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Abstract

Purpose of review—This review intends to describe recent studies on pancreatic tumor

associated stroma and potential opportunities and limitations to its targeting.

Recent findings—One of the defining features of pancreatic cancer is extensive desmoplasia, or

an inflammatory, fibrotic reaction. Carcinoma cells live in this complex microenvironment which

is comprised of extracellular matrix (ECM), diffusible growth factors, cytokines and a variety of

non-epithelial cell types including endothelial cells, immune cells, fibroblasts, myofibroblasts and

stellate cells. In addition to the heterogeneity noted in the non-neoplastic cells within the tumor

microenvironment, it has also been recognized that neoplastic cancer cells themselves are

heterogeneous, and include a subpopulation of stem-cell like cells within tumors termed cancer

stem cells. Due to the failure of current therapeutics to improve outcomes in patients with

pancreatic cancer, new therapeutic avenues targeting different components of the tumor

microenvironment are being investigated. In this review article, we will focus on recent studies

regarding the function of the tumor stroma in pancreatic cancer and therapeutic treatments that are

being advanced to target the stroma as a critical part of tumor management.

Summary—Recent studies have shed new light on the contribution of the pancreatic cancer

fibroinflammatory stroma to pancreatic cancer biology. Additional studies are needed to better

define its full contribution to tumor behavior and how to best understand the optimal ways to

develop therapies that counteract its pro-neoplastic properties.
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Introduction

Pancreatic ductal adenocarcinoma (PDAC) is the fourth most common cause of cancer

related death, accounting for approximately 34,000 deaths each year in the United States,

with an increasing annual incidence rate (1). With an overall five year survival rate of <5%,

death rates closely mirror incidence rates, reflecting the ineffectiveness of current therapies

and the direness of the disease. A recent report has stated that if current trends continue,

pancreatic cancer will become the second leading cause of cancer deaths in the United States

by 2020 (2). A small number of systemic therapies including Folfirinox, and a combination

of gemcitabine and Abraxane, are reported to have modest clinical benefit over gemcitabine

alone in the metastatic setting (3-6). However, the prospects of cure, or even modest long

term survival, are essentially non-existent in patients with advanced PDAC. Most

adenocarcinomas of the pancreas are characterized by a dense fibrous stroma. Recent studies

have been focusing on therapeutic targeting of the stroma to enhance drug penetration. It is

becoming increasingly clear, however, that the unyielding stroma of pancreatic tumors does

not simply act as a barrier to drug delivery, but as a complex signaling partner promoting

tumorigenesis. The focus of the review is to update the reader about recent advances in the

understanding of pancreatic cancer associated stroma, where key questions remain, and to

better understand the therapeutic implications of stromal targeting in pancreatic cancer.

Cancer associated fibroblasts in stroma

Pancreatic ductal adenocarcinoma (PDAC) is one of the most stroma-rich cancers.

Individual tumors show a wide range of growth rates and stromal content (7, 8). PDA stroma

is very heterogeneous and comprises cellular and acellular components, such as fibroblasts,

myofibroblasts, pancreatic stellate cells (PSC), immune cells, blood vessels, extracellular

matrix (ECM), and soluble proteins such as cytokines and growth factors (9). The fibrotic

stroma in PDAC forms an environment that promotes cancer progression by enhancing

pancreatic tumor growth as well as regional and distant metastasis (10). Furthermore, the

stroma has been shown to induce resistance to chemotherapy and radiation therapy (11) and

to constitute a barrier to the delivery of therapeutic agents (12). Whether depletion of the

stroma would indeed result in regression of patient tumors has not been formally

demonstrated. A possibility to consider based on the instructive role of mesenchyme in

epithelial-mesenchymal interactions during development is that the mesenchyme (in this

case tumor associated stroma) might be secreting factors, that in some instances, might

affect the differentiation status of tumor cells, causing the tumor cells to differentiate, tilting

the balance towards differentiation as opposed to proliferation. One example comes from a

study showing the TGF-β target connective tissue growth factor (CTGF) expressing

mesenchyme was associated with more highly differentiated tumors and better prognosis

(13).

In order to study the contributing role of the tumor stroma to pancreatic cancer biology,

researchers have utilized stellate cells from rat and human pancreata (11, 14-18). Stellate

cells of the pancreas have an unknown origin, produce vitamin A droplets in the quiescent

state, and develop a myofibroblast type appearance once activated. Whether all the

fibroblasts within the stroma are derived from stellate cells has not been established.
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However, it is reasonable to expect that other components might contribute to the fibroblast

population, including peri-vascular fibroblasts that become activated upon tissue injury and

possibly bone-marrow derived cells. Stellate cells and other fibroblasts might be activated

upon tissue injury and accumulate in the pancreas during carcinogenesis. So far, most

studies addressing the functional roles of pancreatic cancer associated fibroblasts (CAFs)

have relied mainly on immortalized stellate cells, although one group has successfully

cultured primary CAFs for functional studies as well (16). These cells have been shown to

enhance tumor growth, metastasis, and inhibit the effects of chemotherapy and radiation

therapy on tumor cells. (11, 16-18). Interestingly, a subset of pancreatic CAFs have been

shown to express the surface marker CD10, thus constituting a distinct subpopulation. CD10

expressing stellate cells were shown to induce an invasive phenotype in pancreatic cancer

cells more extensively than cells lacking CD10 expression (14). Despite this interesting

finding, the mechanism by which CD10 expressing cells enhanced tumorigenesis was not

interrogated. Overall, these studies suggest that stroma can enhance tumor growth and

invasion.

Mesenchymal stem cells in stroma

Mesenchymal stem cells (MSCs) have attracted great interest because their presence has

recently been identified in human tumors and they have been shown to have the ability to

migrate and engraft to areas of tumor development (19). However, the role of MSCs during

tumor growth appears to be exquisitely tissue-specific, with tumor-promoting or tumor-

inhibiting effects observed in different settings. Recent studies in solid tumors of lung,

stomach and ovary has identified MSCs associated with cancer and have described their

tumor enhancing properties (20-24). MSCs have so far not been identified in pancreatic

cancer, and therefore no information is available as to their potential role in the context of

this disease.

Mesenchymal stem cells drive cancer stem cells

Histologically, pancreatic cancer shows immense cellular heterogeneity within the same

tumor, indicating a complex regulation of cancer progression. Our lab has previously

identified and characterized pancreatic cancer stem cells (CSC), and has demonstrated that

the capacity of a tumor to grow and propagate is dependent on this small subset of cells (25).

A key question in the field has been whether these CSCs are a fixed population or if they

might exhibit some plasticity and be responsive to cues from the microenvironment. To that

end, a recent study has identified the contributions of bone marrow derived MSC’s in

regulation of EMT and in maintenance of a pancreatic tumor initiating cell population (26).

MSCs treated with TGF-beta showed enhanced ability to induce EMT and sphere formation

in tumor initiating cells. Furthermore, these effects by TGF-beta treated MSC’s were

dependent on Notch signaling activity. It remains to be ascertained whether these results

have relevance in the context of an intact pancreatic cancer microenvironment.

Hedgehog and Stroma

Hedgehog signaling is absent in the normal adult pancreas, but is induced during PanIN

formation and PDAC progression (27). Three mammalian hedgehog genes have been
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identified as ligands: Sonic hedgehog (Shh), Indian hedgehog (Ihh), and Desert hedgehog

(Dhh). These ligands can bind to the receptors Patched-1 (Ptch-1) and Patched-2 (Ptch-2).

Hh ligands elicit their effects by antagonizing Patched activity. Hh binds Ptch and relieves

Ptch inhibition of a transmembrane protein called Smoothened (Smo). Once Smo is

activated, it acts through a protein complex to block proteolytic processing of a zinc finger

transcription factor family called Gli. The proteolyzed form of Gli is a potent transcriptional

repressor, but upon stabilization by Hh signals, full-length Gli translocates to the nucleus,

where it binds and activates Hh target genes (28). There are 3 Gli zinc finger transcription

factors: Gli1, Gli2, and Gli3. Gli1 is completely dependent on Hh activity for its expression

and primarily functions as an Hh activator (29-34). While Gli2 exhibits both activator and

repressor activities, Gli3 is primarily a transcriptional repressor although transcriptional

activator properties have been described (34-36) Hh signaling in pancreatic cancer occurs in

a paracrine mechanism with expression and secretion of Hh ligand in cancer cells and

activation of the canonical signaling pathway in the adjacent stromal cells (37, 38). This

activation of Hh signaling in the stromal cells in turn supports tumor growth and metastasis.

Recent reports show that Hh inhibition resulted in a decrease in the fibrous stroma. Hh

signaling was inhibited using anti-Shh 5E1 antibody in orthotopic xenografts derived from

pancreatic cancer cell lines which showed a decrease in desmoplasia, as measured by a

decrease in smooth muscle actin (SMA) positive cells and reduced collagen deposition (39).

In a second report, Hh signaling was inhibited using the smoothened inhibitor (IPI-926,

Infinity Pharmaceuticals) in a genetically engineered mouse model of PDAC. This study

demonstrated not only a decrease in the fibrous stroma but an increase in the uptake and

anticancer effects of gemcitabine (12). These results lead to a Phase II clinical trial using

IPI-926, however the study was stopped early due to increased mortality in the treatment

arm [NCT01130142 (clinicaltrials.gov)]. The reason for these discordant results in the

genetically engineered mouse model and patients remains to be elucidated. In contrast to

these studies, another study found that inhibition of Hh signaling using the anti-Shh 5E1

antibody in primary patient derived pancreatic cancer xenografts at orthotopic sites did not

result in attenuation of the stroma (40). These differences may be due to different levels of

SHH production in the different models used, or alternatively it is possible that targeting

different components of the Hh pathway may account for different effects of the tumor and

its associated stroma (40). Recently an elegant study detailed the role of Gli1 in Kras

induced carcinogenesis (41). Loss of Gli1 in the pancreatic epithelium blocked the

progression of Kras induced PanIN lesions to pancreatic cancer. This effect was shown to be

mediated by Gli1 regulation of IL-6. It was also shown that Kras induced Shh expression in

tumor cells lead to activation of Gli1 in the stroma. Once activated, Gli1 was shown to bind

to IL-6 promoter, thereby increasing its expression. IL-6 from the stroma then induced Stat3

activation in the tumor cells (41). This study shows a clear mechanistic link between SHH

production by neoplastic epithelial cells and the induction of stromagenesis in the pancreas

by an IL-6/Stat3 related mechanism (Figure 1).

Immunosuppressive cells in stroma

Immune cells are a significant part of pancreatic tumor associated stroma and can be seen

early during PDAC development (9). PDAC creates a highly immunosupperessive tumor
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microenvironment through the production of inhibitory cytokines and recruitment of

immunomodulatory cells (9). Recent reports have focused on the mechanism of recruitment

of immunosuppressive cells to the site of tumor growth and the origin of

immunosuppressive cells, also known as myeloid derived suppressor cells (MDSC). The

increased presence of MDSC in bone marrow and peripheral circulation of patients with

PDAC has been correlated with disease stage. Furthermore, targeting MDSCs with

zoledronic acid (a potent aminobisphosphonate that is known to target MDSC) in a

genetically engineered mouse model of pancreatic cancer improved the host anti-tumor

response, delayed tumor growth rate, prolonged median survival, and increased recruitment

of T cells to the tumor, suggesting it’s therapeutic potential (42). Two recent papers have

demonstrated that Kras induced GM-CSF production from tumor cells leads to recruitment

of MDSC to tumor microenvironment. GM-CSF was shown to be necessary and sufficient

in recruiting and in driving the development of MDSC (43) (44). Another group has shown

that pancreatic cancer associated stellate cells induce differentiation of MDSC in a Stat3

dependent manner via IL-6 signaling pathway (45). Therefore, both the tumor and its

associated stroma in PDAC cooperate in suppressing the host immune response. As a result,

targeting the immune compartment of the tumor microenvironment may be beneficial in

enhancing the anti-tumor response.

Oncogenic Kras and the pancreatic cancer stroma

The use of genetically engineered mouse models of pancreatic cancer has opened the way to

studying the initial steps of pancreatic tumorigenesis in the context of an intact

microenvironment. The models that best represent the human disease rely on tissue-specific

expression of an oncogenic form of Kras, KrasG12D, which is the most common mutation

in human pancreatic cancer (7, 8). The most commonly used model combines the Kras

mutation with a mutant form of the tumor suppressor p53, and is frequently referred to as

KPC mouse (46). Analysis of the KPC mouse has shown that the accumulation of the

fibrotic stroma and infiltrating immune cells accompanies the formation of pancreatic cancer

from its early stages, represented by the precursor lesions known as PanINs (Pancreatic

Intraepithelial Neoplasia) (47). Accumulation of the fibrotic stroma and the establishment on

an immunosuppressive environment might be prerequisites for tumor progression. How

these characteristics are established and maintained is still a matter of debate. Recent insight

indicates that epithelial cells expressing oncogenic Kras provide signals that lead to

accumulation of the stroma, proliferation of its components, and maintenance of the stroma

over time. The recently described iKras* mice (48) express KrasG12D in a tissue-specific

manner. In contrast with KPC mice, KrasG12D expression in these animals is inducible and

reversible. Thus, oncogenic Kras expression can be inactivated at any time, and the effects

of this inactivation both on the epithelial cells and the surrounding stroma can be evaluated.

Similarly to KPC mice, PanIN formation in iKras* mice is accompanied by the

accumulation of a fibroinflammatory stroma. Intriguingly, though, inactivation of Kras at

the PanIN stage or in tumors is rapidly followed by suppression of proliferation within the

stroma compartment, return of the fibroblasts to a quiescent state (characterized by loss of

smooth muscle actin expression), and eventually remodeling of the extracellular matrix and

elimination of the fibroblasts. In addition, the inflammatory infiltrates gradually decrease
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over time. The exact mechanisms mediating the relation between the oncogenic Kras-

expressing tumor cells and the surrounding fibroblasts and immune cells is not fully

elucidated. However, it is to be noted that Shh expression in the epithelial cells returns to

basal (undetectable) levels upon Kras inactivation. It is however likely that multiple

signaling pathways contribute to the changes in the stroma. In fact, the use of a reporter

allele for the Hedgehog target gene Gli1 indicated that only a small subset of the fibroblasts

within the stroma, and an even smaller subset of the immune cells, have active hedgehog

signaling. Thus, Hedgehog signaling is not likely to be the only,nor the prevalent, signal

mediating epithelial-mesenchymal interactions in pancreatic cancer. The evidence that Kras

inhibition results in remodeling of the stroma implies that it might be possible to target the

stroma though targeting the tumor cells. Another aspect to consider is that the signals

produced by the stroma and necessary for tumor growth are largely unknown; if identified,

those signals might constitute other potential therapeutic targets.

Stromal markers and prognosis

Stromal prognostic markers that may predict disease recurrence have recently received

attention. The activated stroma index, defined as the ratio of myofibroblasts over collagen

deposition, was shown to be an independent prognostic marker of survival in pancreatic

cancer patients. A high stromal index as shown by increased number of myofibroblast cells

correlated with poor survival, while in contrast, high collagen deposition was correlated with

significantly better survival (49). These findings are intriguing, and suggest the possibility

that the amount of stromal deposition may influence tumor behavior in a way not previously

expected. Further functional studies will be needed to validate the relevance of this finding

in an independent patient cohort.

The presence of tumor associated macrophages (TAM) and neutrophils (TAN) cells in the

tumor microenvironment has been shown to be a poor prognostic marker (50, 51). Both

TAM and TAN promote tumor cell invasiveness by breaking down ECM in PDAC (52).

While some studies have focused on enumeration of different cell types within the

pancreatic tumor micorenvironment to identify potential prognostic and therapeutic markers,

others have focused on the proteins expressed in these different cell types. One such study

identified expression of fibroblast associated protein (FAP) in tumor adjacent

myofibroblasts cells and correlated it with poor prognosis (53). More recently, expression of

the kindlin-2 focal adhesion protein in peritumoral cancer associated fibroblasts was

associated with poor prognosis (54). Additional analysis will be needed to discern the utility

of specifically targeting individual cell types and/or their products as part of emerging

treatment regimens.

Current therapeutic stromal targets

While our understanding of tumor biology has facilitated the development of new cancer

treatments, based on the growing body of data implicating a tumor-promoting role of the

stroma, new therapeutic regimens including agents to target the stroma have been

developed. In a recent paper by Provensano et. al., the authors found that targeting

hyalouronidase decreased the high interstitial pressure present in tumors and improved
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chemotherapy delivery with significant inhibition of tumor growth in the KPC model. A

similar observation was made by Jacobetz et, al.(55, 56). In addition, an anti-fibrotic drug,

pirfenidone known to exert antifibrotic effects by inhibiting fibroblasts and the production of

TGF-β, PDGF, and collagen type I and currently approved for treatment of patients with

pulmonary fibrosis has recently been reported to inhibit tumor growth using a mouse model

of PDAC (57). Further, recent studies in humans have demonstrated that treatment with nab

paclitaxel (also known as Abraxane), thought to deplete the stroma through effects on

SPARC inhibition, inhibited tumor growth in PDAC patients (5). A large, multi-center

randomized Phase III prospective clinical trial was reported at ASCO GI this year showing

that gemcitabine and Abraxane resulted in prolonged patient survival compared to

gemcitabine alone (3). Analysis of accompanying tumor samples will provide useful

information to confirm if this treatment regimen exerts its anti-tumor effects through

SPARC or effects on the stromal content of the tumor.

MSC’s as a therapeutic tool to bypass stroma in pancreatic cancer

Cell based therapy is a novel therapeutic strategy for targeting solid tumors. MSCs in

particular have shown promise as targeting moieties due to their ability to migrate and

engraft to established tumor. Early studies using lentiviral vectors have demonstrated the

ability of genetically modified, EGFP lentiviral transduced MSCs to migrate to sites of

orthotopic tumors (58). This was followed up by a study demonstrating that intravenous

injection of MSCs expressing a CCL5 promoter driven Herpes simplex virus thymidine

kinase (HSV-Tk) gene inhibited primary tumor growth by 50% and reduced liver metastasis

compared to control lentiviral transduced MSCs(59). In a recent study human pancreas

derived MSCs were engineered with TRAIL to study its effects on pancreatic cancer cell

lines. This study demonstrated that pancreas derived MSCs possess intrinsic ability to inhibit

pancreatic cancer cells which can be potentiated by TRAIL (60).

Conclusions

Our understanding of pancreatic cancer is shifting from a disease of malignant tumor cells

only towards a complex interactive tumor microenvironment (Figure 1). This recognition

has increased the focus on the fibroinflammatory stroma of PDAC. It is clear that the

extensive desmoplastic reaction observed in pancreatic cancer is a key feature of the biology

of this disease. New therapeutic regimens are likely to incorporate agents which target

components of the tumor microenvironment, including the stroma, along with the neoplastic

epithelial compartment of the tumor. Further research is needed to best determine the

optimal therapeutic approaches to most effectively target the heterogeneous cell populations

in the tumor to eradicate the disease and improve patient survival.
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Abbreviations

CAFS cancer-associated fibroblasts

MSCs mesenchymal stem cells

ECM extracellular matrix

PDAC pancreatic ductal adenocarcinoma
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Key points

• Pancreatic cancer is characterized by a dense stroma

• The tumor promoting roles of stroma have been documented

• Both the tumor and stroma promote immunosuppression

• Stromal cells and proteins may serve as prognostic and/or therapeutic

biomarkers

• The stroma has emerged as a potential therapeutic target
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Figure 1.
Model of tumor-stromal interactions: Kras induced Hedgehog signaling promotes the early

steps of tumor development leading to the characteristic unyielding pancreatic desmoplastic

reaction
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