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Comparison of Poroviscoelastic
Models for Sound and Vibration
in the Lungs
Noninvasive measurement of mechanical wave motion (sound and vibration) in the lungs
may be of diagnostic value, as it can provide information about the mechanical proper-
ties of the lungs, which in turn are affected by disease and injury. In this study, two previ-
ously derived theoretical models of the vibroacoustic behavior of the lung parenchyma
are compared: (1) a Biot theory of poroviscoelasticity and (2) an effective medium theory
for compression wave behavior (also known as a “bubble swarm” model). A fractional
derivative formulation of shear viscoelasticity is integrated into both models. A measura-
ble “fast” compression wave speed predicted by the Biot theory formulation has a signifi-
cant frequency dependence that is not predicted by the effective medium theory. Biot
theory also predicts a slow compression wave. The experimentally measured fast com-
pression wave speed and attenuation in a pig lung ex vivo model agreed well with the
Biot theory. To obtain the parameters for the Biot theory prediction, the following experi-
ments were undertaken: quasistatic mechanical indentation measurements were per-
formed to estimate the lung static shear modulus; surface wave measurements were
performed to estimate lung tissue shear viscoelasticity; and flow permeability was meas-
ured on dried lung specimens. This study suggests that the Biot theory may provide a
more robust and accurate model than the effective medium theory for wave propagation
in the lungs over a wider frequency range. [DOI: 10.1115/1.4026436]

1 Introduction

1.1 Background. Like no other anatomical region in the
body, the lungs are a unique, multiphase porous structure that has
defied conventional noninvasive medical imaging methods and
our ability to contrast and quantify changes in its macroscopic
properties that can be indicative of disease and that may be funda-
mentally linked to behavioral and structural changes at the micro-
scopic scale. Patients can suffer from a wide range of pulmonary
ailments that result in significant changes, locally or diffusely, to
the stiffness or density in the lungs [1]. For example, lung paren-
chymal stiffness increases with the degree of fibrosis in fibrotic
lung [2,3]. While in asthma, increased degree of bronchoconstric-
tion is associated with an increase in parenchymal shear modulus
[4]. In contrast, the lung becomes less stiff with the degree of em-
physema, primarily due to the remodeling of collagen fibers [5,6].
These changes often are not easily identifiable by most imaging
modalities.

The utility of conventional ultrasound pulmonary imaging is
severely limited, due to the acoustic impedance mismatch
between the air in the lungs and soft tissue. X-ray computed to-
mography (CT) and magnetic resonance imaging (MRI) provide
useful anatomic information, but are often limited in their diag-
nostic accuracy, especially in distinguishing benign, infectious,
and malignant pathologies. CT also has the disadvantage of cancer
risk associated with ionizing radiation. Spirometry, including the
measurement of the volume of inhaled or exhaled air as a function
of time, provides a global measure of lung and airway properties
but often provides relatively nonspecific findings. Sputum moni-
toring and respiratory tests before and after the administration of
bronchial dilators to assess changes in airway plasticity similarly
provide global and, at best, indirect information on spatial extent.

MRI using RF tagging techniques has been suggested as a method
for assessing the regional mechanical properties of the paren-
chyma [7,8], but this approach has limitations and does not permit
tracking through an entire respiratory cycle.

Lung functional and structural imaging based on an array of
contact acoustic sensors placed on the back has been researched
for the past decade or so [9–11] and has recently gained more
prominence through the burgeoning success of such systems as
Deep Breeze

TM

, a commercial product utilizing up to 40 vacuum-
mounted contact acoustic sensors on the patient’s back or inte-
grated into their bed to provide a real-time assessment of lung
sound strength, spectral content, and regional variation, all of
which may be beneficial to diagnosis [12–14]. Beyond obtaining
an image that depicts the distribution of lung sounds on the torso
surface, if a better understanding of mechanical wave propagation
within the lungs and torso were available, one may be able to
reconstruct the wave field within the lungs and torso based on the
noninvasive surface measurements. This would take the two-
dimensional surface image into three dimensions and could poten-
tially provide not only the location but also more quantitative
information about the properties of the lung that can affect how
sound and vibration propagate through it [8]. The benefit of cou-
pling an array measurement on the surface with an improved com-
putational model of sound propagation within the torso was
demonstrated fundamentally in Ozer et al. [15]. In phantom stud-
ies, it was shown that the use of a computational boundary ele-
ment model of lung acoustics combined with a surface array
measurement was significantly superior in identifying the domi-
nant source location of the sound as compared to a simple “ray
acoustics” model that neglects the more complex nature of sound
transmission in a finite and complex dimensioned structure.

Also recently, the phase-contrast-based technique known as
magnetic resonance elastography (MRE) has been applied to the
lungs in pilot studies with limited success [16–19]. MRE seeks to
provide a map of the viscoelastic properties within the region of
interest that will affect the shear wave motion that MRE measures.
Previously, MRE has been successfully applied to the study of the
mechanical properties of a variety of other organs and soft tissue
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regions in vivo, including the breast, brain, kidney, prostate, liver,
and muscle [20–24]. Application to the lungs has proven more
challenging, given the poor signal-to-noise available in imaging
due to a lower presence of hydrogen in air than in soft tissue
(water) and the complex nature of vibratory wave propagation
found in the lungs. Again, the authors propose that a better under-
standing of mechanical wave motion in the lungs would aid in the
interpretation of the wave images that are acquired using MRE to
reconstruct a quantitative map of variation in mechanical proper-
ties that can correlate with injury, the progression of disease, and/
or the response to therapy.

The lung parenchyma is comprised of soft biological tissue and
vasculature, as well as millions of microscopic air sacs (alveoli)
that are connected through a complex branching airway structure.
Thus, microscopically, the lungs are highly heterogeneous in
terms of their physical properties, combining gas (air) that is
linked through a complex and tortuous network of channels and
microscopic sacs, non-Newtonian liquid (blood) that flows
through an equally complex network of vessels of wide-ranging
dimensions, and solid tissue structure comprised of a mixture of
viscoelastic soft tissues that exhibit nonlinear behavior under large
deformation.

However, for the purpose of developing a tractable set of equa-
tions for predicting small-amplitude mechanical wave motion in
the parenchyma for wavelengths larger than the microscopic het-
erogeneous features of the lung, macroscopic homogenized repre-
sentations of the lung’s physical properties have been proposed.
Based on this homogenous or stochastic spatially averaged view,
two different models for wave propagation have been put forth.
One is sometimes referred to as the “effective medium” or
“bubble swarm” theory. It has been prominently used in the litera-
ture for modeling lung acoustics since the 1980s [25–27]. More
recently, there has been an interest in applying Biot’s theory of
poroelasticity to the lung [28]. Application of Biot theory leads to
a more complex theoretical model that predicts more wave types
as compared to the effective medium theory. From a practical and
ultimately clinical perspective, questions of interest include: (1)
how do these theories compare to each other and to experimental
measurements; (2) how complex does the theory need to be to
capture the salient phenomena that is measurable and can be
linked to disease or injury; and (3) how easily are these theories
applied or integrated into computational frameworks that would
enable one to better understand and quantify with specificity and
significance how mechanical wave phenomena, which may be
measured by application of the existing or nascent imaging tech-
nologies mentioned above, are affected by disease and pathology.

1.2 Objectives. In this article, these theories are compared
through analytical and experimental studies. In Sec. 2, the key
aspects of both theories, as applied to the lungs, are reviewed, cul-
minating in a comparison of predicted wave attributes, namely
wave speed and attenuation. In Sec. 3, several experiments are
detailed that are aimed at identifying key parameters used and pre-
dicted by the theories. The applicability of the proposed theories
is experimentally assessed by comparison of their predictions to
experimental measurements made on freshly excised pig lungs.
Experiments at different transpulmonary pressures include sound
transmission measurements that primarily provide information
about compression waves, surface wave measurements that are
linked to shear wave behavior, and quasistatic measurements of
basic lung mechanical properties. Experimental results and
discussion are reported in Sec. 4 and Sec. 5 followed by an overall
conclusion in Sec. 6.

2 Theory

2.1 Effective Medium or Bubble Swarm Theory of Com-
pression Waves in the Lungs. Previously, it has been proposed
that, for the purpose of calculating compression wave behavior

over the audible frequency range, parenchymal tissue can be mod-
eled as a homogenous isotropic material with properties analogous
to those observed in water that is uniformly populated with small
gas bubbles [25–27]. This is a “closed cell” approximation, mean-
ing that it assumes that the oscillating motion caused by the com-
pression wave is so fast that the air in the lungs does not have
time to flow between different regions. It has been estimated that
such an assumption will only be valid above �100 Hz. For com-
pression wavelengths much larger than alveoli size (which will be
the case in the low audible frequency range considered here up to
several kHz), compression wave speed cp is approximated as

cp ¼
ffiffiffiffiffiffiffiffiffi
K=q

p
(1a)

with

1

K
¼ /

1

Kf
þ 1� /ð Þ 1

Ks
(1b)

q ¼ qs 1� /ð Þ þ qf / (1c)

where K is the bulk modulus of the composite mixture, an effec-
tive bulk modulus comprised of a reciprocal of bulk moduli of the
nongaseous (soft tissue and blood) (Ks) and gaseous (air) (Kf )
components of the lung. Here, / denotes the volume fraction of
the gas portion of the lungs and is defined as / ¼ Vf =VT , where
Vf is the volume of the gas in the lungs and VT is the total volume
of the lung. In a similar manner, the composite density of the
lungs q is a weighted sum of the densities of the gas portion (qf )
and the nongaseous portion (qs). The above equation is sometimes
referred to as Wood’s formula [25]. As frequency increases and
compression wavelength approaches that of alveoli size, the reso-
nant behavior of the individual alveoli adds more complexity to
the calculation of the wave speed. See Wodicka et al. [26] for a
detailed discussion.

As the gas component is air, we assume Kf ¼ nP, where n is
the polytropic constant and P denotes the pressure in the lungs
(atmospheric pressure plus the lung inflation pressure). The poly-
tropic constant n will be somewhere between 1 (isothermal
process) and the ratio of specific heats of air (constant pressure-
specific heat CP over constant volume-specific heat CV), which is
1.41 (adiabatic process) at 300 K. As frequency increases and the
speed of fluctuations in local temperature and motion in the gas
associated with wave passage increase, it is expected that the pro-
cess will transition from being closer to isothermal to become
closer to adiabatic.

Attenuation of compression waves as they propagate is driven
by both thermal dissipation (if nonadiabatic) and viscous (solid
and fluid) effects. The thermal dissipation also varies with fre-
quency as wavelength approaches that of the alveoli size. In the
gas portion, thermal dissipation is calculated to be dominant [26]
and will be the primary source of attenuation for compression
waves. For harmonic motion and time dependence ejxt, the result-
ing complex-valued compression wave number kp can be
expressed as [27]

kp ¼ x=cp � jap (2a)

with

ap ¼ Nr=2 (2b)

Here, N is the number of bubbles (alveoli) per unit volume and r,
which is frequency-dependent, is the extinction cross section for
each bubble. For frequencies such that wavelengths are much
larger than the alveoli size, the value of r is proportional to x2

[26,27]. Here, the real part of kp is related to compression wave
speed cp and the imaginary part defines the attenuation.
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2.2 Shear Waves in the Lungs. The above effective medium
analogy is only useful in calculating compression wave behavior,
not shear wave behavior. However, a decoupled equation for shear
wave motion can be formulated based on using the above average
lung density value q combined with a value for shear viscoelastic-
ity of the lungs l, which may be rate-dependent due to shear vis-
cosity such that, in the frequency domain, the complex-valued
wave speed cs and shear wave number ks are

cs ¼
ffiffiffiffiffiffiffiffi
l=q

p
(3a)

ks ¼ x=cs (3b)

Here, the real part of ks governs shear wave speed and the imagi-
nary part defines the attenuation. The appropriate form of a shear
viscoelastic model for soft biological tissues, let alone the lung pa-
renchyma, is still a subject of much research, particularly in the
elastography literature [29,30]. Suffice it to say, the model choices
are empirical, based on their ability to match experimental meas-
urements over a range of frequencies. It is noted that a number of
recent studies have emphasized the appropriateness of fractional
order viscoelastic models for biological tissues [31–35]. The
fractional derivative operator does not present a mathematical
difficulty when it is applied to well-conditioned functions. For
harmonic functions, for a derivative with respect to time of order
a where 0< a< 1, the Weyl definition of the fractional derivative
results in simply raising jx to the power a when transforming to
frequency domain [30]. Specifically, @a ejxtð Þ=@ta ¼ jxð Þaejxt.
This will be investigated further with regard to experimental
studies in Sec. 3.

2.3 Biot Theory of Poroviscoelasticity Applied to the
Lungs. Assuming a homogenous isotropic poroviscoelastic me-
dium and small deformations such that linear theory is valid, per
Biot theory [36,37], we have the following set of coupled differen-
tial equations (written in the frequency domain, neglecting initial
conditions, where multiplication by jx denotes a derivative with
respect to time) describing steady-state dynamic oscillatory dis-
placement u of the nongaseous portion and dynamic pressure p of
the gaseous portion [38]:

lui;jj þ Kb þ
l
3

� �
uj;ij � a� bð Þp;i þ Fi ¼ �x2 q� bqf

� �
ui (4a)

bp;ii þ
/2

R
qf x

2pþ qf jxa ¼ �qf x
2 a� bð Þui;i (4b)

Specifically, these are equations 6.17–18 in Ref. [38] written in
the frequency domain for u and p under a steady-state assumption.
Here, Einstein summation notation is used, such that a repeated
index in the subscript denotes summation of all the terms (such as
x, y, and z in a Cartesian coordinate system). Subscripts after the
comma denote partial derivatives in those directions. (Only as a

subscript does j denote partial derivative; it denotes
ffiffiffiffiffiffiffi
�1
p

else-
where.) Here, Kb is the bulk modulus of the solid skeleton (tissue
part of the lung when it is inflated). Many of the other material
constants in the above equations were defined in Sec. 2.1. Shear
viscoelasticity will be assumed, such that l is frequency-
dependent and complex in value. Newly introduced terms Fi and
a denote external inputs of force per unit volume (e.g., Newtons
per cubic meter) and the rate of introduction of gas volume per
unit volume (e.g., inverse seconds), respectively. We also have
the following [38]:

a ¼ 1� Kb

Ks
(5a)

b ¼
jqf /

2jx

/2 þ jxj qa þ /qf

� � (5b)

R ¼ /2Kf K
2
s

Kf Ks � Kbð Þ þ /Ks Ks � Kf

� � (5c)

qa ¼ ðs� 1Þqf / (5d)

where s is the tortuosity, which (as normally defined) is the square
of the ratio of the minimum path length of a contiguous path
through the pore network to the straight path length. It is a shape
factor depending on the pore geometry. The pore space in the
lungs (respiratory tree) can be approximated as a sinuous cylindri-
cal channel network with varying diameter, so the tortuosity at
low frequencies (frequencies where viscosity dominates over
inertia) is 1.33 [39,40]. Also, j ¼ jp=�f , where jp is the perme-
ability of the porous medium, and for a network of tortuous capil-
laries of any cross section, jp / /3S=s [41], where S is the
specific area of the pore space. �f is the complex-valued fluid
(gas) viscosity defined as [37]

�f ¼ F Hð Þlf (6a)

where F Hð Þ is the frequency correction function for the viscosity
and lf is the dynamic viscosity of the fluid (inPa � s). By applying
Biot theory to the lungs, the fluid (air) in the pores (bronchioles
and alveolar sacs) is modeled as three-dimensional flow in a circu-
lar straight duct with radius r. As the respiratory tree progressively
subdivides, it finally reaches the alveolar sac, which is made of
clusters of alveoli. An alveolar duct is formed by a series of
alveoli lying adjacent to one another. A microscope image show-
ing morphometric parameters h (alveolar depth) and r (alveolar
duct radius) for an alveolar duct is displayed in Fig. 1. The flow
type is Poiseuille flow when the duct wall is at rest. When the fluid
and the solid skeleton oscillates at a frequency x, there is a devia-
tion from the Poiseuille flow and the dynamic viscosity of the
fluid is multiplied by a frequency correction function F Hð Þ. F Hð Þ
is defined as [37]

F Hð Þ ¼ 1

4

HTðHÞ
1þ 2jTðHÞ=H (6b)

where H ¼ r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nxqf =lf

q
and T Hð Þ ¼ �

ffiffiffiffiffiffi
�j
p

J1ð
ffiffiffiffiffiffi
�j
p

HÞ=J0

=ð
ffiffiffiffiffiffi
�j
p

HÞ. As the pores are not parallel but sinuous, a sinuosity
factor n is introduced to account for this effect and n is the square

Fig. 1 Microscope image showing morphometric parameters h
and r for an alveolar duct
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root of the tortuosity. Here, J0 and J1 are Bessel functions of the

first kind. At high frequencies, F Hð Þ ! Hðð1þ jÞ=
ffiffiffi
2
p
Þ=4. As the

friction between the fluid and the duct wall is proportional to
F Hð Þ, the friction is proportional to the square root of the fre-
quency and is 45 degrees out of phase with the velocity.

Neglecting external excitations and taking the divergence of
Eq. (4a) yields the following equation that, when coupled with
Eq. (4b), governs compression wave behavior:

Kb þ
4l
3

� �
ui;jji � a� bð Þp;ii ¼ �x2 q� bqf

� �
ui;i (7)

Suppose that the dilatation ui;i is zero and, again, neglecting exter-
nal excitations, Eq. (4a) reduces to the following equation, which
governs shear wave behavior:

lui;jj ¼ �ðq� bqf Þx2ui (8)

From Eq. (8), we see that the complex-valued wave speed cs and
shear wave number ks are

cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l=ðq� bqf Þ

q
(9a)

ks ¼ x=cs (9b)

Here, the real part of ks governs the shear wave speed and the
imaginary part defines the attenuation.

Without loss of generality, consider plane wave motion in the x
direction; assuming there are no variations in y and z directions
and neglecting external excitations, Eqs. (4a) and (4b) simplify to
the following for steady-state compression waves (expressed in
the frequency domain):

�au
00

x � �bp
0 ¼ ðjxÞ2 �Cux (10a)

�Dp
00 � ðjxÞ2�ep ¼ ðjxÞ2 �Xu

0

x (10b)

where �a ¼ Kb þ ð4l=3Þ, �b ¼ a� b, �C ¼ q� bqf ,
�D ¼ b,

�e ¼ ð/2=RÞqf ,
�X ¼ qf a� bð Þ, and 00 denotes second-order spatial

derivative with respect to x. Assume that the plane wave motion
in the x direction is oscillating at frequency x; the displacement
ux and pressure p have the form

ux ¼ u0ejðxt�kxÞ (11a)

p ¼ p0ejðxt�kxÞ (11b)

Inserting Eqs. (11a) and (11b) into Eqs. (10a) and (10b), we have
the expression of ux and p in the matrix form,

�ak2 � �Cx2 �j�bk

j�Xx2k �Dk2 � �ex2

" #
ux

p

" #
¼

0

0

" #
(12)

The nontrivial solution of ux and p requires that the determinant
of the coefficient matrix be zero, which leads to a quadratic equa-

tion �a�D
� �

k4 � �a�eþ �C�Dþ �b�X
� �

x2k2 þ �C�ex4 ¼ 0 for k2. This

then provides for two possible solutions for k2 and thus positive-
valued k, which are denoted as kps and kpf , the slow and fast

compression wave numbers. The two compression waves attenu-
ate due to the relative motion between the solid and fluid and due
to the viscous property of l. So, kps and kpf are complex valued;
the real part of kpf and kps governs compression wave phase veloc-
ity and the imaginary part governs the attenuation. The phase
velocities of the fast and slow compression waves are defined as
x=Reðkpf Þ and x=ReðkpsÞ. The group velocities of the fast and
slow compression waves are defined as dx=dðReðkpf ÞÞ and
dx=dðReðkpsÞÞ. The phase velocity value and the group velocity
value are not equal for a dispersive medium.

2.4 Comparison of Wave Speed and Attenuation Predic-
tions. The theories described in Secs. 2.1–2.3 for mechanical
wave motion in the lung parenchyma can be compared in terms of
their predictions for wave speed and attenuation, given the set of
nominal property values at a transpulmonary pressure (Ptp, airway
pressure relative to pleural or atmospheric pressure) of 20 cm H2O
for the effective medium model provided in Table 1 and addi-
tional parameters for Biot theory provided in Table 2. The lung
parenchyma permeability, lung skeleton bulk modulus, and lung
shear modulus are taken from experimental measurements
described in Sec. 4. These comparisons are shown in Figs. 2 and
3. Both theories predict a “fast” compression wave speed. The
group velocity as well as the phase velocity (not plotted here) of
the fast compression wave predicted by Biot theory increases with
frequency, indicating the lung as a dispersive medium, while the
effective medium theory predicts a frequency-independent veloc-
ity. However, Biot theory predicts an additional slow compression
wave that is not predicted by the effective medium theory. The
shear wave, based on Eq. (8), is decoupled from equations for the
compression waves. Based on the parameters in Tables 1 and 2,
the shear wave phase velocity calculated by Eqs. (3) and (8) are
virtually the same for the expected additional parameter values in
Biot theory (which are not known precisely). Thus, Eq. (3) is used
for the shear wave speed in this study. The slow compression
wave has a larger attenuation coefficient than the fast compression
wave, as shown in Fig. 3. The shear wave attenuation is mainly
due to the lung shear viscosity. However, the wave attenuation
predicted by Biot theory and by the effective medium model has
significant differences. At frequencies above 1000 Hz, the effec-
tive medium model predicts a much larger attenuation coefficient
than the Biot theory. The wave speed and attenuation predictions
will be compared with experimental measurements detailed in
Secs. 3 and 4.

3 Experiments on Freshly Excised Pig Lungs

3.1 Freshly Excised Lung Preparation. Experiments
detailed in Secs. 3.2–3.4 were carried out on the lung of a freshly
sacrificed pig that weighed 33 kg. Immediately upon sacrifice, the
lung was inflated by air with positive pressure of 20 cm H2O gage.
As the chest cavity was surgically opened and pleural pressure
became atmospheric pressure, the transpulmonary pressure was
maintained at 20 cm H2O. It was observed that all the lung lobes
were uniformly inflated and no noticeable amounts of gas trapping
were found under the pleural membrane. The lung was removed
from the chest of the pig, blood drained, and placed on a
vibration-isolated test bench in a room maintained at 20 �C. The
sequence of experiments on the lung included quasistatic

Table 1 Parameters for effective medium theory

/ Air volume fraction 0.71
P Air pressure 1:03� 105 Pa
n Polytropic constant 1
qf Air density 1:2 kg=m3

Ks Solid bulk modulus 2:2� 109 Pa [49]
qs Solid density 1000 kg=m3 [49]

Table 2 Additional parameters for Biot theory at 20 cm H2O Ptp

a Pore radius 0.225 mm [50]
s Tortuosity 1.33 [39]
jp Permeability 25:32� 10�12 m2

lf Air viscosity 1:82� 10�5 Pa � s
Kb Solid skeleton bulk modulus 8:26� 103 Pa
l Solid shear modulus 1400þ 5:78ðjxÞ0:5 Pa
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mechanical indentation measurements, surface wave measure-
ments, and compression wave measurements. After the above
measurements, the lung volume was measured by water displace-
ment and the lung mass was also measured. The time range of
these measurements postmortem was about 0.5–1 h, 1–1.5 h,
1.5–2 h, and 2–2.25 h, respectively. During this time, the lung was
periodically sprayed with water to keep the surface moist. Sepa-
rately, permeability measurements were made on dried specimens
of porcine lung (Sec. 3.5).

3.2 Mechanical Indentation Tests on Excised and Inflated
Lung of Freshly Sacrificed Pig. A quasistatic mechanical inden-
tation test was performed to determine the lung relaxed shear
modulus at two different Ptp’s. A steel cylindrical indenter with a
1.1-cm diameter was indented on the surface of the cranial lobe.
The increment in displacement (d) was 0.25 mm, and the maxi-
mum displacement was kept to 1.5 mm to ensure small deforma-
tion. The displacement was measured by a micrometer, and the
applied force F was measured by a digital force gauge (DS2-1,
Imada, Northbrook, IL). As the lung surface dimension is much
larger than the indenter radius, the indentation can be well
approximated as contact between a cylindrical indenter and an
elastic half space. The applied force F is related to the displace-
ment d by

F ¼ 2ERd (13)

where 1=E ¼ ð1� �2
1Þ=E1 þ ð1� �2

2Þ=E2, and E1 and E2 are the
Young’s moduli and �1 and �2 the Poisson ratios associated with
the lung and the steel indenter, respectively [42]. In Eq. (13), R is
the radius of the cylindrical indenter. The steel indenter is much
stiffer than the lung tissue, so E2 � E1 and the lung relaxed shear
modulus l0 (shear elasticity) is related to its relaxed Young’s
modulus by l0 ¼ ðE=2ð1þ �1ÞÞ. Thus, the applied force and
displacement relation can be expressed as

F ¼ 2
2l0

1� �1

Rd (14)

where 2l0=ð1� �1Þ can be evaluated from the F by d slope. It is
reported that the Poisson ratio of the lung is in the range of 0.4
and 0.44 [43,44]; here, we take �1 ¼ 0:42. Thus, with Eq. (14),
the lung relaxed shear modulus l0 can be calculated under quasi-
static conditions.

3.3 Surface Wave Studies on Excised and Inflated Lung of
Freshly Sacrificed Pig. Next, surface wave propagation on the
inflated lung surface was measured by a scanning laser Doppler
vibrometer (SLDV) (PSV-400, Polytec, Irvine, CA). The lung was
placed on a vibration isolation bench. A sinusoidal signal was
generated from the SLDV and fed into a power amplifier
(P 3500S, Yamaha, Buena Park, CA) that was connected to an
electromagnetic shaker (ET-132, Lab-Works Inc., Mesa Costa,
CA). The shaker has a flat dynamic response up to 11 kHz. The
impedance head (288D01, PCB Piezotronics, Depew, NY) was
connected to the shaker by a stinger, and a plexiglass disk with ra-
dius of 10 mm was mounted at the end of the impedance head.
The frequencies of sinusoidal excitation were from 100 Hz to
600 Hz with an increment of 100 Hz. A harmonic force was
applied on the lung surface by the plexiglass disk. Out-of-plane
velocity of the points on the lung surface was measured by the
SLDV. The measurements were taken at 20 cm H2O and 10 cm
H2O Ptp. Scanning was along two adjacent lines radially outward
from the excitation area over a distance of 25 mm with a 2.5 mm
increment (measured by a flexible ruler placed on the lung sur-
face), and the measurement point closest to the excitation was
5 mm from the rim of the plexiglass disk. The acceleration and
velocity measurements were fed into the SLDV data acquisition
system with a sampling frequency of 10.24 kHz. The experimental
setup is shown in Fig. 4.

From the surface wave measurements, the frequency response
function (FRF) at each point between the output signal (vertical
velocity of the surface points) and reference signal (acceleration
of the impedance head) was calculated. The surface wave phase
velocity at each frequency was calculated from the change of the
phase angle of the FRF with respect to radial position using linear
regression,

cR ¼ 2pf Dr=D/j j (15)

where Dr is the distance between two measuring points, D/ is the
wave phase angle between the same two points in radians, and f is
the frequency in Hz. Parametric studies show that, for the lung,
the shear wave speed calculated by Eqs. (3a) and (3b) is almost
the same as the one calculated by Eqs. (9a) and (9b); so Eqs. (3a)
and (3b) are used here for the shear viscosity estimation described
below. Surface wave speed in the lungs increases with frequency
due to rate-dependent viscous effects. Frequency-dependent sur-
face wave speed results from a complex shear modulus that can

Fig. 2 Compression and shear wave group velocity at 20 cm
H2O Ptp, ––– fast compression wave, Biot theory, – – slow com-
pression wave, Biot theory, – - – compression wave, effective
medium model, - - - shear wave

Fig. 3 Compression and shear wave attenuation at 20 cm H2O
Ptp, ––– fast compression wave, Biot theory, – – slow compres-
sion wave, Biot theory, – - – compression wave, effective me-
dium model, - - - shear wave
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be expressed in the frequency domain by its real and imaginary
part as

lðxÞ ¼ lR þ jlI (16)

The shear wave speed of a viscoelastic material is expressed as
[29]

cshear ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

q
l2

R þ l2
I

lR þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2

R þ l2
I

p
s

(17)

An approximate relation between surface wave and shear wave
speed is [45]

cR ¼ ð0:87þ 1:12�1Þ=ð1þ �1Þcshear

¼ ð0:87þ 1:12�1Þ=ð1þ �1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

q
l2

R þ l2
I

lR þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2

R þ l2
I

p
s

(18)

By fitting the measured surface wave speed with Eq. (18), lR and
lI can be estimated. Then, lR and lI were fit with Voigt, frac-
tional Voigt, and standard linear solid (SLS) models of viscoelas-
ticity to estimate the lung shear modulus over the whole
frequency range of interest. For the band of frequencies analyzed
here, it was found that the fractional Voigt model [29,30] with
fractional order a ¼ 0:5 provided a reasonable fit to experimental
data and only requires optimization of one parameter la based on
surface wave measurements (as l0 was determined by the quasi-
static indentation tests). The shear modulus is expressible as l
(x)¼l0þlaðjxÞa, where l0 and la are coefficients of shear elas-
ticity and shear viscosity, respectively [29]. lR and lI are related
to l0 and la by

lR ¼ l0 þ xalacosðpa=2Þ and lI ¼ xalasinðpa=2Þ (19)

where x is the frequency in radians/second.

3.4 Compression Wave Studies on Excised and Inflated
Lung of Freshly Sacrificed Pig. The same power amplifier, elec-
tromagnetic shaker, and impedance head were used in compres-
sion wave studies. A 20-cycle, tone-burst signal was generated
from a dynamic signal analyzer (SignalCalc ACE, Data Physics,
San Jose, CA) and was fed into the power amplifier that was con-
nected to the electromagnetic shaker. The impedance head was
mounted on the shaker with its end connected to a plexiglass disk
with radius of 15 mm, which in turn was gently pressed against
the inflated and excised lung’s surface. The frequencies of the

tone-burst signal were from 100 Hz to 2000 Hz. A point on the
lung surface was driven by the plexiglass disk, and its acceleration
was measured by the impedance head. Out-of-plane velocity of
the point on the other side of lung surface was measured by a laser
Doppler vibrometer (LDV) (PDV-100, Polytec, Irvine, CA). The
measurements were taken at cranial lobes, as they provide enough
space for the full contact between the plexiglass disk and the lung
surface. The distance between the point at the center of the plexi-
glass disk and the point measured by LDV was measured by a cal-
iper to the nearest tenth of a mm. The acceleration and velocity
measurements were recorded by the same signal analyzer with a
sampling frequency of 102.4 kHz. The wave speeds were meas-
ured at three locations (each location twice) at each Ptp. A sche-
matic diagram of the experiment is shown in Fig. 5. The
acceleration measured on one side of the lung surface was
regarded as the input signal x(t), the velocity measured on the
other side of the lung surface was numerically differentiated, and
the resulting acceleration was regarded as the output signal y(t).
The cross-correlation function RxyðsÞ of the two signals is
calculated by

Rxy sð Þ ¼ lim
T!1

1

T

ðT

0

x tð Þyðtþ sÞdt (20)

s1 was found to be the peak location of the RxyðsÞ curve. Thus, the
transit time s2 of the compression wave traveling at a constant ve-
locity between two points on the lung surface is

s2 ¼ s1 � s3 (21)

where s3 is the time delay of the LDV, which is 1.243 ms (per the
manufacturer and in agreement with calibration measurements
taken in our lab). The compression wave speed is then given by
d=s2, where d is the distance between two points measured by a
caliper. Since the excitation signal is a narrow-banded, finite-dura-
tion oscillatory pulse, this excitation waveform propagates undis-
torted in shape and at the group velocity [45]; thus, the estimated
wave speed is the group velocity of compression waves propagat-
ing in the lungs.

Due to complex geometries of the lungs and wave reflection/
transmission at the lung and air interface, attenuation estimated
from the velocity measured by the LDV with respect to the refer-
ence acceleration will be unreliable; so two subminiature micro-
phones (BL-21785-000 Knowles Electronics, Itasca, IL) were
used to measure the wave attenuation. As it is difficult to establish
planar compression waves throughout the lung, creating spherical
compression waves throughout the lung will make it easier to sep-
arate the attenuation due to geometric spreading from total attenu-
ation. To achieve this, the plexiglass disk with a radius of 1 cm
connected to a shaker was replaced by a hose with a radius of
3.1 mm connected to an 88.9-mm (3.5-in.) speaker (PDWR30W,
PylePro, Brooklyn, NY). A needle with an inner diameter of
0.413 mm was inserted into the lung at the same height as that of
the sound input. The needle end was connected to a 50-mm-long

Fig. 4 Experimental setup for surface wave measurement

Fig. 5 Schematic diagram of compression wave measurement
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hose, and the pressure was measured by the microphone through
the hose. The data acquisition system remained the same. The
measurements were taken at three different locations (each loca-
tion twice) at each Ptp. The pressure amplitudes at two measure-
ment points (except the near field) have the form

p1 ¼
A

r1

e�kIr1 (22a)

p2 ¼
A

r2

e�kIr2 (22b)

where A is an arbitrary constant, kI is the imaginary part of the
wave number, and r1 and r2 are the distances of the measurement
points from the sound input. From Eqs. (22a) and (22b), the
attenuation (dB/m) is

Att ¼ 20 log10

p1r1

p2r2

� �	 

=ðr2 � r1Þ (23)

3.5 Lung Permeability Studies on Dried Porcine Lung.
Permeability is a measure of the ability of a porous material to
allow fluids to pass through it. It is an important parameter that
affects the compression wave speeds and attenuation in the Biot
theory. It is part of the proportionality constant in Darcy’s law,
which relates discharge (flow rate) and fluid physical properties
(e.g., viscosity) to a pressure gradient applied to the porous media;
it is defined as

jp ¼ v
lf Dx

Dp
(24)

where v is the superficial fluid flow velocity through the medium
(i.e., the average velocity calculated as if the fluid were the only
phase present in the porous medium), lf is the dynamic viscosity
of the fluid, Dp is the applied pressure difference, and Dx is the
thickness of the porous medium. As any piece of lung parenchyma
cut from an inflated fresh lung will collapse and cannot keep its
shape, dry-preserved swine lung pieces (LS03686, Nasco, Fort
Atkinson, WI) were used to estimate lung parenchyma permeabil-
ity. The dry-preserved lung was inflated to its maximum volume
and dried by the manufacturer. Cylindrical samples were carefully

cut from dry-preserved lung pieces, and clearly visible airways
were avoided as best as possible to keep the test samples close to
a homogeneous and isotropic medium. The test sample was put
into a plastic test tube and connected to an air flow source with
constant volume flow rate. The pressure difference at two ends of
the sample was measured by a differential pressure manometer
(HD 750, Extech, Nashua, NH). The downstream volume flow
rate was measured by a Visi–Float

VR

flowmeter (Series VFB,
Dwyer Instruments, Michigan City, IN). The experimental setup
and diagram are shown in Fig. 6. The superficial fluid flow veloc-
ity was calculated by dividing the volume flow rate by the test
sample cross-sectional area. For each test sample, experiments
were carried out for five pressure differences and the permeability
was estimated from Eq. (24).

4 Results

As the air volume fraction and the permeability will be used to
calculate the fast wave speed from Biot theory and compared with
experiments, measurements on these two parameters are first
reported. The mass of the pig lung at zero Ptp was 331 g. As the
soft tissue density is very close to 1g=cm3, the soft tissue volume
was taken to be 331 cm3. The total volumes of the lung at 20 cm
H2O and 10 cm H2O were 1141 cm3 and 770 cm3, respectively, so
the air volume fraction of the lung was 71% and 57%, respec-
tively. For the permeability measurement, different superficial
fluid flow velocities and applied pressure differences form a good
linear relationship for each dried lung sample. The lung paren-
chyma permeability with its mean and standard deviation is shown
in Table 3. The average value of the permeability of the four sam-
ples is 25:32� 10�12 m2, and this is taken as an approximation of
the parenchymal permeability value at 20 cm H2O. As
jp / /3S=s, the lung permeability at different Ptps is different.

Fig. 6 Lung parenchyma permeability measurement (a) experi-
mental setup and (b) schematic diagram

Table 3 Lung parenchyma permeability

Sample # 1 2 3 4

Diameter (cm) 1.50 1.50 0.98 0.98
Length (cm) 1.60 1.45 1.20 1.00
Permeability (�10�12 m2)ðmean 6 SDÞ 32.30 6 1.95 21.75 6 0.61 26.24 6 1.33 21.00 6 0.89

Fig. 7 Force and indentation depth relation in indentation
measurement, � � � experiment, 20 cm H2O, ––– least square
fit, 20 cm H2O, � � � experiment, 10 cm H2O, – – least square fit,
10 cm H2O

Journal of Vibration and Acoustics OCTOBER 2014, Vol. 136 / 051012-7



The pore space in the lungs is the respiratory tree, which is com-
prised of the conducting airways and the respiratory zone (the re-
spiratory bronchioles, the alveolar ducts, alveolar sacs, and
alveoli). The length and diameter of the conducting airways and
the respiratory bronchioles almost remain the same over the range
of different Ptps, so the tortuosity is approximated as a constant.
Although there are still inconsistencies in the literature regarding
alveolar surface area at different Ptp, in a recent study, Hajari
et al. [46] demonstrated that, by using the 3He MRI technique, the
healthy human lungs inflate primarily by alveolar recruitment
combined to a lesser extent with anisotropic expansion of alveolar
ducts. From their study, the alveolar surface area changes little
with pressure. So the pore surface area for the lungs may not sig-
nificantly affect the permeability. Then, from jp / /3S=s and by
considering the change of air volume fraction, the permeability of
the lung parenchyma at 10 cm H2O is 13:10� 10�12 m2.

The applied force and displacement relation for the indentation
measurements are shown in Fig. 7. From Eq. (14), the lung shear
modulus is estimated to be 1.40 kPa and 0.79 kPa at 20 cm H2O
and 10 cm H2O, respectively.

In Figs. 8(a) and 8(b), the surface wave speed along lines 1 and
2 are close to each other; the small discrepancy between the val-
ues of the two lines is likely caused by nonhomogeneity of the
lung tissue. The surface wave speeds along the two lines were
averaged and used to fit Eq. (18) in a least square error sense to
obtain the optimal values of lR and lI . The curve fits of different
viscoelastic models at each Ptp are also plotted in Fig. 8. Using
Eq. (19) and known l0 from the indentation tests, the shear

viscosity la can be calculated from lR or lI : At 20 cm H2O and
10 cm H2O Ptp, la ¼ 5:78 Pa � s1=2 and la ¼ 1:23 Pa � s1=2, respec-
tively. When the frequency approaches zero, the shear wave speed
approaches

ffiffiffiffiffiffiffiffi
l=q

p
.

From the compression wave studies, the time history of the
acceleration and velocity of a point as a result of a 20-cycle,
400 Hz tone-burst input is shown in Fig. 9. The distance between
two points was 33.2 mm at 10 cm H2O. The amplitude of the ve-
locity is very small, so it was increased by 2000 times for ease of
viewing in the figure. From Fig. 9, it is observed that there is only
one type of compression wave (fast wave) propagating in the lung
parenchyma, while the slow wave is not observed. This can be
explained as follows. In Biot theory, it is assumed that the flow of
the fluid relative to the solid through the pores is of the Poiseuille
type. For Poiseuille flow in a porous medium, the characterizing
boundary layer is known as the viscous skin depth ds, and it is
expressed as [41]

ds ¼ ð2lf =qf xÞ1=2
(25)

The assumption of Poiseuille flow fails when ds is equal to or
greater than the pore radius. It is important for the observation of
the slow wave that ds should be much smaller than the pore radius,
as the relative motion of the solid and the fluid is not impeded by
viscous drag so that the slow wave can propagate [41]. In our fre-
quency range of interest (100–2000 Hz), ds ranges from 0.05 to
0.22 mm. The typical pore radius is the alveolar duct radius, which
is around 0.25 mm. The slow compression wave was first observed
by Plona [47] in water-saturated disks composed of sintered glass
spheres with diameters between 0.21 and 0.29 mm. Slow wave ve-
locity measurements were made using the 500-kHz transducer
pair. So, from Eq. (25), the viscous skin depth ds is 0.8 lm and
the sphere radius is about 300 times ds. The slow compression
wave was also observed in water-saturated bovine plexiform and
human Haversian bone [48]. To observe the slow wave, the lowest
frequency in bovine plexiform bone cut perpendicular to longitu-
dinal direction is 0.73 MHz and the radius (round 0.02 mm) of the
main canals for blood supply is taken as the pore size. Thus, ds is
0.66 lm and the pore size is about 30 times of ds. However, in the
current experiment, ds is not small enough compared with the
pore radius; so it is not possible to observe the slow compression
wave in our frequency range of interest. Under very high frequen-
cies, it might also be impossible to observe the slow wave, as it
attenuates faster than at lower frequencies.

The measured compression wave speed (group velocity) at
20 cm H2O and 10 cm H2O are shown in Fig. 10. The theoretical
predictions by Biot theory and the effective medium model are
also plotted for comparison. The signals measured by the micro-
phone have more noise than those from the LDV, and hence they
were not used to estimate the wave speed. In order to have a good
estimate of the true mean of the compression wave speed in the
lung parenchyma based on a finite-sized sample, a 95% confi-
dence interval is used as a quantified measure of the random error
in the estimate of the true value of the compression wave speed.
Thus, the estimate of the true mean value based on a finite data set
experiment is stated as

c0p ¼ �cp 6 t5;95S
cp

(26)

where t5;95 is the estimator of the Student’s t distribution with
0.95 probability and 5 degrees of freedom. S

cp
is the standard devi-

ation of the means and is defined as S
cp
¼ Scp

=
ffiffiffiffi
N
p

with Scp
as the

sample standard deviation and N as the sample size of six. The pa-
rameters used for theoretical predictions are listed as follows. The
air density at 20 �C is qf ¼ 1:2kg=m3. The air pressure in the lung
at 20 cm H2O and 10 cm H2O is 1:03� 105 Pa and 1:02� 105 Pa,
respectively. The soft tissue density is qs ¼ 1000 kg=m3, the tis-
sue bulk modulus is taken to be that of the water as Ks ¼ 2.2 GPa
[49]. Air viscosity at 20 �C is lf ¼ 1:82� 10�5 Pa � s. The

Fig. 8 Surface wave speed, (a) 20 cm H2O and (b) 10 cm H2O, �

� � experiment, line 1, � � � experiment, line 2, ––– Voigt
model least square fit, ––– fractional Voigt model least square
fit, - - - SLS model least square fit
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complex shear modulus of the lung is l ¼ 1400þ 5:78ðjxÞ1=2

and l ¼ 790þ 1:23ðjxÞ1=2
at 20 cm H2O and 10 cm H2O, respec-

tively. The solid skeleton bulk modulus Kb is 8.26 kPa and
4.68 kPa at 20 cm H2O and 10 cm H2O, respectively. The pore
size also affects the fast compression wave speed. Using the 3He
MRI technique, Hajari et al. [46,50] demonstrated that the alveo-
lar duct radius of both human and dog lung increases with pres-
sure. As the weight of the pig used in this experiment was close to
that of the dog, we took the alveolar duct radius as 0.225 mm at
20 cm H2O and 0.2 mm at 10 cm H2O, which are within the range
of the measurements made by Hajari. The polytropic constant is
taken as n¼ 1. This fits the wave speed in the experiments better

than n¼ 1.41. When n¼ 1.41, all the experimental data are below
theoretical predictions by about 7–8 m/s for both pressures. In the
attenuation results below, n¼ 1 also has a better fit. As mentioned
above, n can be between 1 and 1.41. Since the bulk modulus of
the lung tissue is about five times the order of magnitude of that
of the air, from Eq. (1b), the bulk modulus of the lung is approxi-
mately nP=/. Yen et al. [51] measured the compression wave
speed, density, and the bulk modulus of the rabbit lung. From their
measured lung density and bulk modulus, the polytropic constants
at the different Ptp used here are close to 1.09, which supports our
choice of n¼ 1. The polytropic constant was also n¼ 1 in
Wodicka et al. [26]. It is observed in Fig. 10 that the compression
wave speed increases with frequency, and these trends agree well
with the Biot theory prediction. As Ptp increases from 10 cm H2O
to 20 cm H2O, the Biot theory also predicts a larger wave speed,
which is confirmed from the experiment. The measured wave
speed at 100 Hz and 200 Hz is within the range of reported values
at similar densities in Rice [25]. The effective medium model pre-
dicts a frequency-independent wave speed, and the values it pre-
dicts are lower than those of Biot theory above 200 Hz. For
frequencies higher than 2000 Hz, the low-LDV signal-to-noise ra-
tio (SNR) makes the estimation of the transit time unreliable;
thus, 2000 Hz was the highest excitation frequency in the current
experimental protocol.

The attenuation of the compression wave at 20 cm H2O and
10 cm H2O are shown in Fig. 11. The theoretical predictions by
Biot theory and the effective medium theory are also plotted for
comparison. As the signals with poor SNR were discarded, only
two measurements with different microphone distances were
shown for each pressure. The Biot theory prediction has a rela-
tively good match with the experiments, while the thermal damp-
ing predictions from the bubble swarm theory do not provide a
good match. As seen from Fig. 11, above 300 Hz, the attenuation
at 10 cm H2O is larger than that of 20 cm H2O. This attenuation
increase likely arises from the increase of friction between the al-
veolar duct wall and the air. Microscopically, the increase of fric-
tion is due to the significant drop of permeability, which increases
the pressure gradient along the pore space. As jp / /3S=s and
assuming that the alveolar duct radius increases with the air vol-
ume fraction, the attenuation has a maximum at a certain air vol-
ume fraction based on the Biot theory prediction. Using the
parameters above, the maximum attenuation shifts from an air

Fig. 9 Time history of the acceleration and velocity of a point
at 400 Hz with 10 cm H2O as a result of a 20-cycle tone-burst
input. The amplitude of the velocity is increased by 2000 times
for ease of viewing here.

Fig. 10 Fast compression wave group velocity, � � � experi-
ment, 20 cm H2O, ––– Biot theory, 20 cm H2O, –.– effective me-
dium model, 20 cm H2O, � � � experiment, 10 cm H2O, – – Biot
theory, 10 cm H2O, - - - effective medium model, 10 cm H2O. Bars
on the experimental data denote a 95% confidence interval, as
described in Sec. 4.

Fig. 11 Fast compression wave attenuation, � � � experiment,
20 cm H2O, location 1, � � � experiment, 20 cm H2O, location 2,
––– Biot theory, 20 cm H2O, –.– effective medium model, 20 cm
H2O, � � � experiment, 10 cm H2O, location
1, 1 1 1 experiment, 10 cm H2O, location 2, – – Biot theory,
10 cm H2O, - - - effective medium model, 10 cm H2O
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volume fraction of 0.68 to 0.5 as the frequency increases from
100 to 2000 Hz. At frequencies above 1000 Hz, the maximum
attenuation occurs at a volume fraction slightly less than 0.57 (air
volume fraction at 10 cm H2O); so the attenuation coefficient at
20 cm H2O is significantly smaller than that at 10 cm H2O. The
discrepancies between the experimental measurements and the
Biot theory prediction show that, even though the viscous dissipa-
tion is the major source of dissipation for fast compression wave
in the lungs, there likely are other nonnegligible sources of dissi-
pation, including thermal dissipation. In summary, in terms of the
compression wave speed and attenuation in the lungs, the Biot
theory yields a better prediction than the effective medium theory
and the thermal dissipation model.

5 Discussion

In this study, the application of Biot theory treats air as the only
fluid in the lungs. As mentioned in Sec. 3, the blood has been
drained, at least from the major vessels. Likely, remnants left in
the smaller vessels coagulate and are effectively trapped, more
aptly treated as part of the solid phase within Biot theory. Another
liquid to consider is mucus in the airways; its amount is small
compared to that of air in the lung. Within the current theoretical
framework, any contribution from the mucus was not directly
taken into account. As mucus also affects viscosity in the airways,
this might be one of the causes of the discrepancy between meas-
ured and predicted fast compression wave attenuation in Fig. 11.

While the permeability was necessarily measured on dried
lungs, a possible discrepancy due to drying is that mucus, which
was removed from the lung, will no longer impede airflow; so one
might expect the permeability to be higher than it would actually
be in a fresh lung. To evaluate how changes in permeability affect
the fast compression wave group velocity and attenuation, perme-
ability was increased by 10% for each transpulmonary pressure.
Theoretically predicted fast compression wave group velocity
increased by about 4.5% for both transpulmonary pressures. The
attenuation decreased by 0.7% and 0.2% for 20 cm H2O and
10 cm H2O, respectively. This suggests that the fast compression
wave group velocity and attenuation were not very sensitive to the
possible permeability value discrepancy.

The only other estimates of the quasistatic lung shear modulus
l0 the authors are aware of are based on extrapolation of dynamic
(frequency response) surface wave speed and MRE measurements
to the quasistatic condition. In Zhang et al. [52,53], a Voigt model
of shear viscoelasticity with shear modulus l0 and shear viscosity
l1 was used to fit the measured frequency-dependent, surface
wave speed on a pig lung. The reported value of l0 was 4.68 kPa
and 7.99 kPa at 10 cm and 20 cm H2O, respectively, which is
higher than our measured values (0.79 and 1.4 kPa). It is noted
that variation exists in different lungs and postmortem time also
contributes to such differences. In other pig lungs, the authors
have measured l0 as high as 1.29 kPa and 2.29 kPa at 10 cm and
20 cm H2O, respectively. In Mariappan et al. [19], based on MRE,
the reported dynamic shear stiffness lstiff in an in situ porcine
lung at 100 Hz was 1.68 and 2.23 kPa at 10 cm and 20 cm H2O,
respectively. In Mariappan et al. [54], based on MRE, the reported
dynamic shear stiffness lstiff in an in vivo human lung at 50 Hz
varied throughout the respiratory cycle from 0.9 to 1.6 kPa.
Recall that, from Eq. (17), the shear stiffness lstiff ¼ qc2

shear, so

lstiff >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2

R þ l2
I

p
> l0. Taking this all into consideration, the

values reported in the present study are in a comparable range to
those reported previously using other techniques.

6 Conclusions

Two theoretical models of the vibroacoustic behavior of the
lung parenchyma are compared: (1) a Biot theory of poroviscoe-
lasticity and (2) an effective medium theory for compression
wave behavior. A fractional derivative formulation of viscoelas-
ticity is integrated into both models. A measurable fast

compression wave speed predicted by the Biot theory formulation
has a significant frequency dependence, which is not predicted by
the effective medium theory. Biot theory also predicts a slow
compression wave and a shear wave. The frequency-dependent,
compression wave group velocity was measured experimentally
from 100 to 2000 Hz by applying narrow-banded pulses on freshly
excised pig lung ex vivo. Both the experimentally measured fast
compression wave speed and attenuation in an ex vivo pig lung
model agreed well with the Biot theory. To obtain the parameters
for Biot theory prediction, quasistatic mechanical indentation tests
were performed to measure the lung static shear modulus, surface
wave measurements were performed to estimate lung tissue shear
viscoelasticity, and lung permeability was separately measured on
dried lung specimens. The slow compression wave was not
observed in the experiment, as the relative motion of the solid and
the fluid was impeded by viscous drag due to the relatively large
viscous skin depth in the frequency range considered. Compres-
sion wave propagation in the lungs has been primarily studied
below several hundred Hz, and limited information about wave
speed versus frequency has been obtained. In the current study,
compression wave speed measurements were extended to
2000 Hz, revealing that the lung is a dispersive medium for both
compression and shear waves. This study suggests that the Biot
theory may provide a more robust and accurate model than the
effective medium theory for wave propagation in the lungs over a
wider frequency range.
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