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Abstract

Introduction—Tuberculosis (TB) remains the leading cause of death from a curable infectious

disease; drug-resistant TB threatens to dismantle all prior gains in global control. Suboptimal

circulating anti-TB drug concentrations can lead to lack of cure and acquired drug resistance.

Areas covered—This review will introduce pharmacokinetic parameters for key anti-TB drugs,

as well as the indications and limitations of measuring these parameters in clinical practice.

Current and novel methodologies for delivering anti-TB pharmacokinetic-pharmacodynamic data

are highlighted and gaps in operational research described.

Expert opinion—Individual pharmacokinetic variability is commonplace, underappreciated and

difficult to predict without therapeutic drug monitoring (TDM). Pharmacokinetic thresholds

associated with poor TB treatment outcome in drug-susceptible TB have recently been described

and may now guide the application of TDM, but require validation in a variety of settings and

comorbidities. Dried blood spots for TDM and prepackaged multidrug plates for minimum

inhibitory concentration testing will overcome barriers of accessibility and represent areas for

innovation. Operationalizing pharmacokinetics has the potential to improve TB outcomes in the

most difficult-to-treat forms of the disease such as multidrug resistance. Clinical studies in these

areas are eagerly anticipated and we expect will better define the rational introduction of novel

therapeutics.
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1. Introduction

In the past two decades, major progress has been made globally in reducing cases of

tuberculosis (TB) and TB-related deaths, yet considerable work remains. TB is the leading

cause of death from a curable infectious disease, and is second only to HIV/AIDS as a cause

of death from any infectious disease. In 2011, there were an estimated 8.7 million new cases

of TB and 1.4 million deaths from TB [1]. While cure rates can be high for drug-susceptible

TB with appropriate multidrug therapy and when given in supervised treatment settings,

success rates can drop as low as 65% in less-resourced areas [1,2].

Among the multitude of systemic contributors, treatment failure can result from drug

resistance prior to initiation of therapy (primary drug resistance) and drug resistance

developing while on therapy (acquired drug resistance). Novel and rapid drug-susceptibility

testing has targeted primary drug resistance, but acquired resistance was thought almost

exclusively to be the result of patient nonadherence or programmatic barriers to receipt of

guideline-endorsed multidrug regimens. While implementation of directly observed therapy

in certain TB endemic settings improved adherence with TB treatment, relapse and acquired

drug resistance were not entirely eliminated [3,4]. Recently, however, suboptimal drug

concentrations, due to individual pharmacokinetic variability and independent of

nonadherence, have been associated with acquired drug resistance in in vitro models [5,6].

Even more definitively, they have been associated with poor outcome in prospective patient

cohorts [5,7,8]. This concept cannot be overstated as the majority of all TB cases in endemic

settings are treated with empiric weight-based regimens, often in fixed-dose combination

and without the benefit of pharmacokinetic monitoring.

The consequences of treatment failure and amplified drug resistance can be devastating for

both patient and public health. Quite simply, drug-resistant TB threatens to eliminate all

gains made in global TB control [9]. Multidrug-resistant (MDR)-TB is now estimated in

3.7% of new cases and 20% of previously treated cases worldwide, and by definition, is

resistant to the two most potent anti-TB medications, isoniazid and rifampin [1].

Furthermore, approximately 9% of all MDR-TB cases are categorized as extensively drug-

resistant (XDR)-TB with additional resistance to a fluoroquinolone and an injectable agent

(kanamycin, amikacin or capreomycin). The so-called ‘second-line’ drugs used in the

treatment of drug-resistant TB are of greater cost, less potency and increased toxicity [10].

While treatment duration is typically 6 months for drug-susceptible TB, already a

burdensome duration for many patients and TB programs, treatment of MDR-TB can last

more than 20 months. As such, global success rates for treatment of MDR-TB and XDR-TB

are estimated at 48 and 33%, respectively [1].

Such dismal outcomes represent the end result of a considerable personal and financial toll

on patient, community and the governmental TB program. Where such estimates are

calculable in the European Union in 2011, for instance, the economic loss for care of drug-

resistant TB in disability-adjusted life years was 10 times greater than the treatment cost

itself [11]. Consequently, optimization of existing drug regimens for TB would carry

tremendous downstream benefit if even modestly associated with improved treatment

outcome or shortened treatment duration. Therefore, the following review will provide an
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introduction to standard pharmacokinetic parameters for critical anti-TB drugs, the clinical

application and limitations of therapeutic drug concentration monitoring for TB, and

discussion of specific settings, patient populations and anatomic disease sites that may

influence this application. Opportunities of operational research and technological

innovation are highlighted.

2. Pharmacokinetic and pharmacodynamic principles in TB treatment

Incidentally, the first anti-TB drug, streptomycin, played a key role in the foundational

pharmacokinetic–pharmacodynamic experiments of Dr. Harry Eagle, and was demonstrated

to kill in a concentration-dependent manner compared to penicillin, which was time

dependent in activity [12,13]. Today, the most common pharmacokinetic–pharmacodynamic

measures used to describe antibacterial agents, including those with anti-TB activity, are the

duration of time a drug concentration remains above the minimum inhibitory concentration

(T > MIC), the ratio of the peak drug concentration relative to the MIC (Cmax/MIC) and the

ratio of the area under the concentration–time curve at the end of the dosing interval relative

to the MIC (AUC0 – 24/MIC) [14].

Unconventionally, however, TB drug-susceptibility testing in clinical laboratories differs

from that of nearly any other infectious disease where MICs are determined by dilution

schemes [15]. In contrast, most TB susceptibility testing is performed with a version of the

proportion method where equal amounts of organism are inoculated on plates or in liquid

media with and without a single ‘critical’ concentration of drug. Prior studies to determine

the single critical concentration have used a midpoint concentration between the lowest

MICs of known resistant strains and the highest MIC of known wild-type strains, where the

clinical outcome is well described [16-18]. Yet this method does not allow for accurate

individual pharmacokinetic–pharmacodynamic assessment. Commercially available MIC

plates for Mycobacterium tuberculosis are now available and may ultimately facilitate

pharmacokinetic–pharmacodynamic testing for TB patients outside the research setting

(Figure 1) [19-21]. Nevertheless, MIC remains a static parameter and like all phenotypic

susceptibility testing for TB measures only the dominant subpopulation of infecting M.

tuberculosis cultured from the specimen.

Given that the clinical response to anti-TB treatment can take weeks to months to become

apparent and adequate assessment of relapse-free cure may span years, early bactericidal

studies in humans (measuring the decrement of bacteria growing in serially collected sputum

from patients with pulmonary TB) as well as in vitro and animal models have played a

growing role in determining anti-TB drug dosing and new drug development. Population-

based statistical application, such as Monte Carlo simulation, has further allowed the

integration of human pharmacokinetic data into models of large patient cohorts that

otherwise could not be easily studied [22]. Additionally, novel multiple arm and multiple

dosing strategies for TB clinical trials have been advocated for new drug assessment [23,24].

3. Anti-TB parameters

The bulk of pharmacokinetic–pharmacodynamic studies have focused on the first-line

medications to treat drug-susceptible TB (Table 1) [7,24]. The majority of the best-studied
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agents, including rifampin, isoniazid, ethambutol and pyrazinamide, as well as the

fluoroquinolones, have been shown to be concentration dependent in activity [25-29]. This

effect was first seen in a guinea pig model for isoniazid in 1968, and was later confirmed in

the modern pharmacokinetic–pharmacodynamic era in a murine model in 2004 and using

the in vitro hollow fiber system (HFS) in 2007 [30-32]. The data for rifampin follow a

similar trend, with guinea pig and murine models showing its concentration-dependent

activity as early as 1969, and modern murine and HFS models confirming the link between

its activity and the AUC/MIC ratio [33-36]. This is true for both bacterial killing [34] as well

as prevention of resistance, which was calculated to occur at Cmax/MIC > 175 [35]. For

rifampin in particular, the Cmax correlates well with AUC and may serve as a functional

proxy [36]. Importantly, however, the standard rifampin dose for TB treatment, 10 mg/kg,

was chosen in 1971 without a dose escalation study. Yet, a recent trial has found doses as

high as 35 mg/kg as tolerable and bactericidal activity remains linear with dose escalation,

and thus rifampin may be uniquely suitable for dose optimization to shorten total treatment

duration [37]. Preclinical models of novel drug development seeking combination with

rifampin must therefore view these more aggressive dosing strategies as presaging the norm.

One recent study marks the first prospective effort to date that rigorously defines the

pharmacokinetic thresholds associated with treatment failure in the first-line treatment of

drug-susceptible TB [7]. A landmark investigation to disentangle the multiplicity of

contributors to TB treatment failure, the study of 142 adults with TB from the Western Cape

in South Africa found the top three independent predictors of poor long-term outcome to be

AUC of pyrazinamide, rifampin and isoniazid in decreasing order of predictive magnitude.

Secondary analysis allowed threshold values to be set whereby patients with an AUC of at

least one drug below the threshold were over-whelmingly more likely to have a poor

outcome (odds rate 14.14; 95% confidence interval 4.08 – 49.08) compared to patients with

an AUC for each drug above the threshold (Table 1). Furthermore, the study clearly

demonstrated that an individual’s pharmacokinetic variability was not able to be predicted

by easily measurable factors, asserting the clinical relevance of individual drug

concentration monitoring. It remains to be studied whether these findings are replicable in

other settings or among patients with other comorbidities, and if similar pharmacokinetic

thresholds can be established for key second-line drugs within the MDR-TB regimen.

Of the second-line TB agents, the fluoroquinolones have been subjected to rigorous testing,

and like their first-line counterparts show concentration-dependent killing exemplified by

AUC/MIC in murine models, HFS and human studies [38-42]. Though less so than

rifampin, Cmax and AUC track reasonably well for the fluoroquinolones, covary over fixed

doses and intervals, and Cmax alone has been used for clinical action regarding dose

adjustment [38]. Notably, the fluoroquinolones have also exhibited considerable

pharmacokinetic variability when tested in TB-infected human cohorts [43]. For instance, in

a study of ofloxacin pharmacokinetics from South Africa, only 45% of patients reached

target AUC/MIC, and for all those with an isolate harboring an increased MIC of 2.0 μg/ml,

but still considered within the conventional susceptible range, 0% reached the target [44].

Given these observations and that fluoroquinolone anti-TB activity is not consistent across

the class, the fluoroquinolones may be particularly applicable for pharmacokinetic
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monitoring and dose optimization in the treatment of MDR-TB [44,45]. Less is known about

the pharmacokinetic–pharmacodynamic parameters of other second-line drugs in TB-

specific treatment settings, and has instead been extrapolated from non-TB models [46].

Linezolid, and the recently FDA-approved diarylquinoline, bedaquiline, are exceptions,

given their comparatively recent introduction [47,48]. In an early bactericidal study in

human TB, linezolid activity was linear at AUC/MIC values up to 120, but the correlation

was diminished once T > MIC reached 100% [49]. Both animal and human data on

bedaquiline support time-dependent bactericidal activity with a rather delayed onset of

action [50].

4. Therapeutic drug concentration monitoring in practice and emerging

methods to optimize treatment

The clinical application of drug concentration monitoring and adjustment of drug dosages in

individual patients, termed therapeutic drug monitoring (TDM), has been employed

regularly by specialized TB treatment centers [51]. The Cmax is practically targeted for

TDM for many of the key first-line drugs, and can be closely approximated by a 2- and 6-h

post-dose blood draw. Many of the first-line drugs reach peak concentrations within 1 – 3 h

of administration, yet the 6-h blood draw can help distinguish between delayed absorption

and malabsorption among those patients with abnormal 2-h concentrations. Blood is

centrifuged after it is drawn, and the serum is immediately frozen. Methods differ for each

drug but commonly utilize high-performance liquid chromatography, gas chromatography

or, more recently, tandem mass spectrometry for determining serum concentrations.

Consequently, drug concentration analysis is usually performed by experienced laboratories,

in relatively few settings worldwide. Even in settings with access to specialized laboratories,

overall cost including serum transport and logistical coordination has limited more

widespread uptake. Furthermore, concentrations below the expected range for key drugs in

the anti-TB regimen have been found in patients responding well to treatment [10,52], and

even more refined means of interpreting TDM results may evolve, such as measuring

plasma protein binding of the drugs in question [53]. Thus, some large governmental

programs have sought guidance for the strategic selection of patients that would benefit most

from TDM.

The application of dried blood spot (DBS) analysis instead of serum analysis may ultimately

overcome the obstacle of specimen storage and transport [54]. For DBS analysis, blood is

obtained by single-use lancing devices and dropped directly on DBS paper, generally

cellulose- or a cotton-based filter. The paper is left to dry at room temperature and then

stored in a plastic bag with desiccant packages. The samples can be sent to outside

laboratories using normal postal systems without the need for special mailing cartons or

preservation of the cold chain. Once received by the laboratory, a disc of uniform size is

punched from the paper and subjected to solvent extraction with subsequent drug

quantification through standard means [55]. The lower blood volume required for DBS

reduces its biohazardous risk compared to conventional serum sampling and makes it more

applicable to pediatric populations. A recent study using second-line drugs for MDR-TB

found little variation with ranges of hematocrit between 20 and 50% and acceptable
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correlation between whole blood and plasma values by calculable conversion factors from

the geometric mean DBS/plasma concentration ratios [56]. The stability in DBS does vary

from drug to drug, depending on temperature ranges [54]; hence, further study is needed to

refine drug-specific protocols.

Other TB bioassays provide functional pharmacodynamic information without the use of

chromatography or mass spectrometry and have utilized TB culture accessible in many

mycobacteriology laboratories worldwide. Wallis et al. developed a method of performing

culture of M. tuberculosis with a subject’s whole blood while on TB therapy to quantify the

predominately intracellular bactericidal activity of a drug individually, or in a combination

regimen [57]. Given the bactericidal activity observed for common drugs in whole blood

culture closely approximated that observed in clinic practice, and total bactericidal activity

correlated with two-month sputum culture conversion in subjects on a drug-susceptible TB

regimen, whole blood culture has been proposed as a functional biomarker and continues to

be used in new drug development [58-60]. Others have constrained similar analysis to

plasma and employed the patient’s own M. tuberculosis isolate, finding significant

correlation with drug concentrations for isoniazid and rifampin in a drug-susceptible TB

regimen [61]. The plasma drug activity assay has also been applied to subjects with MDR-

TB in Tanzania, and it was found that subjects with the worst plasma drug activity against

their M. tuberculosis isolate had significantly lower kanamycin Cmax/MIC [43]. While

lacking the precision of individual drug concentration and MIC information, plasma drug

activity is being considered for use in stratifying MDR-TB patients for early hospital

discharge and decentralized management. In addition to ensuring adequate drug exposure,

methods are being designed to limit toxicity. Approaches include CY450 enzyme activity

and hERG gene channel pathway assessment used in the evaluation of new anti-TB

compounds [62].

5. Pharmacokinetics of TB drugs in special populations

5.1 HIV

Of the 8.8 million incident cases of TB in 2010, 1.1 million were infected with HIV and at

risk for shortened survival and higher rates of TB recurrence compared to TB patients

without HIV [63-65]. In a cohort of TB patients from Botswana, the majority HIV infected,

those with low pyrazinamide peak concentrations were 3 times more likely to have poor TB

treatment outcome even when adjusting for HIV infection [8]. Furthermore, low rifampin

concentrations were so common, found in 84%, that differences in outcome may have been

difficult to appreciate in dichotomous analysis. Additionally, the increased number of

medications required for both diseases early in the course of TB therapy [66-69] may lead to

drug toxicity or poor adherence that further limits treatment success. Independent of drug

interactions, TB drugs may be improperly absorbed in HIV patients with various forms of

enteropathy [70-72]. This may be particularly problematic for rifampin in which absorption

is dependent upon both gut permeability and solubility, the latter affected by both pH and

gut transit time [73]. Indeed, HIV patients with CD4 < 100 on intermittent (twice or thrice

weekly regimens) in the clinical trial setting have shown increased rates of acquired

resistance to the rifamycins, explained by poor exposure (as marked by AUC0 – 24) to the
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study drug of rifabutin, but also isoniazid, and for these reasons daily dosing is

recommended [74,75].

HIV-related TB also presents the paradoxical problem that rifampin is a potent CYP450

inducer, limiting the role of key antiretrovirals such as protease inhibitors and some non-

nucleoside reverse transcriptase inhibitors (NNRTIs) that are heavily metabolized through

this system [76]. Unfortunately, HIV patients treated with rifamycin sparing anti-TB

regimens have been shown to have worse outcomes [77]. Of the NNRTI class, efavirenz, at

standard doses, has been shown to be effective in patients treated with rifampin without

compromise of HIV virological suppression [78,79]. Yet while rifampin induces CYP2B6,

isoniazid also inhibits a secondary pathway of CYP2A6-related metabolism and may

actually increase efavirenz concentrations during TB treatment in those patients with a slow

CYP2B6 metabolizer genotype, thereby risking efavirenz-related toxicity [80,81]. Rifabutin,

a much less potent inducer, may be used in replacement of rifampin, but when employed in

combination with protease inhibitor-based antitretroviral regimens plasma concentrations of

rifabutin are increased due to protease inhibitor inhibition of CYP3A4 necessitating

considerable dose reduction [82-84]. Thus, for these complex interactions and to balance

efficacy and toxicity, HIV-infected TB patients represent an ideal population for operational

research in TDM-directed management.

5.2 Diabetes mellitus

Diabetes is a risk factor for TB infection and progression to active disease with the largest

meta-analysis to date concluding that diabetics were 3.1 times more likely than non-

diabetics to develop active TB [85-88]. Furthermore, diabetic patients have been shown to

have higher rates of treatment failure and death [89-91]. Concentrations of isoniazid and

rifampin below the expected range are commonly found in TB patients with diabetes, and in

some studies diabetes has been an independently associated with decreased serum

concentrations of rifampin [92,93]. In settings where TDM is routinely practiced, some TB

programs have elected to check drug concentrations early in the course of therapy in all

diabetics [94]. In one such initiative, 76% of all diabetics had peak concentrations of

isoniazid, rifampin or both medications below the expected range that were then corrected

with a single dose increase [94]. Other means of regimen intensification or extended

duration of anti-TB treatment have yet to be prospectively studied in diabetic patients, and

no consensus recommendations for treatment modification currently exist. Therefore, as the

incidence of diabetic-related TB is anticipated to rise, we expect considerable new study in

this subpopulation [95].

5.3 Pediatrics

Pediatric TB is estimated at 500,000 cases annually contributing to 64,000 deaths among

children in 2011 [1]. Pediatric patients metabolize drugs differently than adults, most

notably evidenced by the more rapid metabolism of isoniazid and the subsequently higher

mg/kg dose requirement [96]. Host genetic predisposition for the rate of isoniazid

metabolism can be predicted by polymorphisms in the N-acetyltransferase 2 gene

responsible for acetylation, but can more functionally be measured by the serum isoniazid

and acetyl-isoniazid fraction [96]. Additionally, lower anti-TB drug concentrations have
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been found in malnourished children compared to those without malnourishment. As in

adults, children with TB and HIV are also at risk for suboptimal drug exposure [97,98]. We

expect an expansion of pharmacokinetic data in pediatric TB patients given requests for this

study from WHO and other international advocacy groups and that evaluation of novel anti-

TB drugs in pediatric patients is now a prerequisite for approval in the US and Europe

[99-101]. Innovation in this setting is not only expected to center on novel compounds but

also on pediatric friendly preparations and optimal dose combinations.

5.4 Extrapulmonary TB

Despite mainly infecting the lung, TB can affect any organ of the body, and does so with

increased frequency in pediatric and HIV-infected populations [102]. While treatment of

most forms of extrapulmonary TB (EPTB) does not differ from pulmonary TB, meningitis

and bone/joint disease may require a longer duration, and TB meningitis in particular carries

considerable morbidity and mortality [103]. Given anatomic barriers to drug penetration,

these forms of EPTB may be apt for study of dose optimization.

For instance, studies of cerebrospinal fluid concentrations of anti-TB drugs show good

penetration of isoniazid, but relatively poor penetration of rifampin, which is larger, more

protein bound, and susceptible to alteration in membrane drug transporters. Consequently,

rifampin rarely exceeds the MIC at standard doses [104]. Despite this, higher-dose rifampin

for TB meningitis has not been formally recommended. Yet a recent study of adults with TB

meningitis in Indonesia found lower cerebrospinal fluid than plasma concentrations of

rifampin and those treated with higher-dose intravenous rifampin during the first 2 weeks of

therapy had significantly lower 6-month mortality (35 vs 65%) than patients treated with

standard-dose rifampin [105]. No increase in adverse effects was seen with increased

dosages of rifampin. Given the high early mortality of TB meningitis in resource-limited

settings, these patients may represent a subpopulation for an empiric higher dose of

rifampin, followed by the application of DBS for dose adjustment. Similar to the ongoing

trials of higher-dose rifampin to shorten the treatment duration for pulmonary TB, we

anticipate a growing body of studies to inform the optimal dosing of rifampin and the later-

generation fluoroquinolones in the treatment of TB meningitis.

6. Conclusion

Individual pharmacokinetic variability is far more common than previously understood and

contributes to poor TB outcomes independent of adherence. Yet such pharmacokinetic

variability has proven difficult to predict without TDM. Application of pharmacokinetic data

has thus far been limited to experienced treatment centers, but may become increasingly

accessible by means of DBS. Incorporation of TDM with the MIC from an individual

patient’s M. tuberculosis isolate may be particularly beneficial for second-line drugs used in

the treatment of drug-resistant TB. These applications require operational research in

patients at high risk of poor treatment outcome. Doing so will better inform new drug

development because unlike many other infectious diseases, TB is treated not with a single

drug, but rather a complex multidrug regimen.
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7. Expert opinion

Initially, we anticipate considerable operational research to validate the pharmacokinetic

thresholds associated with poor TB treatment outcome in drug-susceptible TB, and

determination if similar thresholds can be established for key second-line drugs in the MDR-

TB regimen. In TB endemic settings, the vast majority of TB treatment is delivered by

governmental or non-governmental organizations with poorly funded mandates from local

health ministries informed by international or national guidelines. Resource constraint in

these settings does not favor individualized management. Yet if validation studies continue

to demonstrate that pharmacokinetic variability contributes as significantly to TB outcome

as has been found in the work of Pasipanodya et al. in South Africa [7], then resource-

constrained organizations and guiding bodies will be compelled to redefine empiric dosing

or critical concentrations for drug resistance, or rather adopt a degree of individualized

management in the form of applied pharmacokinetics (Figure 2). Each approach carries

consequence for innovation and novel drug development.

For instance, we may predict given the encouraging clinical trial results in higher-dose

rifampin that empiric dose increase will eventually become standard practice for drug-

susceptible pulmonary TB and TB meningitis, and may therefore lessen the need for

individual TDM in that setting. TB programs may ultimately opt for individualized

management in only specialized scenarios, limiting the market for innovative improvement

in TDM delivery. Yet we agree with others that MDR-TB may represent an emerging niche

[106,107]. Certainly TDM of plasma may not reflect drug concentrations at the site of

infection, yet recent reports of correlative plasma concentrations of MDR-TB drugs with

concentrations from pathologic specimens of affected lung are encouraging [106].

Furthermore, molecular diagnostics for M. tuberculosis drugresistance mutations will be

more extensively informed by deeper sequencing methods and individual mutations may

become increasingly precise in predicting quantitative change in MIC. In this scenario, we

could anticipate TDM results for key MDR-TB drugs to be used in concert with rapid

quantitative susceptibility in order to guide therapeutic decisions at the bedside. Regardless,

rigorously performed studies of currently available second-line drug pharmacokinetics will

better define the rational introduction of novel therapeutics.
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highlights

• Tuberculosis (TB) is responsible for approximately 1.4 million deaths per year,

the leading cause of death from a curable infectious disease worldwide.

• Individual pharmacokinetic variability is underappreciated and can lead to poor

long-term treatment outcome including relapse and acquired drug resistance.

• Threshold pharmacokinetic parameters associated with poor treatment outcome

will guide further validation across diverse patient populations and

comorbidities, and will be sought for second-line drugs used in the treatment of

multidrug-resistant (MDR)-TB.

• Therapeutic drug monitoring (TDM) is the most accurate means of assessing

individual pharmacokinetic variability but is inaccessible in most TB endemic

settings.

• Optimizing treatment regimens based on individual pharmacokinetics in TB

endemic settings may become more realizable with dried blood spot TDM and

commercialized MIC plates – areas of innovative opportunity – but uptake will

be tempered by programmatic unfamiliarity with individualized management.

• A relative explosion of pharmacokinetic research is anticipated in special

populations including MDR-TB and those at higher risk of poor treatment

outcome and should inform new drug development and application.

This box summarizes key points contained in the article.
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Figure 1. TREK MYCOTB Sensititre plate of a multidrug-resistant isolate
Each column contains prefilled wells of lyophilized drugs of increasing (from bottom to top)

concentration. Shelf-life is 2 years at room temperature. Standardized inoculum of a

patient’s Mycobacterium tuberculosis in liquid media is added to each well and can be read

manually at set growth intervals thereby allowing MIC interpretation. Photo courtesy of

Prof. Eric Houpt, University of Virginia.

AMI: Amikacin; CYC: Cycloserine; EMB: Ethambutol; ETH: Ethionamide; INH: Isoniazid;

KAN: Kanamycin; MXF: Moxifloxacin; OFL: Ofloxacin; PAS: Para-aminosalicylic acid;

RFB: Rifabutin; RIF: Rifampin; STR: Streptomycin.
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Figure 2. Depicted are scenarios for operational research that can be studied to optimize anti-TB
regimens in resource-limited and TB endemic settings
In these scenarios the term resource-limited setting assumes that therapeutic drug monitoring

and minimum inhibitory concentration (MIC) may be available at a national or supranational

reference laboratory and multidrug-resistant (MDR)-TB is diagnosed by rapid molecular

test. Each subpopulation of MDR or non-MDR-TB patient may represent a separate

interventional opportunity thereby necessitating their own control group.

DBS: Dried blood spot, a distinct delivery system with innovative opportunity; TB:

Tuberculosis.
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