strong prior on the final mapping.

Conventional regularizers enforce smooth transformations, and therefore are inaccurate near

the discontinuous motion that occurs when multiple organs move independently. In

particular, during respiration both the lungs and abdominal organs exhibit discontinuous

sliding motion, which is facilitated by serous fluid-filled spaces between their enclosing

membranes. In the lungs, sliding occurs between the visceral and parietal pleural membranes

that form the pleural sacs surrounding each lung [8]–[10]. In the abdomen, a prominent

sliding interface is at the peritoneal cavity between the abdominal cavity and the abdominal

wall [11]. Globally smoothing regularizations will underestimate motion near such sliding

boundaries by averaging discontinuous motions, and/or incorrectly smooth motion onto

static structures. In general, without introducing additional degrees of freedom at sliding

borders, unnecessary compromises in image match will be made for the sake of a motion

regularity that does not exist.

The problem of recovering sliding motion using deformable registration, and of handling

motion discontinuities in general, is receiving increasing attention in medical image

analysis. The first approaches involved segmenting the images into regions that move

together, registering each independently, and compositing the results [12]–[14]. Wu et al.

[14] used masks to force the region boundaries to match when merging the resulting

displacement fields. Risholm et al. [15] allowed the deformation field to “tear” during the

registration iterations in regions of high strain, to register preoperative and intraoperative

MR images in neurosurgical cases involving retraction. Sparse free-form deformations [16]

or nonquadratic norms for the regularization penalty [17], [18] also allow motion

discontinuities to develop. Kiriyanthan et al. [19], [20] used joint motion segmentation and

registration, related to the Mumford–Shaw functional, to find foreground and background

regions which are regularized separately. Freiman et al. [21] also investigated automatic
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identification of deformation field discontinuities, by evaluating gradients within local affine

transformations that had been fit to neighborhoods in the dense deformation field.

Locally adaptive regularization has proven useful for sliding organ registration. Locally

adaptive regularization varies across the image domain, and can therefore formulate

complex deformation models (e.g., [22]–[25]). Locally adaptive regularization has been

used to model spatially varying tissue elasticity or stiffness [26], [27], enforce rigid motion

of rigid structures like bones [28], and apply volume preserving constraints to tumours to aid

longitudinal change detection [29]. Examples in sliding organ registration include work by

Yin et al. [30], who used inhomogeneous, but still isotropic, diffusive regularization to

handle motion discontinuities at lung lobar fissures, and Ruan et al. [31], who developed a

regularization allowing the shear discontinuities caused by sliding while preventing local

volume changes.

The notion of direction-dependent, locally adaptive regularization for sliding motion was

first introduced by Schmidt-Richberg et al. in [32]–[34]. Here, organs are not treated as

completely independent structures. Instead, this approach allows sliding discontinuities

while maintaining the coupling between them (along the direction normal to the sliding

interface), and of course encouraging smooth motion within individual organs. Originally

formulated for dense deformation fields, the general strategy has been applied to B-spline

[35] and thin-plate spline [36] transformation models, and used primarily to register CT

images of the lungs. Risser et al. [37] presented piecewise diffeomorphic sliding organ

registration within the Large Deformation Diffeomorphic Metric Mapping (LDDMM)

framework, and also added direction-dependent sliding to the LogDemons algorithm. A

prior segmentation of the sliding boundaries is required for the majority of the above

methods, for which interactive tools [38] and fully-automatic methods (e.g., a workflow of

standard image processing methods followed by level set segmentation [39]) have been very

recently presented.

In this paper, we develop a locally adaptive regularization method for deformable image

registration of sliding organs that is based on anisotropic diffusion smoothing. The work by

Schmidt-Richberg et al. [32], [33] served as a starting point. Given a border where sliding is

expected to occur, they propose to regularize the motion by explicitly defining separate

foreground and background regularization domains, relying on this partitioning to ensure

that tangential displacement components are not smoothed across the boundary. In contrast,

our regularization is defined over the entire image domain, and achieves sliding by

appropriate local weighting and direction-dependent anisotropic diffusion smoothing. This

has many advantages. It simplifies gradient computations and implementation, especially

when there are many sliding organs (and hence many potential separate domains). It allows

open surfaces to be defined for the sliding boundary, allowing for an organ to have both

adhesions and free sliding patches, more simply without the need to define boundary

conditions for each edge voxel. Furthermore, our approach is more general, and permits the

specification of alternative diffusion tensors, allowing, for example, the formulation of a

sliding registration for tubular objects such as needles and catheters (as we describe in

Appendix A).
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We use the registration algorithm to accomplish respiratory motion estimation in

longitudinal thoracic and abdominal CT datasets. This paper extends our previous work

[40], [41] by providing a detailed description of the registration algorithm and

implementation, a more effective optimization scheme, and more comprehensive evaluation

with improved results.

A major challenge when comparing deformable image registration methods is that image

similarity is a necessary, but not sufficient, condition for registration accuracy [42]. In

particular, performance evaluation must include areas where correspondences are uncertain,

i.e., homogeneous regions. These are often the most critical regions that motivate

registration and data fusion in the first place. However, image match metrics do not measure

the quality of the mapping in these areas (hence the original need for regularization), and

evaluation of the estimated motion field itself must be used to compare algorithm

performance.

The remainder of the paper is organized as follows. Section II describes the principles of

sliding motion that underlie our registration algorithm, the novel sliding organ regularization

formulation, and the numerical optimization and implementation. In Section III, the method

is applied to synthetic, phantom and patient image datasets for validation. Finally, Section

IV ends with a discussion of the results and our conclusions.

II. Methods

A. Deformable Nonparametric Image Registration

Let  and  be the target and moving images to be registered,

respectively, on the domains  and . The aim of deformable nonparametric

image registration is to find a displacement field  that warps the moving image

to align it with the target image [7]. In this paper, we focus on monomodal images, and so

after registration the intensities within the target and transformed moving images should

ideally match. In Euler coordinates, this is expressed for each coordinate x ∈ ΩT as

(1)

Deformable image registration can be solved by minimizing a cost function, C(u), composed

of an intensity (dis)similarity distance measure D(T, M, u) and a regularization S(u), whose

relative importance is defined by a parameter α

(2)

D(T, M, u) is an image match term that quantifies the intensity differences between the

target image and the transformed moving image. For monomodal image registration, the

sum of squared differences (SSD) distance measure is appropriate

(3)
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The regularization S(u) penalizes displacement fields deemed to be unrealistic, and is

formulated based on domain knowledge. For example, the diffusive regularization favours

smooth transformations by penalizing any gradients in the x,y or z components of the

displacement field, and is related to linear, isotropic diffusion, i.e., Gaussian smoothing

(4)

where ▽ul(x) is the gradient of the lth scalar component of the displacement field evaluated

at x.

B. Sliding Geometries

A regularization for deformable registration of images depicting sliding organs should allow

sliding motion discontinuities at expected sliding interfaces, while enforcing smooth motion

within individual structures.

Several principles of sliding motion can be uncovered after decomposing the displacement

field u into components that are normal (u⊥) and tangential (u∥) to the sliding boundary

surface [32], [33]. These principles are visualized in Fig. 1.

1) Sliding motion [Fig. 1(a)]: Sliding motion causes discontinuities in tangential

displacements along the normal direction. Such discontinuities should not be penalized

close to organ boundaries, but they should be penalized within organs to enforce smooth

motion of the entire organ.

2) Intra-organ smoothing (IOS) [Fig. 1(b) and (c)]: Individual organs should deform

smoothly, and so both the normal and tangential components of the displacement field

(i.e., the displacement vectors themselves) should be smooth in the tangential plane.

3) Inter-organ coupling (IOC) [Fig. 1(d)]: We ensure that organs do not pull apart (a

valid assumption for most medical images) and prevent tearing/folding in the

displacement field by penalizing discontinuities in the normal displacements along the

normal direction.

In summary, we require the equivalent of a globally smoothing regularization (e.g., the

diffusive regularization), except that discontinuities from sliding motion are not penalized

near organ boundaries. Also, note that registering each region separately using a mask, e.g.,

[12]–[14], is not guaranteed to satisfy the normal component smoothness required by the

inter-organ coupling constraint.

C. Sliding Organ Deformable Image Registration

The following describes our “sliding organ” (SO) locally adaptive regularization based on

inhomogeneous anisotropic diffusion.

1) Anisotropic Diffusion Smoothing—Inhomogeneous anisotropic diffusion

implements smoothing with directionality and magnitude dictated by spatially varying

diffusion tensors . Smoothing is modeled as the diffusion of particles with
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concentration  against their concentration gradient ▽c(x). The flux 

(i.e., flow per unit area per unit time) is defined by j(x) = –D(x)▽c(x). j(x) and ▽c(x) are not

parallel in general, because an anisotropic diffusion tensor D(x) will further direct the flow

along certain preferred directions. The particle concentration evolves over time  to

reach equilibrium according to

(5)

where div is the divergence operator. Additional details and derivations for anisotropic

diffusion can be found in [43].

When the diffusion tensor equals the identity matrix, Gaussian smoothing results. From

linear algebra, the matrix

(6)

is the orthogonal projector onto a given unit normal vector , and the matrix

(7)

is the complementary orthogonal projector, which projects onto the plane normal to n(x)

(where I is the 3 × 3 identity matrix). Therefore, DN_SO(x) allows diffusion (i.e., smooths)

only in the normal direction, and I – DN_SO(x) smooths in the tangential plane. Here,

“smooths in the tangential plane” is more accurate than “smooths in the tangential

direction,” because for a 3-D image I – DN_SO is a projection onto a 2-D plane, not a 1-D

line.

2) Sliding Organ Regularization—We use two locally adaptive diffusion tensors

 and  to formulate the ideas described in Section II-B. In

the following sliding organ regularization definition, the first term will penalize gradients in

u(x) that violate the intra-organ smoothness constraint, and the second term will penalize

gradients in the normal components of u(x) that violate the inter-organ coupling constraint

(8)

Near previously-specified sliding boundaries, sliding motion discontinuities will not invoke

a cost, and thus are allowed to develop as the registration progresses.

Let  be the sliding boundary surface normals based on a prior segmentation.

Close to sliding boundaries, we define the diffusion tensor DIOS(x) to smooth all gradients

of u(x) in the tangential plane [Fig. 1(b) and (c)], and the diffusion tensor DIOC(x) to smooth

all gradients in the normal displacements u⊥(x) along the normal direction [Fig. 1(d)]. Note

that the diffusion tensors dictate the smoothing direction, while the gradients ▽ul(x) and

 are the components of the displacement field that are being smoothed. We use
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▽ul(x) in the intra-organ smoothing constraint because we want to penalize gradients in both

the normal (u⊥) and tangential (u∥) components if they occur in the tangential plane. We use

 in the inter-organ coupling constraint because we do not want to penalize gradients

in u∥ that occur along the normal direction, since that is sliding motion.

Recalling (6) and (7), we set

(9)

(10)

The locally adaptive parameter  weights the degree to which sliding is allowed at

a particular voxel. It enables a transition from allowing sliding near organ boundaries to

using the diffusive regularization within organs. We set w(x) to decay exponentially as a

function of the distance d(x) from x to the sliding boundary

(11)

where λ is a small constant user-defined parameter.

Near the sliding surface, w(x) ≈ 1 and motion discontinuities related to sliding motion are

allowed, while enforcing the intra-organ smoothing and inter-organ coupling constraints.

Within organs, w(x) ≈ 0, so DIOS(x) ≈ I DIOC(x) ≈ 0, and (8) collapses to the diffusive

regularization defined in (4). The requirement for smooth transformations within individual

organs is therefore maintained. Also, the ambiguous choice of n(x) at interior voxels, where

w(x) ≈ 0, becomes unimportant. Since the displacement field is defined on the space of the

target image, so are the sliding boundaries and the boundary normals. Therefore, n(x), w(x),

DIOS(x) and DIOC(x) are all constant throughout the registration optimization, and can be

precomputed only once. This is true even if the organ surface deforms between the two

images to be registered.

Finally, u⊥(x) is the component of u(x) that is parallel to the surface normal, and  is

its displacement along the lth axis.  is therefore the projection of u(x) onto the lth

scalar component of n(x)

(12)

Throughout, we assume that the sliding boundary surface is smooth, and can be locally

approximated by a plane. However, our formulation is general and (8) through (10) can be

extended to consider sliding tubular geometries, as described in Appendix A. Additional

subtle differences in the formulation compared to Schmidt–Richberg et al. [32], [33] are

described in Appendix B.
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D. Numerical Solution

1) Euler–Lagrange Equations—The following Euler–Lagrange equation will hold for

the displacement field u that minimizes C(u) [defined in (2)] for all x ∈ ΩT

(13)

The gradient of the SSD intensity distance metric (3) at voxel x with respect to an

infinitesimal perturbation in u is

(14)

The gradient of the sliding organ regularization term at voxel x with respect to u is derived

in Appendix C, and equals

(15)

(16)

(17)

with el the lth canonical unit vector (e.g., ex = [1, 0, 0]T).

2) Optimization—Equation (13) is solved using an explicit finite difference scheme, and

iteratively optimized using gradient descent with a line search method [44]. Let tk be the

time step and uk the displacement field at iteration k. Using a forward difference in time and

the initial conditions u0(x) = [0, 0, 0]T

(18)

On each iteration, ▽uC(uk–1, x) is computed using (13)–(17). First- and second-order central

differences in space are used to calculate discrete gradient and divergence operations in a 3

× 3 × 3 neighborhood around each voxel. ▽uDSSD(T, M, u, x) is calculated by deforming the

moving image using linear interpolation. To determine the time step tk in the line search, we

found that for a precomputed descent direction ▽uC(uk–1, x), the plot of C(uk) with respect

to tk is well approximated by a concave-up quadratic. We, therefore, perform the 1-D line

search using second-order polynomial interpolation, based on function values at three

sample points, and choose tk at the vertex. If the polynomial interpolation does not give

satisfactory results [e.g., tk outside specified minimum/maximum bounds, or leads to an

increase in C(uk)], we use golden section search to find tk optimizing C(uk). This setup gives

good results while keeping evaluations of C(u) to a minimum, which are relatively

expensive.
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Registration is performed in a multiresolution framework, with resampling by a factor of

two between each level. Before registration, image intensities are rescaled to [0, 1]. The

stopping criterion at each level is determined by the convergence of C(u), by defining a

minimum slope in C(u) versus t below which the registration is halted and a large number of

maximum iterations. The values for α (weighting between the intensity distance measure

and the regularization) and λ [the exponential decay constant used to compute w(x)] were

determined empirically for each of the validation studies described below. To prioritize

image match, for all experiments α was chosen to be roughly the smallest possible value that

did not cause tearing or folding.

E. Implementation

The sliding organ registration algorithm is freely distributed as open-source software within

the TubeTK Toolkit (www.tubetk.org). The algorithm is implemented in C++ as an Insight

Toolkit (ITK) [45] deformable image registration filter, and uses multithreading to speed

computations. The registration tool can be used either via the command line, or using a

graphical user interface within 3D Slicer (www.slicer.org), an open-source software

application for medical image computing and visualization [46].

F. Segmentation of Sliding Boundaries

We segment the target image to define the sliding boundary surface(s), which is required to

compute the images n(x) and w(x) (Fig. 2). Image segmentation is described separately for

each validation study presented in Section III. A surface model is constructed using the

Marching Cubes [47] implementation provided by 3D Slicer, and is stored as Visualization

Toolkit (VTK) polydata [48]. We found that some surface model smoothing and decimation

was beneficial, to remove any sharp corners caused by noise in the label map and reduce the

computation time, respectively. The model may represent more than one organ. The normal

vector n(x) is set to that of the nearest vertex on the surface model. At each voxel, the

minimum distance d(x) to the polygonal mesh triangles is calculated. Especially when

several multiresolution levels are used in the registration, it is useful to add the stipulation

that any voxels that intersect the surface model have d(x). These distances are used to

calculate the weight image w(x) using (11).

III. Validation

Several datasets were used to validate the accuracy of the sliding organ registration method,

and to compare its results to those from registration with the diffusive regularization, a

globally smoothing regularizer [(4)].

1) A synthetic dataset of sliding geometrical shapes, which demonstrates better

recovery of known applied displacements.

2) Simulated full-inhale/systole and full-exhale/diastole chest CT images created using

the XCAT software phantom. This characterized the different displacement fields from

the two regularizations in anatomically realistic images with especially large

homogeneous regions, in which case the regularizer is especially influential.
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3) Ten inhale and exhale thoracic CT image pairs, from the DIR-Lab open dataset [49],

plus four inhale and exhale abdomial CT image pairs from Children’s National Medical

Center/Stanford. We demonstate reduced target registration error (TRE) in the thoracic

images and in the lungs of the abdominal images, and recovery of sliding motion in

both.

We use landmarks to evaluate TRE wherever possible. Some abdominal organs, e.g., the

liver, lack internal structure that is visible on CT that can be used to evaluate accuracy. In

these cases, we also report Dice coefficients for the segmented organ, augmented with

surface-to-surface distance measures to add another physically meaningful metric in

millimeters. Finally, we examine the displacement field itself for the plausibility of the

resulting correspondences.

Note that experiments (1) and (2) are extensions of our previous work [40], showing

improved results with updated software and optimization process.

A. Synthetic Dataset

1) Registration Task—The sliding organ registration method was first evaluated using 3-

D images of simple geometrical objects, which slide against each other and against their

background. The two images to be registered [Fig. 1(a)–(c)] each contain two blocks

suspended within a dark background. From left to right, each block has uniform intensity,

followed by a ramp of increasing intensity, followed again by a uniform (higher) intensity.

To mimic sliding motion in the moving image, the intensity ramp section in the upper block

was translated four voxels to the right, and the intensity ramp section in the lower block was

translated four voxels to the left. Fig. 3(c) shows a volume rendering of the target image

with superimposed annotations of the applied motion. Each image has dimensions 80 × 80 ×

80 with isotropic 1 mm3 spacing.

For this demonstration, we used SSD with normalized gradients1. This version gives a unit

update vector ▽uDSSD(T, M, u, x) for all voxels with an intensity mismatch between the two

images. The target and moving images were registered with one resolution level, using λ =

0.1 and α = 3, with uniform time step tk = 0.03 for 1000 iterations. Segmentation of the

sliding boundaries is given by construction in this synthetic example.

2) Image Match and Displacement Fields—This example illustrates how using a

globally smoothing regularization produces incorrect motion estimates when sliding motion

is present, which can lead to a reduced image match after registration.

Fig. 3(d) shows a slice through the displacement field after registration with the diffusive

regularization. It is clear that the estimated displacements do not match the applied

translations, both at the interface between the two sliding boxes and in the dark background

regions, which should be stationary. In contrast, the sliding organ registration [Fig. 3(e)]

effectively isolates the motion within the translated blocks and preserves the motion

discontinuities at the object interfaces.

1itk::PDEDeformableRegistrationFunction:: SetNormalizeGradient(true)
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Table I summarizes the displacement error magnitudes ∥uapplied(x) – u(x)∥ evaluated within

the translated intensity ramp sections of the two blocks. The sliding organ registration more

accurately estimates the known applied motion. Table I also shows that the diffusive

regularization leads to a worse SSD by forcing smooth motion, while image match is better

using the sliding organ registration.

B. XCAT Software Phantom Dataset

1) Registration Task—The second evaluation involved registering simulated chest CT

images of the lungs, heart and superior liver generated using the 4-D extended cardio-torso

(XCAT) software phantom [50]. The XCAT images are anatomically realistic but have a

very simplified intensity profile, with only a few gray levels (Fig. 4). Thus, the large

homogeneous regions present a challenging case with which to compare regularization

strategies. In this way, we can evaluate how different regularizations would do “on their

own” without a dense field of forces from the image match term.

The XCAT phantom models human anatomy using images from the Visible Human Project,

and creates images corresponding to user-defined respiratory rate, heart rate, and other

parameters by applying motion models to organ surfaces represented by nonuniform rational

B-splines (NURBS). Note that although the phantom can output the displacement field

generated by the motion models, these have undergone significant smoothing [50]. This

does not impact the realism of the organ shapes in the output images, but does preclude us

from using the output displacement fields as a gold standard when characterizing

discontinuous motion estimation.

The XCAT phantom was used to generate a target image at full inhale and systole, and a

moving image at full exhale and diastole. Parameters corresponding to a typical healthy

person were used (respiratory period 5 s, cardiac cycle 1 s), and the resulting six gray levels

were adjusted to match those of a typical CT scan. The motion to be estimated includes the

chest and lung expansion, the liver’s downward motion, the heart’s contraction, and the

heart’s anterior and inferior motion.

The parameters used for registration were λ = 0.1 and α = 0.05, using two resolution levels

and the line search strategy and stopping criteria described in Section II-D. Each image has

dimensions 80 × 75 × 74 with isotropic 3.125 mm spacing. The sliding boundary was

defined by segmenting the lungs, and thus incorporated both the lung/chest wall interface

and the lung/liver interface (diaphragm). Segmentation involved thresholding, manual

removal of the smaller bronchi, label map smoothing, surface model generation using

Marching Cubes, and surface smoothing and decimation.

2) Image Match—Image registration results are shown in Fig. 4. In Table II, we report

Dice coefficients and surface to surface distances calculated before and after registration. To

calculate these, the lungs, liver and bones (ribs and spine) can be easily segmented in the

original and transformed moving images via thresholding. For each pair of segmentations to

be compared, the Dice coefficient is
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(19)

The distances between organ surfaces were computed on generated surface models of the

lungs, liver, and bones. The lower diaphragm surface and points within 1 cm of the lower

boundary were eliminated from the lung surfaces, as this is replicated on the liver surface.

The unsigned minimum surface vertex distances were computed using MeshValmet

(www.nitrc.org/projects/meshvalmet), combining both the forward and backward distances.

As shown in Table II and Fig. 4, the sliding organ registration could achieve better SSD

image match after registration than the diffusive registration, and the Dice and surface

distance metrics show that it was also much better at registering the spine. This is a good

illustration of how modeling sliding in the motion prior can improve global registration

results, allowing to simultaneously align multiple independent objects. In contrast, the

diffusive registration actually reduces the bone Dice score compared to the value before

registration. However, the diffusive registration does give a better alignment at the lung-

liver interface. Including sliding at the boundary between the liver and the spine would

completely decouple their inferior-superior (I-S) motion, and may remove any associated

inhibition of the liver’s upward motion.

3) Displacement Fields—Fig. 5 illustrates the sliding motion recovered at the lung

boundaries, both at the lateral sides and near the spine/mediastinum. This is compared to the

smooth motion estimated by the diffusive regularization, which overestimates motion in the

chest wall and spine. There is a significant difference in the estimated displacement fields

∥udiffusive(x) – usliding(x)∥ has mean 3.89 mm and standard deviation 3.07 mm. Difference

vector magnitudes in the lungs are relatively small; instead, the biggest differences are in the

spine, with magnitudes up to 2 cm inferiorly. There are also differences in the displacements

measuring up to 1 cm in the chest wall, heart and liver. We note that in this example, the

sliding organ regularization estimates less liver motion than the diffusive regularization,

which gives smoother motion.

C. Patient CT Image Pairs

1) Registration Task—We evaluated the sliding organ registration using fourteen paired

inhale-exhale CT images from freely available datasets. This included ten thoracic CT

patient images from the DIR-Lab dataset [49], plus four abdominal CT images hosted on

ITK’s medical development database2 provided by researchers at Children’s National

Medical Center and Stanford. Of the abdominal cases, Patient 3 showed substantial gating

artifacts and was excluded from the study. In all cases, we selected the end-inhale image

(0%) as the target image and the end-exhale image (50%) as the moving image.

The DIR-Lab images are cropped on the lungs, and show clear sliding motion at the chest

wall interface. The four abdominal images depict the abdominal organs (liver, colon,

intestines, etc.), the heart, and either the whole lungs or their lower half. The abdominal

2Community “4D CT—Liver—with segmentations” http://midas.kitware.com/community/view/47

Pace et al. Page 12

IEEE Trans Med Imaging. Author manuscript; available in PMC 2014 July 28.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://www.nitrc.org/projects/meshvalmet
http://midas.kitware.com/community/view/47


images show sliding between the abdominal wall and the abdominal organs (including the

liver) in addition to the sliding at the lung boundary.

The lungs were segmented in all 14 images using 3D Slicer’s thresholding, island removal,

label map smoothing, morphological and manual editing operators. The abdominal dataset

includes expert manual segmentations of the liver. Before registration, the images were

cropped, thresholded and intensity normalized. The abdominal images were linearly

resampled to isotropic 2 mm3 spacing. The DIR-Lab images were registered at their original

resolution, approximately 1 × 1 × 2.5 mm. The registration parameters were λ = 0.1, α =

0.02 (DIR-Lab) and λ = 0.2, α = 0.02 (abdominal), with three resolution levels, a line search

to find the time step for each iteration, and stopping criterion based on convergence

evaluated within body voxels only.

2) Image Match—Image match was evaluated using TRE. Each DIR-Lab dataset has 300

landmarks for registration accuracy evaluation. For the abdominal datasets, we computed

TRE using approximately 75 manually identified landmarks: ≈55 on vessel/airway

bifurcations in the lungs, and ≈20 on uniquely identifiable points inside the abdomen or

heart. For the abdominal datasets, we also report Dice coefficients and surface to surface

distances for the segmented liver. Features (landmarks or segmentations) were identified in

both the target and moving images, and the moving image features were warped by the

registration displacement field for subsequent comparison.

The DIR-Lab results are shown in Table III, and the abdominal CT results are shown in

Tables IV and V. In all cases, both the diffusive and sliding registrations gave a statistically

significant improvement in TRE compared to the values before registration (p = 0.05). The

sliding organ regularization showed improved accuracy for lung registration in both

datasets. For the DIR-Lab data, the average TRE was reduced from 3.71 ± 4.11 mm

(diffusive) to 2.78 ± 2.96 mm (sliding). For reference, the results reported by Schmidt–

Richberg et al. [33] were 3.02 ± 2.79 mm for the diffusive regularization and 2.13 ± 1.81

mm for their sliding implementation. The differences between these results are likely due to

parameter selection and optimization strategy, especially for the diffusive registration as the

same energy was implemented. In the abdominal CT dataset, the average TRE in the lungs

was reduced from 2.39 ± 1.77 mm (diffusive) to 2.15 ± 1.42 mm (sliding). However, in the

abdominal dataset there was some compromise in alignment of the abdominal landmarks.

The TRE for the diffusive registration was 2.30 ± 1.45 mm, versus 2.53 ± 1.62 mm for the

sliding registration. The Dice scores and surface distances for global liver alignment show a

very slight improvement for the diffusive regularization: approximately 0.003 in Dice and

<0.1 mm for surface distance. From these results, we conclude that the sliding organ

registration is superior for lung registration, but that the application for abdominal

registration is less certain.

3) Displacement Fields—Example displacement field patches from the thoracic and

abdominal registrations are shown in Figs. 6 and 7, respectively. The sliding organ

registration effectively recovered sliding motion, giving more plausible displacement fields

and correspondences, in the left and right lung surfaces near the chest wall, the posterior

lung, and near the liver interface with the abdominal wall.
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In the lungs, the diffusive regularization underestimates motion near the lung surface, where

the “zero” motion in the background is blurred into the body (Figs. 6 and 7). This band of

reduced motion was approximately 1.5–5.0 cm deep in the DIR-Lab datasets, and 1.5–3.0

cm deep in the abdominal datasets. The difference vector magnitudes ∥udiffusive(x) –

usliding(x)∥ in this region were large: 5–10 mm in the thoracic cases, and 2–6 mm in the

abdominal cases. Modeling sliding also removed the false motion that the diffusive

regularization estimates in the chest/abdominal wall, compared to the true motion indicated

by the ribs. Fig. 7 shows that this type of error was the primary difference near the liver,

explaining why the sliding registration did not yield an improvement in accuracy inside the

abdomen. Decomposing the displacement fields into left–right, anterior–posterior, and

inferior–superior motion (well approximated by the x,y and z components) reveals that in all

cases, the motion differences between the two regularizations are almost entirely in the I-S

direction, which is the direction in which sliding occurs.

IV. Discussion and Conclusion

We have presented a locally adaptive regularization based on anisotropic diffusion that is

designed for registering images of sliding organs. We have shown improved registration

accuracy for lung registration in longitudinal thoracic and abdominal CT datasets. The

proposed method also gives more realistic displacement fields than a globally smoothing

regularization, given that respiration-induced sliding motion is known to occur within the

chest and abdomen. This is important for accurate correspondence detection in regions

thatlack distinguishing image features. Hence, the sliding organ registration should be useful

for tasks such as longitudinal change detection of juxtapleural lung nodules, orradiotherapy

for tumours located near a sliding interface.

Key advantages of our formulation are its generality and extensibility. As noted in Appendix

C, there is an inherent assumption of a smooth sliding surface boundary so that the gradient

can be computed. However, there are cases where organs have relatively sharp edges and the

surface smoothness assumption is challenged. Examples include the shape of the lungs near

the diaphragm, and the shapes of individual lung lobes (some additional areas where both

the lung and liver surfaces have relatively sharp edges can also be seen in Fig. 2). The

sliding organ regularization presented in Section II is not designed to directly handle this

issue. However, in Appendix A we describe a “geometry conditional” extension that also

models sliding of tubular structures, such as needles, catheters and contrast agent flowing

through vessels. Although it is not the focus of this paper, the geometry conditional

formulation could be extended in future to address the problem of surfaces that are not

locally smooth. Specifically, one could modify the tube formulation to specify multiple

normals locally at surface edges and corners, with one normal for each of the coincident

planes. This would introduce additional degrees of freedom to allow sliding to occur along

all of the planes simultaneously, which would address the problem of sharp surface edges.

Registering the clinical CT scans takes several hours. The proposed registration method uses

two parameters, α and λ, the first of which is present in all registration methods involving

regularization. We found that λ can be tuned fairly easily by picking an exponential decay

factor that remains large within 1–2 voxel widths and subsequently decays. However, the
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method is sensitive to the accuracy of the prior segmentation, since this completely defines

the borders along which motion discontinuities are allowed to develop.

An acknowledged limitation of this study is that we modeled sliding around the lungs and

liver, but not along the entire abdominal wall. In actuality, the abdominal organs are

enclosed in the peritoneal sac, and slide against the abdominal wall as a group. We suspect

that enclosing all of the abdominal organs within one sliding surface at the abdominal wall

would be a better model of how these organs slide, compared to segmenting the liver alone.

Methods for abdominal wall segmentation have been very recently presented [38], [39], and

should be taken advantage of in future to further improve the results in the abdomen.
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Appendix A: Generalization to All Sliding Geometries

In Section II, we assumed that the surface along which sliding occurs is locally planar, i.e.,

smooth. However, the sliding organ regularization can be extended to handle sliding

structures that have tubular geometries [41]. An example of a sliding tube is a needle sliding

through tissue, or contrast agent flowing through a vessel.

We will use local structure classifications to form a “geometry conditional” sliding

regularization. Image neighborhoods can be classified into four types: those representing

homogeneous regions, roughly planar surfaces, tubes, and small point-like (spherical)

structures. With respect to sliding motion:

1) Homogeneous regions do not contain a sliding boundary, and should undergo

globally smoothing regularization.

2) As described above, for locally planar surfaces we allow sliding motion by not

penalizing discontinuities in the tangential displacement components that occur along

the plane’s normal direction.

3) For tubes, the tangential direction is along the tube’s axis, and there are two normal

vectors. These lie in the tube’s cross-sectional plane, and can be any pair of orthogonal

unit vectors that are perpendicular to the centerline. Then, tube sliding also manifests as

discontinuities in the tangential displacements that occur in the normal plane. Allowing

such discontinuities means that the tube can slide along its axis without influencing its

surrounding structures.
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4) Extending the above, point-like structures can be thought of as having three

orthogonal normals. Spheres do not slide, and so they should also undergo a globally

smoothing regularization.

A regularization implementing the rules for all four geometry types can be defined as

follows. We begin with a segmentation of the expected sliding surfaces, sliding tubes, and

any point-like structures (landmarks). In practice, this classification can come from

combining the results of several segmentation algorithms, e.g., a multi-organ segmentation

algorithm to define the locally planar surfaces, and a segmenter such as [51] to define

tubular structures.

We add the geometry conditional variables a1, a2 : ΩT → {0, 1}. For planes, a1(x) = a2(x) =

0, for tubes a1(x) = 1 and a2(x) = 0, and for points a1(x) = a2(x) = 1. Up to three unit

normals, n0(x), n1(x), and n2(x), are included at each coordinate, and are computed

according to the given structure segmentations. Again, w(x) is defined based on the distance

to the closest segmented geometry. Define  as a diagonal matrix with

diagonal elements (1, a1(x), a2(x)). Define  as a matrix whose columns are

given by n0(x), n1(x) and n2(x).

Then, the lth scalar component of the normal displacement is given by

(20)

and the diffusion tensor that smooths in the normal direction(s) is

(21)

Equations (8)–(10) can now be used to define the sliding regularization as before. The

gradient in (15) and (16) is also the same, with the one exception being that (17) is

substituted by rl(x) = N(x)A(x)Nl(x).

Appendix B: Comparison to Schmidt–Richberg et al. When w(x) = 1

For the sake of completeness, note that there are subtle differences between our formulation

and that of [32], [33] in how motion is smoothed on the sliding boundary itself. Both

methods use a function  such that w(x) = 1 at the object boundary and w(x) = 0

inside the organ. In the limit case w(x) = 1, the tangential component is not smoothed across

the boundary, but it should be smoothed in the tangential plane. When w(x) = 1 (and

dropping the (x) notation for conciseness), the regularizer of Schmidt–Richberg et al. takes

the form

(21)

where ΩT denotes the full target image domain, Γ denotes the domain of the object, Γ ⊂ ΩT,

and ΩT \ Γ is the set difference. This can be rewritten as
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(23)

where ∂ΩT is the boundary between the background and the object, and ΩT \ ∂ΩT is the full

domain minus the boundary. When w(x) = 1, our proposed regularization is

(24)

Therefore, regularizer (22)/(23) penalizes only the gradient of the normal displacement

component  on the boundary. In contrast, regularizer (24) also smoothes the

tangential components  in the tangential plane, as desired.

Appendix C: Derivation of the Gradient of the Sliding Organ Regularization

The derivation of (15)–(17) is as follows. It includes taking the gradient of terms that

include the surface normals, so there is an inherent assumption that these terms are

sufficiently smooth so that one can differentiate. Relatively smooth surfaces are also

required to accurately compute surface normals in the first place, and so that the direction-

dependent smoothing using the DIOS and DIOC diffusion tensors is sensible. We drop the (x)

notation for conciseness.

Proof

For a given l ∈ {x, y, z} and with P = nnT, we must find the gradient of

from (8). Define

The variation is then

Recalling the definition of the perpendicular component  from (12) (with nl a scalar and

defining rl := nln)
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Hence, , and we can write the variation as

To get rid of the gradient, recall that the negative divergence is the adjoint to the gradient

operator which can be seen through the divergence theorem. Assume a vector field F, then

the divergence theorem states

where the integral on the right is over the boundary surface ∂Ω of Ω and n denotes the unit

outward normal to this surface. Assume that the vector field F can be decomposed as F =

Vu, where V is a scalar field and u a vector field. Substituting into the divergence theorem

results in

which provides us with the multi-dimensional equivalent to integration by parts. The

negative divergence is the adjoint of the gradient operator. Note that this adjoint also creates

spatial boundary conditions. We obtain (picking appropriate boundary conditions)
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Fig. 1.
Principles of sliding motion. This example shows the four types of displacement field

discontinuities that can occur in a 2-D domain. Vertical arrows are u⊥ (normal components);

horizontal arrows are u∥ (tangential components). The motion discontinuities visualized in

(b)–(d) should be penalized, but discontinuities that correspond to sliding motion that occur

near specified sliding boundaries (a) are allowed.
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Fig. 2.
Sliding boundary normals n(x) and weights w(x). (a) Example surface models and associated

normals extracted using image segmentation, which are subsequently discretized onto the

image grid using nearest neighbors interpolation; (b) Example slice through the weight

image w(x). At sliding boundaries, w(x) ≈ 1 and sliding motion may occur, while inside

organs w(x) ≈ 0 and all motion discontinuities should be penalized.
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Fig. 3.
Evaluation using synthetic data. (a)–(b) Corresponding slices through the target and moving

images, respectively; (c) Volume rendered target image with annotations of the applied

translations; (d)–(e) Displacement field magnitudes (mm) for the diffusive and sliding organ

regularizations, respectively. The sliding registration better captures the left and right block

translations.
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Fig. 4.
Image registration of XCAT phantom images. An ideal difference image is all gray. The

sliding organ regularization gives a much better spine alignment (light blue arrows), while

maintaining good registration of the heart, lungs and liver. The diffusive registration does

have a better alignment at the lung-liver interface (yellow arrows) in the XCAT phantom

images.
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Fig. 5.
Representative displacement field patches from registering the XCAT images. The pink

border in the top image shows the input sliding boundary. The diffusive regularization

overestimates motion at the chest wall (yellow arrow) and mediastinum (yellow circle),

while the displacement field from the sliding organ regularization shows sliding at these

interfaces. Displacement vectors are from the target image (inhale) to the moving image

(exhale), colored by displacement magnitude (mm).
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Fig. 6.
Thoracic CT registration (C4). Displacement fields are visualized with glyphs and

displacement field magnitude (mm). The diffusive regularization underestimates motion

inside the lung near the chest wall. The sliding registration recovers more uniform lung

motion, with clear sliding. Crosses on the fixed image show the motion of an example

landmark from its moving (red) to target (green) position. The sliding registration (orange)

does better than the diffusive registration (yellow) in this region.
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Fig. 7.
Abdominal CT registration (P0). At left, the target image (inhale) with superimposed

differences in the moving image (exhale) in green. Displacement fields are visualized with

glyphs and as displacement field magnitude (mm). In the lungs (middle), the sliding

registration gives more uniform lung motion near the lung surface, and prevents incorrect

motion overestimation in the chest wall. In the liver (right), the main difference is to fix the

motion overestimation in the abdominal wall.
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