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Abstract

Genome-wide association studies (GWAS) that draw samples from multiple studies with a

mixture of relationship structures are becoming more common. Analytical methods exist for using

mixed-sample data, but few methods have been proposed for the analysis of genotype-by-

environment (G×E) interactions. Using GWAS data from a study of sarcoidosis susceptibility

genes in related and unrelated African Americans, we explored the current analytic options for

genotype association testing in studies using both unrelated and family-based designs. We propose

a novel method—generalized least squares (GLX)—to estimate both SNP and G×E interaction

effects for categorical environmental covariates and compared this method to generalized

estimating equations (GEE), logistic regression, the Cochran–Armitage trend test, and the WQLS

and MQLS methods. We used simulation to demonstrate that the GLX method reduces type I error

under a variety of pedigree structures. We also demonstrate its superior power to detect SNP

effects while offering computational advantages and comparable power to detect G×E interactions

versus GEE. Using this method, we found two novel SNPs that demonstrate a significant genome-

wide interaction with insecticide exposure—rs10499003 and rs7745248, located in the intronic

and 3′ UTR regions of the FUT9 gene on chromosome 6q16.1.

Keywords

GWAS; G×E; gene-by-environment; generalized least squares; mixed samples; sarcoidosis

© 2014 Wiley Periodicals, Inc.
*Correspondence to: Jia Li, One Ford Place, 3E, Detroit, MI 48202, USA. jiajiaysc@gmail.com.

The authors have no conflict of interest to declare.

Supporting Information is available in the online issue at wileyonlinelibrary.com.

NIH Public Access
Author Manuscript
Genet Epidemiol. Author manuscript; available in PMC 2015 July 01.

Published in final edited form as:
Genet Epidemiol. 2014 July ; 38(5): 430–438. doi:10.1002/gepi.21811.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Introduction

Most genome-wide association studies (GWAS) of chronic diseases have used case-control

samples of unrelated individuals—however, family-based designs can also be useful to test

for both linkage and association. “Mixed” samples result from combining data from both

case-control and family-based sampling methods, or where family sampling is incomplete.

Such samples present analytic challenges due to correlation between individuals. There are

three commonly used approaches that model the association between genotypes and disease

status for mixed samples: the Efficient Mixed-Model Association eXpedited (EMMAX)

[Kang et al., 2010] method; WQLS [Bourgain et al., 2003] and MQLS [Thornton et al., 2007];

and generalized estimating equations (GEE), recommended by Gray-McGuire et al. [2009]

as well as Chen and Yang [2010] in their GWAF R package.

The EMMAX approach models phenotypes using a linear-mixed model with fixed and

random effects; fixed effects include the candidate single nucleotide polymorphism (SNP)

and covariates such as gender and age, while random effects are based on a phenotypic

covariance matrix. Linear-mixed models assume the phenotype is a continuous variable.

Although Kang et al. [2010] suggest that the same model can be used for dichotomized

variables, the resulting estimates of the linear coefficients may not provide meaningful

interpretation, as the estimated proportion difference is used less commonly than odds ratios

or relative risks for the effect size estimation. The same problem exists for WQLS and MQLS,

in which the test statistics are constructed by quadratic forms with the genotype data treated

as a linear outcome. In these methods, different choices of symmetric weight matrices in the

quadratic form are used to accommodate different population and pedigree structures; in

particular, the WQLS statistic [Bourgain et al., 2003]—which uses the Kinship matrix

calculated from pedigree data—was proposed for related individuals without additional

population structure. Neither EMMAX or WQLS/MQLS can be easily extended to genotype-

by-environment (G×E) analyses; specifically, the multiplicative interaction term cannot be

directly estimated because both methods treat the categorical data (case-control status or

genotype data) as a continuous outcome. Conversely, the GEE model in the GWAF package

uses an independent working correlation structure, with each family being a cluster in the

robust variance estimate to test association between the phenotype of interest and each SNP.

This method offers flexibility by modeling binary outcome with different link functions

(e.g., identity or logit link) and the G×E effect can be tested by including an interaction

term. However, the use of the independent working correlation and the computation burden

for GWAS data makes the GEE approach less efficient.

We propose an extension of the GSK method originally developed by Grizzle et al. [1969],

which has been used for categorical data analysis in traditional observational studies. It

assumes that the hypotheses of interest can be expressed in terms of an underlying (S × R)

contingency table, with S representing the cross-classification of a limited number of

discrete covariates (e.g., case/control status), and R identifying the number of multinomial

response profiles (e.g., genotypes). This approach retains flexibility to model marginal

proportions, marginal logits, mean scores, and cumulative logits with increased power and

computation efficiency versus competing methods.
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For the analysis of GWAS data in mixed samples, our approach—the extended generalized

least squares (GLX)—extends the GSK approach by incorporating kinship into the

covariance matrix, as well as proposed different response functions to estimate additive,

dominant, and recessive effects and G×E interaction effects. We outline the proposed

approach and detail methods for genotype and G×E testing. We also present simulation

results comparing the GLX method with the Cochran–Armitage trend test, ordinary logistic

regression, EMMAX, WQLS, MQLS, and GEE (as implemented in GWAF). Finally, the

proposed method is applied to GWAS data from a study of sarcoidosis susceptibility genes

in African Americans.

Methods

Extended Generalized Least-Squares (GLX)

We start with the notation of GLX under the setting for individual SNP analysis. Let N

subjects be categorized into three possible genotype categories (R = 3) for a SNP (i.e., AA,

Aa, aa). Individuals with similar covariate values are grouped into stratum s, s = 1, …, S. Let

nsr, r = 1, 2, 3 represents number of subjects within stratum s and genotype r, and ns stands

for total count of subjects within strata s.

Following the definitions of Grizzle et al. [1969], let the expected cell probabilities be πsr

and the observed cell probabilities be psr = nsr /ns., r = 1, 2, 3. Define 

as a vector of observed probabilities within stratum s, and  as the long

vector across strata; similarly, define  as a vector of expected

probabilities in stratum s, and  as the vector across strata. Without loss

of generality, assume that a response function (e.g., F (π)) of the marginal probabilities is

linearly related to the covariates X and parameter β (i.e., F (π)u×1 = X u×v βv×1), where X is a

design matrix of rank v(≤u) and u is associated with the choice of response function as

illustrated in the following sections. The covariance matrix of response function F can be

estimated using the delta method: V̂(F) = Ĥ [V̂(P)]Ĥ′, where Ĥ is dFt/dP, and V̂(P) is the

estimated covariance matrix of observed probabilities. The estimation of V̂(P) is discussed in

detail in the following section. Therefore β is consistently estimated by β̂ = (X′ [V̂(F)]−1X)−1

X′ [V̂(F)]−1 F̂, using the inverse of V̂(F) as the weight matrix and F̂ as the response vector.

The covariance matrix of β̂ is V(β̂) = (X′[V̂(F)]−1X)−1.

F (π) includes a wide range of possible functions; the most commonly used can often be

expressed in two families: (i) linear functions F (π) = A × π; and (ii) log-linear functions

F(π) = K × log(A × π), where A and K are matrices of arbitrary constants that formulate a

specific response function. For details, refer to Grizzle et al. [1969]. Examples for GWAS

are illustrated in the following sections.

Estimating the Covariance-V̂(P)

In the above model, in order to estimate the weight matrix V̂(F), we must estimate V̂(P). In

the case of SNP data, Pt can be expressed as C × Y where C is a block diagonal matrix
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having Cs = 1/ns. × 1ns. ⊗ I3 on the diagonal, In is the identity matrix of size n, 1n denotes a

vector of size n with all entries one and ⊗ is the Kronecker product. Y = 1ns. ⊗ Yi, in which

Yi = [Yi1 Yi2 Yi3] is the 3 × 1 vector of indicator variables for genotypes for each subject i.

Yig = 1 if Yi = g, and Yig = 0 otherwise, g = 1, 2, 3. Note that the covariance of Y between a

pair of individuals is

(1)

where f is the minor allele frequency, q = 1 − f and kmij is the probability that two

individuals i and j share m alleles identity by descent (IBD) under a given relationship, m =

0, 1, 2. Thus, V̂(P) can be estimated by CΣ̂C′. The “theoretical relationship IBD” statistics

kmij can be inferred using known pedigree structures. When errors of pedigrees exist, the

degree of relationship can still be robustly estimated using the genome-wide genotype data,

which is known as the “empirical relationship IBD.”

In this paper, we adopted the Kinship-based inference for genome-wide association studies

(KING) method proposed by Manichaikul et al. [2010] to estimate kinship coefficient and

IBD statistics in the real data analysis. The allele frequency f can be estimated by: (1) the

sample frequency Ȳ/2; or (2) the best linear unbiased estimator (BLUE), given by

, where Φ is the kinship matrix and as suggested by McPeek et

al. [2004]. However, we have not found significant differences between the two estimates in

the simulations.

Association Testing Between SNP and a Binary Outcome

To test for association between a single SNP and a binary outcome (e.g., case-control), we

developed a general framework of the GLX method with several options for response

function F(π) that provides estimates based on proportions. One is the linear response

function F(πs) =0 × πs1 + 1 × πs2 + 2 × πs3, s = 1 (case) or 2 (control). We can use the

following design matrix such that F(π) = Xβ: , β = [β1, β2]t. V̂(F) is estimated

from CΣ̂Ct and Σ̂ is estimated from equation (1). This parameterized model allows for the

estimation of genotypic means while accounting for the dependence between subjects. After

estimation, the value of β̂
1 typically represents average effect of risk allele of two groups,

and β̂
2 represents the differentially effect of risk allele between two groups. The association

test can be constructed by the Wald test for β̂
2. The Wald statistic is computed as a ratio of

β̂
2 over its standard error . We can assess the level of statistical significance using the

normal approximation of the Wald statistic. Note that under this model, V̂(F) is reduced to

JΦJt, where J is a block diagonal matrix having 1/ns. × 1ns on the diagonal and Φ is the

kinship matrix.
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Another option is the log-linear response function. Specifically, one can choose the adjacent

logit link function for log-additive model, , s = 1 or 2, if the

effect was expected to be additive on the log odds scale. In matrix form, F(π) is constructed

as F(π) = K × log(A × π) with  and A is an identity matrix with

dimension of 6. We note that dominant or recessive effects can similarly be tested for by

modifying K appropriately. Recall that F(π) = Xβ, β = [β1, β2, β3]t. In this situation, the

design matrix X is chosen as:

β1 and β2 are the intercepts for each response function across groups. The effect of each

copy of the second allele is β3̂ on the log odds scale, corresponding to an odds ratio of

exp(β̂
3). Similarly a Wald statistic  can be constructed for testing the null

hypothesis of β3 = 0 as described above.

More generally, a test of the hypothesis H0: Lβ = 0 is produced by conventional methods of

weighted multiple regression, where L is a matrix of full rank d. Given the model, the test is

produced by β̂tLt[L (Xt[V̂(F)]−1X)−1Lt]−1 Lβ̂ that is asymptotically a χ2 distribution with d
degrees of freedom under H0[Grizzle et al., 1969].

The choice between linear and log-linear response functions depends on data assumptions

underlying the statistical analysis. Linear response functions using simple proportions

assume that the theoretical distance between proportions is equal. Log-linear response

functions, on the other hand, stretch out the distance between proportions. Therefore, the

results obtained based on log-linear functions interpret differently from the results obtained

from the linear model.

Interaction Between SNP and Environmental Factor on a Binary Outcome

The proposed approach can be extended to test the interaction for categorical outcome and

environmental factors (G×E). Consider, an environmental risk factor (E), a “high-risk

genotype” (G), and a disease of interest (D). In general, statistical gene–environmental

interaction is defined as departure from additive or greater-than-multiplicative joint effects

of gene/environmental effects. Statistical interactions are scale dependent; choice of

measurement scale will affect the assessment of G×E interaction. Ottman [1996] presents a

variety of definitions for gene–environment interactions using relative risks and odds ratios

under additive and multiplicative scales; for illustrative purposes, we focus on the

interaction based on odds ratios.

In order to apply the GLX test for the G×E multiplicative effect, we first conduct the SNP

association test within each environmental factor stratum. Let β̂
t and var(β̂

t) represent the

coefficient estimates and corresponding variance for the association test between G and D
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within stratum t. The adjacent logit link function, as described above, is used here. The G×E

effect then can be tested using Cochran’s Q test [Cochran, 1954]. The test statistic consists

of a weighted sum of squared deviations around the mean of the effect. Specifically for our

G×E interaction testing, Q is defined as Σwt(β̂
t − β̄)2, where β̄= Σwtβ̂

t/Σwt is the weighted

mean of the log odds ratio. Here we choose the weight wt = 1/var(β̂
t), that is, the inverse of

the estimated variance of log odds ratio in each strata. Under the null hypothesis of no

interaction, Q follows a χ2 distribution with T − 1 degrees of freedom, where T is the

number of strata in E.

Simulation Studies

We examined the type I error and power of the proposed estimators in a variety of simulated

pedigrees based on three real datasets: the Ancestry Mapping of African genes of

Sarcoidosis Susceptibility study (AMASS) [Rybicki et al., 2011]; the multi-ethnic study of

atherosclerosis (MESA) [Bild et al., 2002]; and the Framingham Heart Study [Govindaraju

et al., 2008].

AMASS study data were compiled from three previously conducted studies: (1) a multisite

case-control study; (2) a multisite affected sib-pair study; and (3) a single institution family-

based study. Of 2,494 genotyped specimens, 1,877 had both genotype and environmental

data. A total of 1,283 specimens were collected from 475 pedigrees with 277 sibships

ranging in size from 2 to 6. The remaining 594 specimens were from the case-control study.

MESA was a study of characteristics of subclinical cardiovascular disease. One of its

ancillary studies—the MESA Family Study—applied genetic analysis and genotyping

methodologies to delineate the genetic determinants of early atherosclerosis. MESA

pedigrees were more complex than those in AMASS. Among 3,735 specimens, there were

approximately 702 families with family size varying from 3 to 16; however, a majority of

the MESA families consisted of only parents and offspring.

The Framingham Heart Study included 6,870 individuals in families of up to three

generations, including over 900 pedigrees and 230 singletons. The pedigree sizes varied

from 2 to 296, more complex than the AMASS and MESA studies. Summary information

for each study sample is provided in Table 1 and ordered by complexity of pedigree

structures. We randomly selected 500 mixed families and singletons from the MESA and

Framingham studies for the simulation.

Using Merlin [Abecasis et al., 2002] and pedigree structures from the real examples, we

simulated 10,000 datasets of genotype “G” data through gene dropping, with a minor allele

frequency of 0.2. The binary environmental factor “E” was generated assuming that

individuals within the same family have the same environmental exposure—that is, it is

more correlated than exposure for individuals in different families. The quantitative traits of

all individuals in the pedigrees were generated according to the linear-mixed model

described below. The phenotype of individual j in family i was generated by:
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where β0 is the population mean, β1 is the additive effect for a SNP, β2 is the environmental

main effect and β3 is the interaction effect between G and E. To allow for correlation

between phenotypes within each family, we assumed a random family effect ri that follows a

multivariate normal distribution , where the elements of 2Φi denote the kinship

coefficient between individuals in family i. The residual eij is normally distributed with

mean 0 and variance  . We considered  and , which corresponds to a heritability

value of 0.75. Dichotomous traits were then generated from the Bernoulli distribution with

probability pij, where pij is calculated from the inverse logit function, logit−1(Yij).

We set β0 to −3, representing a baseline disease risk of approximately 5%, independently of

G and E. Type I error was estimated for testing H0: β1 = 0 and H0 : β3 = 0, corresponding to

no genetic effect and no G×E interaction, respectively. For power analysis, we considered

three types of values for β1, β2, and β3. First, we set them to 0.405, 0, and 0, respectively,

yielding an OR of approximately 1.5 for the gene main effect. Second, we set β1, β2, and β3

to be 0.405, 0.405, and 0.69, respectively, yielding ORs of approximately 1.5 for the main

effect of gene G, approximately 1.5 for the main effect of the environmental factor, and

approximately 2 for the G×E interaction effect. This model represents the synergistic effect

between G and E. Third, we set β1, β2, and β3 to be 0, 0, and 0.69, respectively, yielding

G×E interaction effect without marginal effects.

GLX was compared to the Cochran Armitage trend test, GEE with identity link, EMMAX,

WQLS, and MQLS (for the linear mean score model), ordinary logistic regression, and GEE

(for the log-additive effect model). The kinship coefficient and IBD estimates were

calculated from the known pedigree structures. In the simulation, the allele frequency p was

estimated by the sample frequency Ȳ/2, as we did not see a significant difference in the

results using the sample frequency or BLUE for allele frequency estimation.

An Example From a Study of Sarcoidosis

To examine the performance of our proposed method in a real dataset, we applied GLX to

the AMASS GWAS samples, consisting of 1073 African-American sarcoidosis cases and

804 controls drawn from unrelated case-control and family samples. Genotyping was

performed on the Illumina Human Omi1-Quad at the Oklahoma Medical Research

Foundation (Oklahoma City, OK) for 1.1 M SNPs across the genome. The details of

genotyping and quality control process have been described in Adrianto et al. [2012].

After quality control processes, the final set comprised 887,296 autosomal SNPs. The SNP-

based pairwise kinship coefficients and identity-by-descent coefficients were estimated

using KING [Manichaikul et al., 2010]. Before applying the kinship estimates to the GLX

method, a pair of individuals with kinship coefficient (ϕ) less than 1/29/2 was considered to

be unrelated; the corresponding probability of zero IBD-sharing (k0) was set at 1, and

probability of one IBD-sharing (k1) was set at 0. To test if the individual SNPs had

significant effect on the risk of sarcoidosis, we applied the GLX method with both linear

response function and adjacent logit response function.
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Rossman et al. [2008] found that carrying HLA-DRB1*1101 and exposure to workplace

insecticides was associated with increased risk of developing sarcoidosis (P < 0.10),

suggesting a potential G×E interaction. To illustrate the proposed G×E test from the GLX

method, we focus here on evaluating the G×E interaction effects of SNP and insecticide

exposure on sarcoidosis risk.

Simulation Results

Figure 1A and B present the estimated type I error rates and power for a variety of SNP

association tests. The GLX method with either linear response or log-additive response

functions controls for Type I error rates when the nominal rate of statistical significance is P

= 0.01. Ordinary logistic regression performs similarly to the trend test, and both are

anticonservative under certain scenarios. This inflation of type I error is expected from a

method that ignores relatedness within the mixed sample, consistent with the simulation

results for the trend test reported by Manichaikul et al. [2012] and Feng et al. [2011]. When

the related portion of the total samples is small (as with AMASS), the type I error of a

simple logistic regression or trend test may not be greatly affected. But Type I error is more

severely inflated when the sample consists of more complex pedigrees—for instance, using

the MESA study sample, the type I error rates under logistic regression or the trend test are

double those of the nominal level. Due to above observations, power is not reported for

ordinary logistic regression and the trend test in Figure 1B. GEE models that use robust

variance estimation with an independent working covariance control type I error for all three

scenarios. The same conclusion is made for the WQLS and MQLS tests.

However, GLX outperforms them in terms of power. The power of GLX with an adjacent

logit response function is 68% ± 1% (MESA) and 91% ± 0.3% (Framingham) for each study

sample configuration. The power of MQLS with logit link is 63% ± 1% (MESA) and 88% ±

0.3% (Framingham) sample configurations. We observe larger differences in power between

GLX, GEE, and WQLS when using the linear function: GLX has 65% ± 1% power compared

to 62% ± 1% (GEE with identity link), 44% ± 1% (WQLS), and 63% ± 1% (MQLS) in the

MESA study; similar trends are seen using the AMASS and Framingham study sample

configurations. Although GLX methods did not systematically show greater power than

EMMAX, both methods are comparable in most of the scenarios.

Figure 2A, B, and C present the results of estimated type I error rates and power for SNP-

by-environment (SNP×E) interaction tests for different methods. As we observe for the SNP

association testing, type I error is reasonably controlled by both GEE and GLX for all

sample configurations (Fig. 2A). Logistic regression again demonstrates inflated type I

error. Type I errors rates are around 2% for both MESA and Framingham pedigrees when

the nominal significance was set at 1%. For these two sample configurations, GEE and GLX

achieve nearly equivalent power (Fig. 2B). Both methods have power of 47% ± 1% (MESA)

and 71% ± 0.6% (Framingham) in these study sample configurations. The performance of

these three tests under the interaction-only model leads to the same conclusions (Fig. 2C).
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Exemplar Data Set

As a complement to the simulation studies, we analyzed GWAS data from the AMASS

study. The single-marker association analysis using the GLX method with linear and logit

response function showed modest genomic inflation factors (1.10 and 1.05). We further

corrected the P-values based on the genomic inflation factors for each method. The six most

significant SNPs are in the Major Histocompatibility Complex (chromosome 6p21);

method-specific results are displayed in Table 2. The EMMAX analysis identified one SNP

(rs2239803) approaching the genome-wide significance level (P < 5 × 10−8, using

Bonferroni correction). As expected, MQLS failed to control for population stratification.

Odds ratios and 95% confidence intervals for the six SNPs were estimated using the GLX

method with log-additive response function. The P-values for testing the odd ratios are

slightly higher than the P-values using the linear response function. Table 3 lists the six

SNPs that reach a suggestive significance level (P-values <1 × 10−5) for a SNP-by-

insecticide-exposure interaction. Two of these passed the genome-wide significance level:

rs10499003 and rs7745248, both located in the FUT9 gene on chromosome 6. The other two

SNPs from chromosome 6 are neighboring SNPs in high linkage disequilibrium (LD) with

rs10499003 (r2 > 0.6). The estimated odds ratio of sarcoidosis risk for each additional copy

of allele C at rs10499003 is 2.06 (95% confidence interval (CI): 1.88–2.25) if exposed to

insecticide. The risk decreases (OR = 0.40 (95% CI: 0.37–0.43) for those who were not

exposed to insecticide.

Discussion

Large association studies that collect both unrelated case-control and family data have been

conducted in several diseases [Bild et al., 2002; Edenberg et al., 2005; Govindaraju et al.,

2008; Rybicki et al., 2011]. Motivated by a GWAS of sarcoidosis susceptibility genes in

African Americans, we proposed an extended Generalized Least Squares approach to test for

the association between disease and genes, as well as gene-by-environment interactions,

when data comes from mixed samples of family-based and population studies. This method

allows us to account for correlations among family members by using kinship estimated

from GWAS data or known pedigrees. This approach is flexible in the sense that many

response functions under varying model assumptions can be used, and corresponding effect

size and confidence intervals can be estimated.

Insecticide exposure has been previously shown to be associated with sarcoidosis on both

marginal and G×E interaction levels [Newman et al., 2004; Rossman et al., 2008]. Using the

GLX method, we found significant interactions between insecticide exposure and the FUT9

SNPs rs10499003 (intronic) and rs7745248 (3′UTR). The protein encoded by this gene

belongs to the glycosyltransferase family [Brito et al., 2008]; recent human cell-line work

suggests that the FUT9 protein has an important role in the biosynthesis of human E-selectin

ligands [Buffone et al., 2013]. Sarcoidosis patients are known to have elevated levels of

circulating E-selectin in peripheral blood [Berlin et al., 1998; Hamblin et al., 1994].

Furthermore, recent work in mice has shown that E-selectin knockouts have a more severe

grade of granuloma formation in lungs upon exposure to P. acnes versus wild-type mice

[Kamata et al., 2013]; in humans, a common E-selectin polymorphism is associated with
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significantly reduced risk of developing sarcoidosis in patients with erythema nodosum

[Amoli et al., 2004]. Although it is too preliminary to implicate FUT9 in sarcoidosis

pathogenesis, this finding demonstrates the potential utility of the GLX method to uncover

provocative G×E interactions worthy of further study.

GLX has also shown advantages over other methods in simulations. Traditional methods

that assume independent sampling are anticonservative if applied to mixed sample data that

is dominated by complex family structures, such as those found in the MESA and

Framingham studies. Another option for mixed sample data is GEE, which provides robust

inferences for most of the scenarios in our simulation; however, its computation time is

relatively long. As a result, some researchers run the association test using EMMAX or

MQLS first, then use a GEE model with logit link function on the regions highlighted by

EMMAX or MQLS to obtain the estimates of odds ratios and corresponding standard errors.

In contrast, the GLX method is computationally appealing for its simpler, noniterative

procedure. To scan 10,000 SNPs for a study of sample size 4,000 using a 2.67 GHz Intel®

Xeon® CPU running Linux, it took 15.4 min for GEE and just 1.3 min for GLX versus. In

this case, GLX is 12 times faster than GEE.

The current version of GLX was written in the R programming language; GEE in the

GWAF package was written in C language and called by R. We are currently developing a

version of GLX implemented in C—we expect this to be even more computationally

efficient. More importantly, our simulations show that GLX has superior power to GEE

under linear and log-additive models for SNP association tests for a number of scenarios.

The final advantage to using GLX rather than EMMAX or WQLS/MQLS is that GLX offers

many different forms of response functions that can be specified by the user. Unlike

EMMAX and WQLS/MQLS, which use linear models on categorical data, the interpretation

of the model coefficient of the GLX method may be more meaningful than these two

methods and may be easily extended to test for G×E interactions.

There are some limitations to this method. First, the behavior of tests in small samples is

unknown. Occasional small cell counts may require adjustment of the data so that the weight

matrix is not singular. However, this problem is not unique to our GLX test; in actual

practice, SNP genotypes can be collapsed into dominant or recessive coding. Second, the

GLX method is primarily developed for categorical data analysis. Continuous covariates

may be used by considering them as categorical variables based on their unique values.

However, computational difficulties may arise if a continuous covariate has a large number

of unique values; in this case, we can still use this method by discretizing the variables.

Third, while the proposed GLX method is an efficient method for accurately estimating both

main and marginal effects from family-based data, effect estimates may not be generalizable

to the general population if ascertainment bias exists. Correcting for ascertainment bias was

beyond the scope of this study, but this issue has been extensively addressed by others

[Epstein et al., 2002; Noh et al., 2005; Schaid et al., 2010]. And finally, population

stratification was not observed in the exemplar dataset, nor was the GLX method assessed in

the presence of population heterogeneity with simulated data. However, our method can be

extended to account for population stratification by modifying the covariance matrix, similar

to the approach used in ROADTRIPS [Thornton and McPeek, 2010].
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In summary, we propose a novel generalized least squares (GLX) method to estimate both

SNP and G×E interaction effects in mixed samples. Our simulation results demonstrate that

this method improves upon existing methods used to analyze these types of data, both in

terms of type I error and power under a variety of pedigree structures. Given the

computational efficiency of the GLX method and its ability to be easily extended to test for

G×E interactions, it should be very attractive for analysis of genome-wide marker datasets

of mixed samples.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Comparison of different methods for testing SNP association with risk of disease when

minor allele frequency is 0.2. Nominal type I error rate was set at 0.01. Point estimates and

95% confidence intervals of type I error and power were presented.
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Figure 2.
Comparison of different methods for testing SNP-by-environment multiplicative interaction

with risk of disease when minor allele frequency is 0.2. Nominal type I error rate was set at

0.01. Point estimates and 95% confidence intervals of type I error and power were

presented.
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Table 1

Simulation configurations for each data type

Type Total N N families N unrelated

AMASS 1,877 475 594

MESA 3,735 702 0

Framingham 6,870 765 435

Genet Epidemiol. Author manuscript; available in PMC 2015 July 01.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Li et al. Page 17

T
ab

le
 2

A
M

A
SS

 d
at

a 
re

su
lts

: S
N

Ps
 a

ss
oc

ia
te

d 
w

ith
 r

is
k 

of
 S

ar
co

id
os

is
 w

ith
 P

-v
al

ue
s 

pa
ss

ed
 g

en
om

e-
w

id
e 

si
gn

if
ic

an
ce

 le
ve

l

C
H

R
SN

P
G

L
X

lin
ea

r (
G

I 
= 

1.
10

)
G

L
X

lo
g 

(G
I 

= 
1.

05
)

O
R

95
%

 C
I

E
M

M
A

X
 (

G
I 

= 
1.

01
)

M
Q

L
S 

(G
I 

= 
1.

15
)

6
rs

69
31

64
6

2.
1 

×
 1

0−
7

2.
1 

×
 1

0−
7

0.
70

(0
.6

1,
 0

.8
0)

1.
1 

×
 1

0−
7

1.
1 

×
 1

0−
6

6
rs

22
39

80
4

1.
7 

×
 1

0−
7

1.
8 

×
 1

0−
7

0.
69

(0
.6

1,
 0

.7
9)

9.
1 

×
 1

0−
8

9.
7 

×
 1

0−
7

6
rs

22
39

80
3

1.
1 

×
 1

0−
7

1.
2 

×
 1

0−
7

0.
69

(0
.6

0,
 0

.7
9)

5.
4 

×
 1

0−
8

6.
0 

×
 1

0−
7

6
rs

69
11

41
9

1.
3 

×
 1

0−
7

1.
4 

×
 1

0−
7

0.
69

(0
.6

1,
 0

.7
9)

6.
7 

×
 1

0−
8

6.
7 

×
 1

0−
7

6
rs

92
68

65
8

1.
6 

×
 1

0−
7

1.
7 

×
 1

0−
7

0.
69

(0
.6

1,
 0

.7
9)

8.
2 

×
 1

0−
8

4.
5 

×
 1

0−
7

G
L

X
lin

ea
r,

 P
-v

al
ue

 f
or

 G
L

X
 m

et
ho

d 
w

ith
 li

ne
ar

 r
es

po
ns

e 
fu

nc
tio

n;
 G

L
X

lo
g,

 P
-v

al
ue

 f
or

 G
L

X
 m

et
ho

d 
w

ith
 lo

g-
ad

di
tiv

e 
re

sp
on

se
 f

un
ct

io
n;

 O
R

, o
dd

s 
ra

tio
; 9

5%
 C

I,
 9

5%
 c

on
fi

de
nc

e 
in

te
rv

al
 f

or
 O

R
; G

I,

ge
no

m
ic

 in
fl

at
io

n 
fa

ct
or

.

Genet Epidemiol. Author manuscript; available in PMC 2015 July 01.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Li et al. Page 18

T
ab

le
 3

A
M

A
SS

 d
at

a 
re

su
lts

: S
N

P 
by

 in
se

ct
ic

id
e 

ex
po

su
re

 in
te

ra
ct

io
n 

w
ith

 P
-v

al
ue

s 
<

 1
E

-5

SN
P

C
H

R
P

os
it

io
n

A
lle

le
s

M
A

F
G

en
e

In
se

ct
ic

id
e 

ex
po

su
re

O
R

 (
95

%
 C

I)
N

o 
in

se
ct

ic
id

e 
ex

po
su

re
O

R
 (

95
%

 C
I)

P
-v

al
ue

 (
G

I 
= 

0.
94

)

rs
67

20
97

2
2

98
03

99
26

G
/A

0.
07

0.
46

 (
0.

43
, 0

.5
0)

1.
60

 (
1.

48
, 1

.7
3)

5.
35

 ×
 1

0−
6

rs
13

41
75

66
2

11
13

09
07

7
A

/C
0.

35
A

C
O

X
L

0.
76

 (
0.

75
, 0

.7
8)

1.
45

 (
1.

42
, 1

.4
7)

7.
85

 ×
 1

0−
6

rs
10

49
90

03
*

6
96

61
19

40
C

/A
0.

07
FU

T
9

2.
06

 (
1.

88
, 2

.2
5)

0.
40

 (
0.

37
, 0

.4
3)

1.
47

 ×
 1

0−
8

rs
77

45
24

8
6

96
76

68
35

A
/G

0.
08

FU
T

9
1.

92
 (

1.
76

, 2
.0

9)
0.

38
 (

0.
35

, 0
.4

1)
1.

82
 ×

 1
0−

8

rs
11

15
63

52
6

96
79

42
43

G
/A

0.
09

1.
66

 (
1.

55
, 1

.7
8)

0.
50

 (
0.

47
, 0

.5
3)

2.
69

 ×
 1

0−
6

rs
23

41
78

6
6

15
98

48
31

4
A

/G
0.

10
1.

75
 (

1.
65

, 1
.8

6)
0.

55
 (

0.
52

, 0
.5

8)
1.

56
 ×

 1
0−

6

P
-v

al
ue

: P
-v

al
ue

s 
fo

r 
ge

ne
-b

y-
in

se
ct

ic
id

e-
ex

po
su

re
 in

te
ra

ct
io

n 
w

er
e 

ob
ta

in
ed

 f
ro

m
 G

L
X

 m
et

ho
d 

w
ith

 lo
g-

ad
di

tiv
e 

re
sp

on
se

 f
un

ct
io

n;
 O

R
, o

dd
s 

ra
tio

; 9
5%

 C
I,

 9
5%

 c
on

fi
de

nc
e 

in
te

rv
al

 f
or

 O
R

; G
I,

 g
en

om
ic

in
fl

at
io

n 
fa

ct
or

.

Genet Epidemiol. Author manuscript; available in PMC 2015 July 01.


