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Abstract
Multiple studies have demonstrated alterations in the 
intestinal microbial community (termed the microbi-
ome) in Crohn’s disease (CD) and several lines of evi-
dence suggest these changes may have a significant 
role in disease pathogenesis. In active and quiescent 
disease, both the faecal and mucosa-associated mi-
crobiome are discordant with matched controls with 
reduced biodiversity, changes in dominant organisms 
and increased temporal variation described. Mucosa-
associated adherent, invasive Escherichia coli  (E. coli ) 
(AIEC), pro-inflammatory and resistant to killing by 
mucosal macrophages, appear to be particularly impor-

tant. AIEC possess several virulence factors which may 
confer pathogenic potential in CD. Type-1 pili (FimH) 
allow adherence to intestinal cells via  cell-surface car-
cinoembryonic antigen-related cell adhesion molecules 
and possession of long polar fimbrae promotes translo-
cation across the intestinal mucosa via  microfold (M)-
cells of the follicle-associated epithelium. Resistance 
to stress genes (htrA , dsbA  and hfq ) and tolerance of 
an acidic pH may contribute to survival within the pha-
golysosomal environment. Here we review the current 
understanding of the role of mucosa-associated E. coli  
in Crohn’s pathogenesis, the role of the innate immune 
system, factors which may contribute to prolonged 
bacterial survival and therapeutic strategies to target 
intracellular E. coli .
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Core tip: There is significant evidence implicating ad-
herent, invasive mucosa-associated Escherichia coli  
(AIEC) in the pathogenesis of Crohn’s disease. AIEC 
translocate M-cells of Peyer’s patches and lymphoid 
follicles of the colon, and then to survive and replicate 
within underlying mucosal macrophages. How Crohn’s 
AIEC resist killing and adapt to the environment within 
the phagolysosme to survive and grow within macro-
phages is still poorly understood. Here we review the 
current understanding of the role of AIEC in Crohn’s 
pathogenesis, the role of the innate immune system, 
factors which may contribute to prolonged bacterial 
survival and therapeutic strategies to target intracellu-
lar AIEC.
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INTRODUCTION
Crohn’s disease (CD) is a chronic relapsing inflammatory 
bowel disease (IBD) of  multifactorial aetiology, affecting 
any part of  the gastrointestinal tract from mouth to anus. 
Patients typically suffer from abdominal pain, diarrhoea 
and weight loss which may be associated with extra-intes-
tinal manifestations including erythema nodosum, iritis 
and arthritis. The intestinal pathological findings are char-
acterised by transmural inflammation, deep mucosal ul-
cers, abscesses, fissures and granuloma formation[1]. These 
chronic inflammatory lesions are proposed to develop 
due to a disrupted intestinal barrier, Paneth cell dysfunc-
tion and a disturbed innate immune response, resulting 
in the accumulation of  antigen-presenting cells (such as 
dendritic cells and macrophages), lymphocytes and plasma 
cells within the intestinal mucosal layer[1,2]. Pathological 
characteristics resemble the mucosal lesions and intestinal 
inflammation elicited by known enteric gut pathogens 
such as Shigella and Salmonella spp[3].

CD is classically described to have a bimodal incidence 
with the highest rates seen in adolescents and young adults 
and a second peak in later years, although this has recently 
been questioned[4]. It is associated with a small increase 
in mortality (standardised mortality ratio 1.52) but very 
considerable morbidity, disrupting work, study and fam-
ily life[5]. Historically approximately 80% of  cases needed 
surgery at some time[6] but the use of  immunosuppres-
sants and biologics has increased and is associated with a 
reduced 5 years risk of  major surgery[7]. The condition is 
more common in Europe and North America[8]. However, 
incidence is rapidly increasing worldwide particularly in 
developed nations adopting a western style diet, as seen in 
Japan[9]. Likewise, those emigrating from poor and devel-
oping nations to the West, within a few years of  moving 
are at increased risk of  developing CD presumably due to 
a key change in their lifestyle and environment[10].

The gut microbiota plays an essential role in the shap-
ing of  the intestinal immune response in healthy indi-
viduals[11]. There is now very strong evidence that both 
a reduction in the numbers of  beneficial bacteria and 
increases in numbers of  harmful bacteria living naturally 
in the gut are present in CD[12] although it is less clear 
which of  these changes might be causative and which 
might be a consequence of  inflammation. Several inde-
pendent groups have consistently shown changes in both 
the faecal and mucosa-associated microbiome in Crohn’
s patients and unaffected relatives[13-15], an imbalance re-
ferred to as “dysbiosis” (Figure 1). Changes are typified 
by reduced biodiversity and alterations in the dominant 
organisms, specifically reduction in beneficial firmicutes 
and increase in numbers of  proteobacteria [including 

Escherichia coli (E. coli)][14,16,17].
There is also clear evidence to suggest that a number 

of  lifestyle factors contribute to the dysbiosis of  gut mi-
crobiota observed in CD (see Figure 1). This includes key 
environmental triggers such as smoking[18], with cessation 
abrogating the observed dysbiosis[19]. Also a key risk fac-
tor in CD is a intake of  a “westernised” diet, high in fat 
and sugar, low in fruit and vegetable fibre[20]. In a mouse 
model with a humanised microbiota, a switch to a high 
fat, high sugar diet altered the microbiome within 1 d[21]. 
A similar diet has also been observed to increase num-
bers of  Proteobacteria, such as Bilophila wadsworthia[22] and 
mucosally adherent, invasive E. coli (AIEC)[23].

Genetic susceptibilities in 
bacterial recognition, autophagy 
and phagocyte-specific genes in 
CD
The recent identification of  genes associated with CD 
has been informative in improving our understanding of  
its pathogenesis, highlighting impairment of  genetic com-
ponents essential for innate immunity, intestinal barrier 
integrity and in microbial recognition and clearance[24] (see 
Figure 1). Following on from earlier work[25,26], Genome-
wide association studies have now identified 163 IBD 
risk loci, 30 of  which are CD specific and 110 shared 
between ulcerative colitis and Crohn’s[27]. Identified poly-
morphisms in the innate immune system of  Crohn’s 
patients include genes that are linked to processes such as 
pathogen recognition [nucleotide-binding oligomerization 
domain-containing-2 (NOD2)/Crohn’s-associated gene 
identified was Caspase-recruitment domain 15 (CARD15) 
and interleukin 23 receptor (IL23R)] and autophagy [im-
munity-related GTPase M (IRGM) and autophagy-related 
16-like 1 (ATG16L1)], all relevant to killing of  bacteria 
within macrophages[24-26].

The first CARD15 encoding the NOD2 receptor[28,29]. 
Mutations in this gene probably account for about 15% 
of  Crohn’s causation in the West although there are geo-
graphical variations with a lesser effect in northern Euro-
pean countries and no apparent impact on CD causation 
in Japan[30]. The NOD2/CARD15 protein is part of  the 
innate immune system and is expressed in the cytoplasm 
of  macrophages and Paneth cells[31]. CD-associated muta-
tions in NOD2/CARD15 affect the leucine-rich domain 
recognising the bacterial cell wall peptidoglycan compo-
nent, muramyl dipeptide (MDP), of  both Gram-positive 
and Gram-negative bacteria. After recognition, NOD2 
activates nuclear factor kappa B and induces the produc-
tion and release of  proinflammatory cytokines. Crohn’
s-associated NOD2/CARD15 mutations are considered 
to be loss of  function mutations with evidence for re-
duced production of  anti-bacterial defensins by Paneth 
cells and for a reduced IL-8 response to MDP by mac-
rophages[32]. In association with NOD2/CARD15 muta-
tions, polymorphism in genes SLC22A4 and SLC22A5, 
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encoding the organic cation transporters OCTN1 and 
OCTN2 have also been identified with variants expressed 
in intestinal epithelial cells, T cells and macrophages[33]. In 
addition, a mutation in two haplotypes of  DLG5, encod-
ing scaffolding protein, has also been confirmed to be 
associated with NOD2/CARD15 mutations in Crohn’s 
patients[34].

Two other key genes associated with Crohn’s are AT-
G16L1 and IRGM[35-37]. Both encode proteins that play a 
key role in autophagy, a cellular process facilitate not only 
disposal of  protein aggregates, DNA, lipids and dam-
aged organelles but also an integral step in the mechanism 
by which macrophages degrade, kill and clear invading 
phagocytosed bacteria (a process also termed xenophagy), 
including Mycobacteria and Salmonellae[38-40].

Additional Crohn’s susceptibility loci relevant to aber-
rant microbial recognition and handling and/or phagocyte 
function include toll-like receptor 4 (TLR4), leucine-rich 
repeat serine, threonine protein kinase-2 (LRRK2), neu-
trophil cytosolic factor-4 (NCF4) and IL-23R.

TLR4 is an apical cell-surface pathogen recognition 
receptor on intestinal epithelial cells, macrophages and 
dendritic cells, key in detection of  lipopolysaccharide (LPS) 
presented on the outer-membrane surface of  Gram-
negative bacteria, with polymorphism of  TLR4 at D299G 
leading to hypo-responsiveness to LPS[41]. LRRK2 has 
been linked to CD through the association of  a single-
nucleotide polymorphism on chromosome 12q12[26] and 
in murine studies where LRRK2-deficiency resulted in 
increased inflammation and significantly poorer clinical 
outcomes following administration of  dextran sodium 
sulphate to induce colitis[42]. The identification of  NCF4 

as a Crohn’s susceptibility gene is also important[36]. NCF4 
encodes the p40-phox subunit of  nicotinamide adenine 
dinucleotide phosphate (NADPH) oxidase crucial for 
reactive oxygen species (ROS) production by phagocytic 
cells in response to microbial infection, with molecular 
defects in NADPH oxidase already established to result in 
chronic granulomatous disease[43]. Key studies show that 
altered neutrophil recruitment, along with an abnormal 
production of  cytokines and reduced bacterial clearance, 
follow either acute trauma to the rectum and ileum[44], or 
subcutaneous injection of  heat-killed E. coli in Crohn’s pa-
tients[45]; (see Figure 2). Whilst these studies suggest mac-
rophages may be involved in a key step of  the observed 
immune dysfunction in CD, it is not yet clear whether this 
represents an inherent defect in macrophage function.

Variants of  the IL-23R gene have also been linked 
to Crohn’s[46]. IL-23R is expressed by activated dendritic 
cells and macrophages, and IL-23 can induce production 
of  inflammatory cytokines that may contribute to intes-
tinal inflammation[47].

Specific bacteria in the 
pathogenesis of CD
There have been a number of  distinctive studies that 
strongly favour the hypothesis that a specific bacterium 
plays a pivotal role in the initiation of  chronic inflam-
mation and development of  CD. Early serological and 
culture studies suggested that Mycobacterium avium subspe-
cies paratuberculosis (MAP), an obligate intracellular bac-
terium causing a chronic intestinal inflammatory disease 
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in cattle (Johne’s disease), was more prevalent in Crohn’
s patients[48,49]. A study by Ryan and colleagues[50] also 
confirmed the presence of  MAP DNA in granuloma-
tous lesions of  CD patients. MAP-reactive CD4 T cells 
have also been found in patients with Crohn’s[51]. Even 
though, MAP has been hypothesised to be as contribut-
ing agent for Crohn’s pathogenesis, there is still great 
controversy, and absence of  conclusive evidence, to fully 
supporting this hypothesis[52]. Our own studies have sug-
gested perhaps that microbial mannan (present in yeast 
cell walls and Mycobacterium species such as MAP) may 
be a key environmental factor to suppress macrophage 
killing of  intracellular bacteria[53]. The shared susceptibil-
ity association of  NOD2 and IL-23R polymorphisms 
seen in both CD and Mycobacterial disease suggests 
MAP may yet be important in CD pathogenesis[54].

Faecalibacterium prausnitzii may also be important with 
low levels strongly associated with early disease recur-
rence after intestinal surgery[55]. This effect may be due 
to bacterial production of  anti-inflammatory molecules 
with culture supernatant shown to reduce the severity of  
colitis in an animal model.

The finding of  increased mucosa-associated E. coli 
in the sub-mucus niche or within the mucosa itself  has 
proved particularly consistent in CD[12]. Early serological 
studies described high antibody titres against E. coli in 
Crohn’s patients compared to unaffected controls[56] and 
this was later supported by immunohistochemical stud-
ies demonstrating E. coli antigens within macrophages 
in CD tissue[57]. Many groups, including our own, have 
shown an increase in mucosa-associated E. coli in CD, 
both in the ileum and in the colorectum[58-64]. We our-
selves observed that aerobic culture of  colonoscopic 
biopsies after removal of  the mucus layer with dithioth-
reitol is often sterile in control colons whereas the colon 
in CD and colon cancer contains increased bacterial 
numbers in this sub-mucus niche, more than half  of  
which are E. coli[60], even though these organisms ac-
count for less than 1% of  the faecal microbiota[65]. Poor 

correlation between site of  inflammation and presence 
of  E. coli[63] and tendency to show that the same organ-
isms can be identified from various sites within the same 
colon[60,66] are compatible with the organisms having a 
causative role in the inflammation rather than merely 
colonising inflamed mucosa. Evidence for a primary 
pathogenic role is also given by their presence within 
granulomas[67], the histological hallmark of  CD, by their 
ability to induce granuloma formation in vitro[68] and abil-
ity for similar E. coli to cause granulomatous colitis in 
dogs[69], and potentially in cats and swine too[70].

These E. coli pathovars associated with CD have been 
designated AIEC based on their ability to adhere to, and 
invade into, intestinal epithelial cell-lines, induce release 
of  pro-inflammatory cytokines, and possess an ability to 
survive and replicate with intestinal macrophages[71]. Phy-
logenetic analysis shows that most mucosa-associated E. 
coli isolated from the tissue of  Crohn’s patients belong 
to groups B2 and D[65] as per extra-intestinal isolates, 
whereas most commensal E. coli strains would belong to 
group A[72].

Crohn’s AIEC-host intestinal 
mucosa interactions
Aphthous ulcers of  the “dome” or follicle-associated 
epithelium (FAE), overlying Peyer’s patches in the distal 
ileum and lymphoid follicles of  the colon, are likely the 
initial mucosal lesions occurring in Crohn’s patients[73-75], 
and have been observed in patients using magnifying 
chromoendoscopy[76]. The FAE effectively forms the 
interface between the intestinal lymphoid system and the 
luminal environment. Specialized microfold (M) cells ac-
counting for about 5% of  cells in the FAE are optimized 
for antigen adherence and transport, and for immuno-
logical sampling of  microorganisms[77]. Several invasive 
bacteria take advantage of  the transcytotic characteristics 
of  M cells to use them to cross the gut, including Yersinia, 
Salmonella and Shigella spp[78-80]. It was suspected that the 
portal of  mucosal entry of  AIEC was also likely through 
M cells[81] and own recent studies successfully modelling 
M cells in vitro, demonstrated that Crohn’s AIEC could 
indeed translocate through M cells (up to 20-fold com-
pared with parent Caco2 cells) and through isolated hu-
man ileal FAE[82]. Adhesion and subsequent translocation 
of  AIEC across murine and human Peyer’s patches, and 
across M cells in vitro, was observed to be dependent 
on possession of  the lpf operon, encoding long polar 
fimbriae (Lpf) in AIEC[83]. Isolates expressing lpf have 
been found to be more prevalent in Crohn’s mucosae 
than that of  non-IBD controls[84]. Ex vivo studies also 
indicate a defective mucosal barrier to bacteria in the 
Peyer’s patches from Crohn’s patients[85,86]. It is plau-
sible therefore that increased bacterial load at M cells 
is important in the development of  Crohn’s. A striking 
correlation also exists between the age-related incidence 
of  CD and the number of  Peyer’s patches in the small 
bowel, the latter peaking in late adolescence and then 
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Figure 2  Patients with Crohn’s disease exhibit reduced bacterial clearance 
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falling away[87].
Ileal AIEC isolates also typically express type-1 pili 

(FimH) on their surface supporting adherence to ileal 
enterocytes via interaction with carcinoembryonic anti-
gen-related cell adhesion molecule-6 (CEACAM6) recep-
tors known to be over expressed on the inflamed ileal (but 
not colonic) epithelium in Crohn’s[88]. Highly glycosylated 
CEACAMs have also been proposed as M cell microbial 
receptors[89]. It is plausible that one or more members 
of  the CEACAM receptor family may play an important 
role in regulating endocytosis of  CD mucosa-associated 
E. coli into host M cells. A recent study also reported 
that the glycoprotein 2 (GP2), specifically expressed on 
the apical plasma membrane of  M cells among entero-
cytes, is recognized by FimH[90]. By an intriguing coinci-
dence it has also recently been found that the same GP2 
protein is the epitope for the “anti-pancreatic” antibody 
found in CD sera[91]. In addition, Crohn’s AIEC outer-
membrane vesicles (OMV), also show ability to interact 
with enterocyte endoplasmic reticulum stress response 
glycoprotein 96 receptor, increased in expression on the 
inflamed intestinal epithelium[92]. These OMVs, in as-
sociation with flagellin, also possess significant ability 
to evoke pro-inflammatory cytokine release[93]. Colonic 

mucosally associated AIEC isolates expressing afimbrial 
adhesin afa operon, more commonly associated with 
diarrhoeagenic diffusely adherent E. coli, have also been 
observed to be more prevalent in CD patients than in 
non-IBD controls[84]. The presence of  the afa operon 
correlates with diffuse adherence to, and invasion of  in-
testinal epithelial cells[84].

A summary of  Crohn’s AIEC genotype relevant to host 
intestinal mucosa interactions is summarised in Figure 3.

Virulence factors supporting 
Crohn’s AIEC survival and 
replication within host 
macrophages
AIEC isolated from Crohn’s ileal and colonic biopsy tis-
sue demonstrate ability to survive and replicate within 
phagolysosomes of  host macrophages[94,95]; see Figure 
4. However, they are not unique in this ability as other 
pathogens are also known to survive and replicate within 
macrophages, including Mycobacteria, Salmonella, Shigella, 
Coxiella, Brucella, Legionella and Listeria species. Key de-
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Figure 3  Crohn’s mucosally associated adherent, invasive Escherichia coli host mucosa interactions: genotype-phenotype relationships. A: Adhesion to, 
and invasion of intestinal epithelium; B: Mucosal entry across the follicle-associated epithelium; C: Tolerance to stress, habituation and replication within mucosal 
macrophages. afa: Operon encoding afimbrial adhesin; CEACAM: Carcinoembryonic antigen-related cell adhesion molecule; dsbA: Gene encoding bacterial disulfide 
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fence mechanisms adopted by these pathogens support 
their resistance to killing within the low pH, low nutrient 
environment, high oxidative and nitrosative stress envi-
ronment of  the phagolysosome. For example, Shigella and 
Listeria are able to escape from the mature phagolyso-
some, Salmonellae can inhibit fusion of  phagosome with 
the lysosome, whilst Mycobacterium tuberculosis is able to 
modify the intra-phagolysosome environment[96]. Key 
genes supporting AIEC survival and replication within 
macrophages have been identified (see Figure 3) using 
isogenic mutants of  the “paradigm” ileal AIEC LF82, in-
cluding htrA (encoding high temperature stress protein), 
dsbA (encoding an oxidoreductase) and hfq (encoding a 
RNA chaperone important in mediating bacterial adapta-
tion to chemical stress)[97-99]. However, HtrA and DsbA 
are fairly ubiquitous in E. coli, and it is likely that other 
unidentified factors are needed to support AIEC survival 
within the stressful conditions of  the phagolysosome.

Acid stress is the antimicrobial environment likely 
encountered by active enteric bacteria within the pha-
golysosome. Salmonella spp., Shigella spp. and E. coli have 
all been reported to possess a repertoire of  low pH in-
ducible systems that support resistance, tolerance and 
habituation during environmental acid stress. Likewise, 
AIEC certainly appear to be tolerant of  the low pH intra-
phagolysosome environment[97]. E. coli is notable due to 
its possession of  four known acid resistance systems. The 
first system requires sigma factor RpoS and the cyclic 
AMP receptor protein CRP, with RpoS functioning as a 
major environmental stress response regulator in both E. 
coli and Salmonellae[100]. Deletion of  RpoS from a Crohn’
s AIEC (strain O83:H1) has been observed to increase 
sensitivity of  this clinical isolate to oxidative stress[101]. 
The second system requires extracellular glutamate. The 
components of  glutamate-dependent acid response are 
two isoforms of  glutamate decarboxylase encoded by 
gadA and gadB, and a glutamate-γ-aminobutyric acid an-
tiporter encoded by gadC[102,103]. Murine AIEC have been 
observed to respond to chronic intestinal inflammation by 
up-regulating expression of  gadA and gadB[104]. The third 
acid resistance system requires is arginine-dependent 
utilising of  arginine decarboxylase (AdiA and AdiC) an-

tiporter[100] and the fourth is lysine dependent, involving 
lysine decarboxylase[103]. In addition, E. coli also harbour 
specific mechanisms that enable them to resist high lev-
els of  ROS that form the oxidative and super-oxidative 
response to phagocytosed pathogens. These defensive 
resources have recently been found to be grouped par-
ticularly into two regulated sets of  genes soxRS and oxyR 
regulons[105,106].

Defective autophagy and lack of 
clearance of AIEC
ATG16L1 and IRGM function in autophagosome for-
mation and evidence from our own studies supports 
a role for autophagy as an antimicrobial mechanism 
downstream of  toll-like receptor and NOD-like recep-
tor signalling. Activation of  NOD2 by MDP induces 
autophagy in antigen-presenting cells (such as dendritic 
cells and macrophages) in a receptor-interacting serine-
threonine kinase-2 dependent manner[107]. Knock-down 
of  ATG16L1 and IRGM using siRNA approaches re-
sults in defective recognition and clearance of  Crohn’s 
mucosa-associated E. coli within host epithelial cells and 
macrophages[108]. However, deficiency in either gene did 
not interfere with the replication and survival ability of  
other non-pathogenic, environmental, commensal, or 
gastroenteritis-inducing E. coli, suggesting a specific role 
for autophagy in restraining AIEC. Similarly, expression 
of  the Crohn’s variant ATG16L1*300A in intestinal 
Caco2 epithelial cells impairs their ability to capture in-
ternalized Salmonella spp. within autophagosomes[109] and 
is also associated with abnormalities in Paneth cell gran-
ule exocytosis[110], impaired production of  antimicrobial 
α-defensins[111], and increased production of  pro-inflam-
matory cytokines IL-1β and IL-18 by macrophages in 
response to LPS[112].

Strategies to target 
intra-macrophage AIEC in CD
If  AIEC have a primary pathogenic role then it follows 
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Figure 4  Transmission electron micrograph of adherent, invasive Escherichia coli within macrophages1. A: Crohn’s disease colonic mucosa-associated iso-
late HM605 surviving and replicating within vesicles of J774-A1 murine macrophages; B: Double membrane around intra-macrophage vesicle indicates bacteria are 
contained within phagolysosomes (arrow). 1Images courtesy of Dr. Carol L Roberts (University of Liverpool, United Kingdom).
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that targeted treatment should lead to clinical benefit. 
This hypothesis is supported by studies in Boxer dogs 
which develop a granulomatous colitis following infec-
tion with an AIEC strain[69], with subsequent clinical 
resolution following treatment with the 4-quinolone 
antibiotics, enrofloxacin[113]. However bacterial antibiotic 
resistance is common both in animal and human studies 
and is associated with poor clinical outcome[114]. Trials 
of  antibiotics in the treatment of  active CD have been 
disappointing to date with good evidence only for their 
use in the prevention of  post-operative disease recur-
rence[115,116]. A large metanalysis recently failed to show 
any clear benefit for their use in maintenance of  remis-
sion or in the treatment of  active luminal or peri-anal 
disease[117]. In some trials, early open label studies were 
positive only for later randomised trials to fail to show 
clear benefit[118,119], which may, in part, be due to the de-
velopment of  antibiotic resistance. In vitro, quinolone-
based antibiotics regimens to target intra-macrophage 
Crohn’s AIEC isolates are effective[95] but again single 
antibiotic use likely increases the risk of  drug resistance, 
a problem highlighted by a recent study in which mul-
tidrug resistance was seen in 61.5% of  Crohn’s AIEC 
isolates[120]. Triple antibiotic regimens are superior to cip-
rofloxacin mono-therapy and reduce intra-macrophage 
AIEC survival to 3% relative to untreated controls[95]. 
Unfortunately significant drug-drug interactions occur 
with some antibiotics and azathioprine which have limit-
ed the use of  triple combinations to date. Consequently, 
alternative strategies are being explored including using 
adjuvant agents to manipulate the phagolysosomal envi-
ronment to support microbial phagocytosis.

A more promising strategy may be to alter phagoly-
sosomal pH to aid bacterial killing within macrophages. 
It has already been shown that AIEC are dependent on 
an acidic environment for survival[97] and that alkalinisa-
tion leads to reduced survival. Hydroxychloroquine, a 
weak base able to increase phagolysosomal pH, is known 
to improve killing of  bacteria where intra-macrophage 
survival plays a key step in disease pathogenesis[119]. For 
example, Coxiella burnetii the agent of  Q fever, maintains 
an intracellular lifestyle through adaptation to survival 
at an acidic pH[121,122]. Coxiella survival was significantly 
reduced in vitro by hydroxychloroquine treatment and this 
benefit translated into clinical response in a randomised 
trial[123,124]. Hydroxychloroquine in combination with an-
tibiotics, is also now standard therapy for treatment of  
Whipple’s disease, where replication of  Tropheryma whipplei 
within tissue macrophages is a central part of  the patho-
genesis[125]. Similarly, our own recent studies have shown 
that dose-dependent enhancement of  macrophage killing 
of  Crohn’s AIEC can be seen with hydroxychloroquine 
treatment and synergy with standard antibiotics is also 
observed[126].

Vitamin D supplementation also enhances killing 
of  intracellular AIEC in both murine and human mac-
rophages[127]. This may be due to enhancement of  the 
respiratory burst but effects are likely to be multimodal 
with influences on several intracellular pathways. Cellular 

production of  the antimicrobial peptides, such as cathe-
licidin antimicrobial peptide (CAMP) and β2 defensin, 
follows stimulation of  toll-like receptors in the pres-
ence of  vitamin D and conversely, vitamin D deficiency 
leads to impaired macrophage function due to defective 
defensin production[128]. This has significance in CD, 
where muramyl dipeptide stimulation in the presence of  
vitamin D leads to increased CAMP expression. Futher-
more, vitamin D stimulates NOD2 expression and leads 
to downstream β2 defensin production[129]. Vitamin D 
deficiency is common in CD with up to 70% of  patients 
affected, even in quiescent disease[130,131]. This now ap-
pears to have clinical consequence with several studies 
demonstrating a correlation between serum levels and 
disease behaviour. In a large prospective cohort study 
with nearly 1.5 m patient years of  follow up, a validated 
method for predicting vitamin D levels was used to com-
pare the incidence of  CD in the lowest quartile relative 
to the highest quartile, finding the highest risk associated 
with the lowest Vitamin D levels[132]. This correlation is 
not limited to the relative disease risk and recent studies 
now show a clear correlation between disease behaviour 
and serum concentrations. CD activity, defined both by 
CDAI and CRP level, has been shown to be inversely 
correlated with Vitamin D levels, with greatest activity 
seen in those with the lowest levels[133]. Furthermore, in 
a retrospective study of  3217 patients, a lower likelihood 
of  requiring surgery for Crohn’s was seen with higher 
vitamin D levels, when using a cut off  of  30 ng/mL[134]. 
Given these findings we might therefore expect a clinical 
effect from Vitamin D supplementation. This question 
was addressed in a randomised double-blind placebo-
controlled trial in which a trend was seen towards lower 
relapse rates in patients treated with 1200 U/d of  Vita-
min D, although this did not quite reach significance[135]. 
However a significant reduction in risk of  requiring sur-
gery was seen for deficient patients who normalised their 
vitamin D levels with supplementation[134]. Overall these 
data suggest a clinical role for vitamin D supplementa-
tion in CD although further clinical trials are required. 
Whilst no data yet exists for the effect of  vitamin D on 
AIEC-macrophage interactions in vivo, it appears that 
supplementation may hold promise as a clinical strategy 
for targeting Crohn’s mucosa-associated E. coli.

Smoking has long been associated with disease activity 
and leads to greater treatment requirements, more strictur-
ing disease, more peri-anal disease and shorter disease free 
survival[135,136]. These affects are likely to be multimodal in 
origin with effects seen on macrophage function, gut mi-
crobiota and vitamin D levels[137-139]. Interventional studies 
clearly show benefit from smoking cessation[140] and that 
this is an achievable therapeutic aim[141]. There are some 
data to support a hypothesis that this may in part be due 
to recovery of  immune cell function but to date this has 
not been systematically studied in CD[142].

CONCLUSION
Based on the findings of  a diversity of  individual studies, 
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there has been accumulating evidence proving the impli-
cation of  bacteria such as AIEC in the pathogenesis of  
CD, a chronic-relapsing IBD. AIEC have been shown to 
translocate M cells of  Peyer’s patches and lymphoid folli-
cles of  the colon, and then to survive and replicate with-
in underlying mucosal macrophages and dendritic cells. 
However, the mechanism of  how Crohn’s AIEC resist 
killing process and adapt to the environment within the 
phagolysosme to survive and grow within macrophages 
without inducing cell death is still poorly understood. 
There is no doubt that further investigation is warranted 
to characterise and identify the key virulence factors rel-
evant to AIEC phenotype, supporting current and novel, 
targeted treatments for future clinical benefit.
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