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ABSTRACT Conditions for natural selection to favor in-
crease of a quantitative character are derived for a model in
which individuals associate in groups of size n. It is assumed
that the logarithm of the fitness of an individual is the sum of
two parts, one proportional to the individual's own phenotype,
and the other to the mean phenotype in its group. The resulting
conditions for the trait to increase under natural selection are
analogous to the results found previously in single-locus kin
selection models.

Conditions for the evolution of altruism by kin selection have
been developed by Hamilton (1-3). His result was simple: for
a gene for altruism to be favored, the ratio of the loss in fitness
of the altruist to the gain in fitness of the recipient must be less
than the coefficient of relationship between these two. Altruism
will be favored by selection only when the two are sufficiently
closely related. Kin selection has since been examined in greater
detail by Levitt (4) and by Matessi and Jayakar (5), whose results
are roughly compatible with those of Hamilton.

In all of these studies it has been assumed that a single gene
for altruism is segregating. Hamilton (1) suggested that his
criterion would also apply to multifactorial inheritance of the
trait, but provided no proof. In this note we obtain conditions
analogous to Hamilton's for a model in which the propensity
towards altruism is a polygenic quantitative character.
We consider a quantitative character x, which measures the

propensity toward altruistic behavior. It is assumed to be dis-
tributed in an infinite diploid population according to a normal
distribution with mean ,u and variance A2. The assumption of
a normal distribution will be valid if the phenotype is the sum
of effects at an infinite number of loci, each of infinitesimal
importance (plus an environmental effect). Under some cir-
cumstances (6) a model with a finite number of loci will show
a normal distribution of the phenotype if there are an infinite
number of alleles at each locus, and the allele effects are nor-
mally distributed.

During the relevant period of their life, the organisms are
assumed to associate in groups of size n, such that the joint
distributon of phenotypes of the n individuals is assumed to be
multivariate normal, with phenotypic correlation coefficient
r between all pairs of members of the group. Their joint dis-
tribution is then

fx)-=(27r)n/21 VI/2 exp -2 (x- )'V(x-)] [1]

in which

A/ = (A' A) *--, )lXn
and

V= a2(1.j )

After association into groups, the fitness of each individual
is determined as a function of its own phenotype and that of the
other members of the group. The particular assumption we
make is that the fitness of the ith member of the group is a
product of two factors, one dependent only on its own pheno-
type, and the other only on the mean phenotype of all members
of the group. In particular:

wi(x) = eaoxies = exp[-axi + 32Bxj/n]. [2]
Note that the phenotype xi affects x-, so that the ith individual's
effect on its own fitness is the factor exp[(-a + f3/n)xj]. Ex-
pression 2 is assumed to be the same for all i = 1, 2, * * , n, so that
the numbering of individuals within each group is completely
arbitrary: the model is symmetric. The exponential function
2 is chosen purely for convenience, because it maintains the
multivariate normality of the joint phenotype distribution after
selection, thus avoiding the necessity of considering higher
moments of the distribution. When a and :l are small, it ap-
proximates linear dependence of fitness on the xi.
The fitness wi(x) is the contribution of the ith individual, in

a group whose phenotype vector is x, to the gametes that form
the next generation. The groups of individuals are "trait groups"
whose members affect one another's fitnesses. Population
density regulation is assumed to take place with respect to the
whole population, but not separately within each group. Mating
may or may not be within the group: this point is briefly dis-
cussed below. Wilson (7, 8) and Charnov (9) have presented
single-locus models involving the evolution of altruism in trait
groups. To obtain the distribution of phenotypes among indi-
viduals "after selection," we consider the distribution of indi-
viduals weighted by their fitnesses. By the symmetry of the
selection scheme, we need only consider the first individual in
each group. Weighting each group by the fitness of its first in-
dividual, the joint distribution of phenotypes is

h(x) = w1(x)f(x)/Ex[w1(x)], [3]
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the denominator being the average value of the weighting
factor wl(x) over all groups. wl(x) is of the form eve, in
which

r' = (-a + f/n, f/n, - --, f3/n), [4]
and a straightforward consideration of the moment generating
function of the multivariate normal distribution shows that the
denominator of Eq. 3 is

E(eT'x) = eT'a+l/2T" VT [5]
Using Eq. 1 we then find that h(x) is a multivariate normal

distribution with mean u + VT and covariance matrix V. Thus
the marginal distribution of xi weighted by w1(x) is normal
with mean

,U + a2[-a + fl/n + (n- 1)r1/n] [6]
and variance cr2. Because the same must be true for all n
members of the groups, this gives the marginal distribution of
phenotypes, weighted by their fitnesses, for the whole popu-
lation.
Thus the condition that selection favors increase in the

phenotype is simply that c2 > 0 and that

-a + fl/n + (n-1 )r#/n > 0. [7]
We are interested here only in the case in which a and 13 are
both positive. If n = 1 we have individual selection, so that
condition 7 requires that -a + 1 > 0, which is simply the re-
quirement that increasing an individual's phenotype increase
its own fitness. When n > 1 we find that 7 requires that

r>(n a1(ao1/n) [8]

Note that a - 13/n is the coefficient measuring an individual's
phenotype's negative effect on its own log fitness, and 13 is the
coefficient measuring its effect on the fitness of others. Each
of the n - 1 other individuals in the group receives an incre-
ment of 13/n in its log fitness, so that in a very limited sense the
right side of 8 is the ratio of an individual's reduction of its own
fitness to its increase of the fitness of its fellows.
When we prefer to assume that an individual receives no

benefit from its own altruism, but only from that of others,
expression 4 must be replaced by

Tol = [-a, b/(n -1), - - , b/(n - 1)]. [9]
This amounts to the substitution a = 13/n and b = (n - 1)1/n,
yielding the condition

r > a/b. [10]
Another case easily considered is when the benefit from al-
truism increases with the size of the group, so that

Wi(x) = eax1+Ixt [11]

in which case a similar direct substitution leads to the condi-
tion

r > (a - 3/n)/(n - 1)13, [12]
which would be a much weaker condition than 8 if the values
of 13 could fairly be assumed to be comparable in the two
cases.

So far we have simply examined the condition for natural
selection to increase the phenotype x during a single generation,
and have not inquired whether this increase is in fact inherited.
The correlation r has been the phenotypic correlation between
group members. If the heritability of the trait were unity, the

condition on r for increase in the phenotype would necessarily
also be the condition for selection to favor genes that increased
the trait. It may fairly be inquired how the conditions are al-
tered if we assume that the trait is only partly heritable.
To examine this, we add a new variable g, the breeding value

of individual 1 for the altruistic trait. Adding a new entry to the
vector r, we must still have the fitness depend only on the
phenotypes, so that

Ar = (O, -a + f/n, f/n, - -, f/n) [13]

and we add a new first row and column to the covariance matrix
VI so that it becomes

/ h2 h2 ch2 ... ch2\
f h2 1 r * r

V= U2 ch2 r 1 r, [14]

ch2 r r

in which h2 is the conventional heritability. A careful consid-
eration of the new row and column of 14 will disclose that it
assumes that there is no genotype-environment covariance with
respect to trait x. The factor c is dependent on how much of the
covariance between individuals is additive genetic covariance.
In particular, c is such that the additive genetic covariance
between group members is ch2cr2. If the association between
group members is purely phenotypic assortment, without re-
gard to whether their phenotypes are similar due to genetic
causes, then c = r. If the association is primarily additive, then
genetic c > r, and if it is primarily due to common environment
or dominance effects, then c < r.
The marginal distribution of the breeding value after selec-

tion can be obtained in exactly the same way as before. The
condition for selection to cause increase in the breeding value
turns out to be

h2(-a + 13/n) + ch2(n - 1)13/n > 0, [15]

which amounts to the requirements that h2> 0 and that

c(> ) (a- f/n) [16]

so that the conditions on c are the same as those on r. Thus,
whether partial heritability of the trait loosens or restricts the
conditions for the evolution of altruism depends on whether the
covariance between group members is primarily additive ge-
netic or primarily nonadditive. For groups of kin who also live
in a similar environment, but in the absence of genotype-
environment covariance, it turns out that c is precisely the
coefficient of kinship between the group members, so that 16
is reminiscent of Hamilton's original result.
We have not so far been specific about the mating system in

this model. We may assume that after selection in each gener-
ation, the groups dissolve so that mating is at random among
the whole population. This is a rather special assumption, but
it seems likely that other mating schemes will usually not affect
the conditions for increase of the trait. Generally, with artificial
selection of quantitative characters, the use of assortative or
disassortative mating may alter the rate of response to selection
but not the direction of response.

In the above development, we examined the breeding value
of the trait under the assumption that it was inherited, while
the environmental deviation was not. Humans have many forms
of inheritance of environment, the most dramatic being cultural
inheritance (of which this paper is an example). In the presence
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of cultural inheritance these results would be greatly changed.
Examination of cultural inheritance in genetic models is still
rudimentary, with the primary concern being to see to what
extent extremely simple schemes of cultural inheritance can
mimic the effects of genetic inheritance (10-14). It will prob-
ably not be fruitful to use models like the present one to examine
cultural inheritance, which is not dependent for its driving force
on the viability or reproduction of individuals. But it is clear that
the-presence of cultural evolution severely limits the applica-
bility of the present model to humans.
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