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Abstract

Clinical trials often assess efficacy by comparing treatments on the basis of two or more event-

time outcomes. In the case of cancer clinical trials, progression-free survival (PFS), which is the

minimum of the time from randomization to progression or to death, summarizes the comparison

of treatments on the hazards for disease progression and mortality. However, the analysis of PFS

does not utilize all the information we have on patients in the trial. First, if both progression and

death times are recorded, then information on death time is ignored in the PFS analysis. Second,

disease progression is monitored at regular clinic visits, and progression time is recorded as the

first visit at which evidence of progression is detected. However, many patients miss or have

irregular visits (resulting in interval-censored data) and sometimes die of the cancer before

progression was recorded. In this case, the previous progression-free time could provide additional

information on the treatment efficacy. The aim of this paper is to propose a method for comparing

treatments that could more fully utilize the data on progression and death. We develop a test for

treatment effect based on of the joint distribution of progression and survival. The issue of interval

censoring is handled using the very simple and intuitive approach of the Conditional Expected

Score Test (CEST). We focus on the application of these methods in cancer research.
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1. Introduction

The primary outcome of clinical trials in cancer is often progression-free survival (PFS),

which is the time from randomization to the first of progression or death. This outcome is

chosen because it is clear that the delay of progression confers a benefit to the cancer

patient. Also, although survival is arguably the most important outcome for a life-

threatening disease such as cancer, using PFS can shorten the time it takes to report results

of a trial and is sensitive to both rapid progression as well as lethal treatment toxicity.
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Finally, because therapy is usually ended or changed at progression, the use of PFS does not

require any untestable assumptions about the impact of a treatment after it is discontinued at

progression. However, the analysis of PFS does not utilize all the information we have on

patients in the trial. First, if both progression and death times are recorded, then the

information on death time is ignored in the PFS analysis. Second, progression is monitored

at pre-determined clinic visits by clinic, lab and radiologic tests, and progression time is

recorded at the first visit at which it was detected. However, many patients miss or have

irregular visits, and sometimes patients die (of cancer) before the progression was recorded

with variable gaps in time between the visit at which there was no evidence of progression

and the visit at which progression was first detected. In this case, the data on when a patient

was last seen in stable condition could provide additional information on the analysis of

treatment benefit. In fact, progression time is actually interval-censored data, as the data set

will consist of overlapping intervals when progression occurred. In light of these issues, both

US Food and Drug Administration and European Medicines Agency have issued guidelines

for industry on clinical endpoints for the approval of cancer drugs and biologics [1, 2]. In the

guidelines, different recommendations have been made for the PFS analysis, covering

various issues such as event and censoring rules, event and censoring timing for progression

documented between scheduled visits, treatment discontinuation, start of new anticancer

treatment, death before the first progressive disease assessment or between adequate

assessment visits, death or progression after more than one missed visits, and so on. In

general, these guidelines urge consideration of the interval-censored nature of progression

data.

The analysis of interval-censored data is challenging as one cannot directly apply standard

methods such as the proportional hazards model because when a failure is censored into an

interval of time, one knows neither when the failure happened nor when the subject was at

risk and event free during that interval. Rather, it is necessary to parameterize the underlying

distribution as well as the treatment effect. Often, this likelihood is not in closed form. We

have proposed methodology for the estimation and regression analysis of the effect of

baseline predictors on interval-censored failure time data [3, 4]. Goggins et al. [5] developed

a method for handling multivariate interval-censored data but not the specific case we

handle here, where the failures are known to be ordered. We will jointly model progression

and death. We assume that progression occurs before a death from cancer even if it is not

recorded.

The aim of this paper is to propose a test for comparing treatments that could more fully

utilize the data on both survival and progression by considering the joint outcomes rather

than the minimum of the two. The method will handle the fact that the data are interval-

censored data and that patients who die before progression is recorded should be treated

differently in the analysis than those whose progression is detected prior to their death. In

the next section, we will first introduce notation and the models and likelihood we will use

for the data on survival and death for the case when all progressions are exactly observed.

We then apply the principle of Conditional Expected Score Test (CEST) [6] to derive the

score test to handle the case where some visits are missed, resulting in interval-censored
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event data. We apply our methods to analyze a breast cancer study and suggest extensions to

this work.

2. Methods

2.1. Notation, model, and likelihood for complete data

Suppose that we completely observe the data on progression time for all subjects i, for i = 1,

…, N, and have recorded death (or most recent follow-up) times. We assume that

progression occurs before (or at) death, because we are in the context of a cancer clinical

trial where deaths that are observed during follow-up are almost always related to the

cancer. We will let Yij be an indicator for whether patient i was in follow-up at time j. Thus

Yij = 1 until the patient dies or leaves follow-up, after which time Yij = 0. Let ρij be an

indicator of whether or not patient i had first evidence of progression at time j. We assume

ρi0 = 0. We let Wij be an indicator for whether patient i is at risk for progression at time j and

note that . Let δij be an indicator for whether patient i has died at

time j. All indices are measured from the time of the start of study. Let the set of times j = 1,

…, M represent all the times at which a progression was assessed, a death was recorded, or a

patient was censored. Deaths will be coarsely grouped and recorded into these intervals.

Finally, let Xi be the covariate (treatment indicator) for patient i.

To model the relationship between the covariate (treatment) and failure, we will utilize a

generalized person-exam risk model described in [7], by which observations over multiple

time intervals are pooled into a single sample, and logistic regression is used to relate the

risk factors to the occurrence of the event. When grouping intervals between exams are

short, this Pooling Repeated Observations method (PRO) is asymptotically equivalent to

grouped proportional hazards model for a time-dependent covariate [8]. In our application,

the response variable of the logistic model will indicate progression as a function of the

covariate x. Thus, the logistic model for hazard of progression at time j given treatment x is

(1)

where pj is the conditional probability of observing the progression at the jth time given the

individual was free of progression through time j − 1 and x is the value of the covariate for

treatment. We treat progression as non-reversable, and patients are only under observation

for death after they progress. Finally, we assume that the patient who dies of cancer

progressed prior to death.

Similarly the model for hazard of death at kth time given progression at time j is

(2)
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where qjk is the conditional probability of observing the death at time k after progression at

the jth time and x is the value of the covariate for treatment.

For the test of treatment benefit on progression and mortality, we let the coefficient of x be

the same in both models: β = γ using a single parameter for treatment effect, β (under the

null). If we were in the simple case where pj = p for all j and qjk = q for all j, k, the

contribution to likelihood for someone who progresses at j and dies at k > j would be (1 −

p)j−1p(1 − q)k−jq.

More generally, the contribution of the ith subject to the log likelihood under the PRO

logistic models for data (1) and (2) is

(3)

where j = 1, …, M indexes all times of clinic visits, deaths, or censoring, measured from

randomization.

The numerator of the score test for the hypothesis H0 : β = 0 is found by taking the

derivative of the log-likelihood with respect to β, evaluated at β = 0, which gives

(4)

where , p̂j (progression) at j is estimated by  and q̂jk (death)

at k ≥ j is estimated by  .

2.2. Derivation of score with interval-censored data using Conditional Expected Score Test

We now consider the problem that the progression can be censored into intervals bracketed

by the missed visits. Suppose that the ith subject missed visits after time Li, came back at

time Ri, and that ρiLi = 0 and ρij = 1 for some Li < j ≤ Ri. In this case, ρij is missing for Li +1

≤ j ≤ Ri. Also because progression is an absorbing state, if any subject misses a visit but

returns at time k still progression free, then we assume ρij = 0 for all j ≤ k. Let Mi be the

index of the last time subject i was observed. Finally, we assume that if the patient dies (of

cancer) at time k and no progression time was recorded, then they had to have progressed at

some time after the last observed time at which they were progression free (prior to time k)

and the exact time of progression is unknown.

In our earlier paper [6], we discussed how it is possible to derive a score test in the context

of missing data in a simple way using a technique we have called the CEST. For this, we

reference a principle noted by Efron as a discussant in Dempster, Laird and Rubin (1977)

JRSS-B [9]: “The score based on incomplete data is the expected value of the complete data
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score conditional on the observed data.” Efron [10] actually acknowledged a result of

Fisher from 1926, stating this earlier. This method simplifies an otherwise complex

derivation for the score as we need only to obtain the expectations for data that are missing.

We used this approach in other recent papers [6, 11]. The four steps to obtain the score test

from incomplete data using CEST are to select a model, find the score test for complete

data, determine the expected value of the score given the incomplete data (under the null),

and use this as a score test statistic. For example, suppose that we only had progression data,

where ρij be indicator subject i has progression at time j and Wij is an indicator that they are

under observation at time j (for progression). Thus . It is simple to

see that the numerator of the score test for complete data is

where  is the probability of progressing at time j. Using the CEST, we can see that

the numerator of the score test for incomplete data can be derived by calculating the

expected value of score (under H0), which is

where ρ̂
ij = E(ρij |(Li, Ri], β = 0), Ŵij = Yij ·[1 − Σk<j ρ̂

ik], and .

We note that the notation of hat above observed data (such as ρ̂) is referring to an

expectation of the quantity, while the hat notation over a parameter (such as p ̂) refers to an

estimated value. Also note that these quantities are found by iteration as they depend on

each other. The result of this approach is the same as the test derived in [3].

For the case of the joint model for progression and death, we will apply the likelihood based

on the PRO logistic models in (4) applied earlier. For our data, progression is censored into

(Li, Ri] for each subject, and death is exact or right censored at a time after Rij. In this case,

the likelihood (with interval-censored data) is complex. However it simplifies under the null

hypothesis.

To apply the CEST, we note that the score based on incomplete data is the expected value of

the complete data score conditional on the observed data. Using the numerator of the score

test from the complete data derived earlier (4), we need only to obtain the expectations of

the score for observations with missing data. For this, we note that because under H0: β = 0,

both (ρij, Wij) and (δik, Yik) are independent of xi, the score contribution for each subject i is
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We will need to obtain expectation of ρ and W conditional on the observed data evaluated at

β = 0. Now the expected value of ρ is

We note E(ρ) is informed by the death as well as progression times (by p as well as q).

For the expected value of the indicators of being at risk and of dying following progression,

we note that the expected indicator for death after progression is

where ρ̂
ij = E(ρij |data).

It can now be shown from (4) that for data with interval-censored progression times, the

score is

(5)

where , Ŵij = Yij ·[1 − Σk<j ρ̂
ik], and .

This can be estimated iteratively by an application of the EM algorithm.

3. Calculation of the variance for the Conditional Expected Score Test

To simplify the calculation of the variance of the test, we begin by noting that the log

likelihood in (3) can be written as a general linear function in the data that are missing (in

our case ρij). For this, we note that the contribution of the ith subject to the log likelihood

under the PRO logistic models for data (1) and (2) is
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(6)

where ρi0 = 0. This likelihood can be expanded out to

If we assign Yi(M +1) = 0 and add over all subjects, then the likelihood can be rewritten as a

linear function of ρ as  where

Thus the likelihood is linear in the incomplete data, which is the indicator for the time of

progression, ρij. Let  and E(ρij |XC) = ρ̂
ij, with ρ̂

i0 = 0, where XC is the

observed data (the set of (Li, Ri]). This representation makes it easier to use the formula of

Louis [12] to calculate the information matirix of ϕ = (pj, qjk, β) because the expectation of

any derivative of  is just the derivative of  with ρ̂
ij replacing ρij. Thus, applying the

formula 3.2′ on page 228 of [12], the Fisher information for the incomplete data is the

matrix I with rs entry:
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Note that because ρij ρik = ρij whenever j = k and is zero otherwise, the quantity under the

expectation (in the second term) can be simplified to be linear in ρij as well so that its

expectation given the complete data is also found by replacing ρij by ρ̂
ij. Also note that the

last term  is 0 except at ϕ = β and thus becomes a matrix with

the square of the score given in (5) in the lower right corner and zeros elsewhere. Finally,

the variance of the statistic is the inverse of the lower right element of I−1, which follows

from [13], page 417 (6e.2.4). Thus the inverse of I simplifies (as shown in [13], page 33)

because it is a symmetric partitioned matrix. Alternatively, we could calculate the bootstrap

estimate of the variance. The program for this can be found on our website http://

hedwig.mgh.harvard.edu/biostatistics/tools/software.

4. Simulations

We performed simulations, comparing the proposed joint test on progression and survival

following progression, to the logrank test on PFS that is usually used. For simplification, we

considered the case where the probability of progression (p) in each interval was the same at

each time and the probability of death after progression (q) was the same regardless of when

progression occurred. We considered various combinations of these two hazards and

associated hazard ratios for two treatment groups. We varied the probability of missing

visits, which drove the degree of interval censoring (Int Censor). Each run is based on N =

100 and 1000 simulations unless an alternate sample size is noted. We considered the impact

of increasing N. We used underlying hazard of progression of about 0.1 to 0.2, and hazard

ratios of about 1.5 to 2 to assess power. We assumed that the subjects had a maximum of 12

visits. From simulations, the size of both tests was right. This is shown in the lines (j) and

(k) of Table I.

We found that if the hazard is higher for progression than for death after progression, and

the hazard ratios both reflect treatment benefit, the proposed test has more power (see (a)). If

the chance of making a visit drops, the power drops more for the logrank test than the

proposed test (b). If the hazard ratio for death drops, the power of the two tests are close (c).

If the hazard is higher for death (with a lower hazard ratio) but lower for progression, the
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power again drops and is similar for both (d). If the hazard for death is higher and the two

hazard ratios are about the same, the proposed test outperforms the logrank substantially (e).

When the hazard ratio is reversed (higher for death after progression than for progression),

the two methods decline dramatically in power, but the logrank does worse (f). However, if

the hazard for death after progression is low, the hazard ratio for death after progression is 1,

but the hazard and hazard ratio for progression is as before, then the logrank does better (g).

If the study has lower progression hazard rate, but more patients (300), then the tests do

about the same on power (h). Finally, without interval censoring, the logrank does better (i).

As shown in rows j and k, both tests have the right size.

5. Analysis of efficacy of treatment on progression-free survival from an

early breast cancer trial

The clinical trial MA17 was conducted by the National Cancer Institute of Canada to

compare the efficacy of letrozole versus placebo in early breast cancer post-menopausal

women with hormone receptor positive tumors who had been treated with 5 years of

tomoxifen. The 5187-patient trial was published in NEJM I in 2003 [14]. The study was

stopped at an interim analysis (after a median of 2.5 years of follow-up) on the basis of the

primary outcome of PFS, with 207 local or metastatic recurrences of breast cancer or new

primary cancers in the contralateral breast (75 in letrozole group and 132 in placebo) and

estimated 4-year disease-free survival rates of 93% and 87%, respectively, in the two groups

(p < 0.0001). A total of 42 women in the placebo group and 31 in the letrozole group had

died. All deaths were included as events regardless of the cause of death. At the early

termination of the trail, patients were unblinded, and those who had been assigned placebo

were offered letrozole. While the treatment advantage on PFS was clear, an analysis of

mortality from the trial found no significant difference. After additional data were collected

(up until the crossover), the study was re-analyzed and published in JNCI [15]. This analysis

is made using the updated data, which included 113 deaths and 247 breast cancer events.

The medical community were puzzled by this result, wondering why the benefit of letrozole

on PFS did not translate to a benefit on overall survival. In addition, there was curiosity

about whether the analysis would be impacted by considering the interval-censored nature of

the data and by treating the outcome of death in the absence of earlier progression in a more

thoughtful way. The analysis of PFS made by treating the first of progression detected or

survival as the outcome (ignoring interval censoring) was significant at p < 0.0001 (Figure

1). The treatment comparison of survival shows no significant treatment difference (Figure

2). If we analyzed the data on progression alone, taking into account the interval-censored

nature, the treatment comparison (using [3]) resulted in p = 0.0003. When we analyze

survival after progression (including all deaths regardless of cause), we obtain p = 0.6502.

Finally, using our proposed test for the joint impact of treatment on delay of progression as

well as death after progression, we obtain a significance of p = 0.0016. Thus, letrozole is

associated with a delay of progression, a delay of death, or both. We note that an alternative

analysis would be to censor subjects whose first event of death was from a non-cancer

cause. This would be reasonable in the case of an early breast cancer trial with long follow-

up after treatment ended. However, because of lingering concerns on late treatment
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complications, the all-cause mortality is the more common endpoint in cancer clinical trials,

so we have reported only these results.

6. Discussion

We have proposed a test for the joint effect of treatment on progression and death after

progression. The development of the test using CEST is intuitive and straightforward.

Simulations show that the test has more power than the standard logrank on PFS except for

the cases where the hazard for death after progression (q) is low, and the hazard ratio on the

q is 1, and for the case where there was no interval censoring on progression.

We note that there are several generalizations to these methods. We could generalize to

multiple dependent (monotone) events. Also, we simplified the expressions by assuming all

slopes (β and γ) equal, but it is straightforward to generalize this. Finally, we coarsely

grouped the death times to simplify the programming and avoid issues of sparse data, but

with large data sets, it might be possible to allow death times to be treated as continuous.

We simplified the development of our test by the use of the CEST. We hope that others will

use this approach for their applications, as we have in recent work [3, 6, 16, 17]. There are

several potential extensions of our methods. For example, we made the assumption in this

analysis that the censoring was independent. We believe it may be useful to extend this

approach to handle dependent censoring [16,18].

In addition, we note that one could develop a two-degree (rather than one-degree) of

freedom test of whether the two parameters are simultaneously zero, but it would lose power

for the primary comparison of the treatment effect, which is the main focus of a clinical trial.

Alternatively, we note that if the proposed overall test is significant, one could divide the

test statistic into the requisite parts to determine the direction of the treatment effect on each

outcome, and the overall type I error would be preserved.

Finally, the focus of this paper is on testing for treatment differences, and the approach

would not easily provide estimates. The issue is that E(ρij) becomes complex except under

the null. However, it would be straightforward to do estimation under maximum likelihood,

and we are currently working on another paper that does this directly.
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Figure 1.
Progression free survival.
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Figure 2.
Overall survival.
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