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To the Editor

During the last 10 years, metabolomics has emerged as a powerful technology to interrogate

cellular biochemistry at the global level. Although much of the success has been driven by

advances in mass spectrometry, developments in bioinformatic resources for data processing

have been equally important. The widely used metabolomic software XCMS, in particular,

has undergone substantial improvements since its first introduction in 2005 (ref. 1). In

addition to improved algorithms for peak picking, retention time alignment and data

visualization, XCMS has transitioned from a command-line interface requiring expertise

with the R programming language, to a web-based platform with a graphical user interface2.

This web-based platform, which we call XCMS Online, enables thousands of users to

upload their metabolomic data and perform cloud-based processing.

Cloud-based processing and storage of metabolomic data with XCMS Online offers several

distinct advantages for analyzing metabolomic results. It reduces the need for on-site

hardware and software resources for example, and is also easily scalable with computational

demands3. Indeed, it is now possible with XCMS Online to analyze data on the order of

terabytes (Supplementary Fig. 1). Uploading data to XCMS Online requires minimal

technical expertise. First-time users can simply chose an appropriate default parameter set

for their instrument, whereas advanced users can modify existing parameter sets. Therefore,

XCMS Online provides a robust platform for non-experts and experts to perform
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metabolomic data processing. Despite the advantages of cloud-based data processing,

however, the major challenge has been the time required to upload metabolomic data files to

the XCMS Online server. Depending on file sizes and Internet connection speed, data

upload can sometimes take more than a day to complete. Given the cumulative time required

to acquire the profiling data, upload the files, inspect the results manually, and then re-run

the samples for targeted MS2 analysis, it can take up to a week to complete the entire

untargeted metabolomic workflow.

Here we describe a solution to the time demands of metabolomic data upload to XCMS

Online. In brief, we have designed XCMS Online software that enables uploading of

metabolomic data files from the instrument computer workstation as they are acquired.

Although upload speed is still a function of data size and Internet connection speed, this

software introduces improved efficiency to the untargeted metabolomic workflow. That is,

much of the data upload time is occurring in parallel to the data acquisition. If each liquid

chromatography/mass spectrometry (LC/MS) run is considered as a discreet data packet, the

process of uploading these results while simultaneously acquiring data for the next sample

can be considered as a type of data ‘streaming.’

To illustrate the time demands of uploading metabolomic data, we analyzed 1,000 jobs

processed by XCMS Online over a two month period by hundreds of unique users. (Note:

data were only assessed from users that gave permission to perform such comparisons at the

time of their XCMS Online registration.) From these 1,000 jobs, we found that the number

of samples processed by each user ranged from 4–3,000, with a mean file size of ~14.0 GB

for high-resolution data. The upload time using a non-Local Area Network (LAN)

connection (Fig. 1) ranged from 15 hours to 3 days, but on average was 20 hours, dependent

on the user’s local available speeds. On the basis of each job’s specific LC/MS run time

(including column washes when designated) and average Internet connection speed, we

calculated how much of this upload time could be reduced in parallel to LC/MS data

acquisition by using a streaming approach. We determined that most of the data upload

would be accomplished prior to the finishing of the last LC/MS sample analysis.

Specifically, for these 1,000 jobs, we determined that streaming would reduce the mean wait

time after the last LC/MS run to complete data processing from 20 hours to less than three, a

reduction of 7-fold.

In the current version of streaming script file compression is unnecessary as the average data

transfer time was less than the time required to complete a single LC/MS run. However, a

data compression option is also available to further reduce the data upload time for faster

LC/MS experiments, such as ultra performance liquid chromatography (UPLC). As an

example, the average time required for uploading data from an 82 minute run (60 minute run

plus wash/re-equilibration), was 57 minutes. The total time saving would be the number of

runs multiplied by the average upload time per run. When analyzing large datasets, the

proposed streaming approach could reduce the upload time of a terabyte of data by three

orders of magnitude (Supplementary Figs. 1 and 2).

As a real example to demonstrate the efficacy of streaming in laboratories at different

geographical locations, we performed a metabolomic experiment at Washington University

Rinehart et al. Page 2

Nat Biotechnol. Author manuscript; available in PMC 2014 December 09.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



in St. Louis, USA. A script (Supplementary data file 1 is downloadable at (https://

xcmsonline.scripps.edu/nbt.php) was installed on the computer workstation of an Agilent

quadrupole time-of-flight mass spectrometer (QTOF-MS, 6520) at Washington University.

The script detects the end of an LC/MS run and initiates the subsequent transfer of the data

along with any metadata about the instrument parameters, sample type, etc. to the XCMS

Online server. When setting up the streaming, users are presented with options to

automatically tag samples based on origin source to facilitate data archival/retrieval as well

as sample group definitions. Heightened security is achieved by encryption and file

checksums are compared upon completion of transfer to prevent the risk of file corruption.

These scripts are available to all XCMS Online users via the website (https://

xcmsonline.scripps.edu/nbt.php); each script will have slight modifications depending on the

type of mass spectrometer.

As described above, with XCMS Online, users are typically acquiring profiling data first.

After the data are uploaded and processed, the results are inspected manually, and

metabolomic features that have statistical values above a defined threshold (e.g., P-value

≤0.01 and fold change > 2) as well as METLIN database hits are selected for additional

analysis. These features are then re-analyzed and MS2 data are acquired to structurally

support putative database assignments. As an alternative to this type of targeted MS2

approach, it has been suggested that MS2 data for structural identification are acquired for

every feature at the same time that MS1 data are acquired for profiling4. This untargeted

workflow has been referred to as autonomous metabolomics and allows for the immediate

generation of MS2 data, thereby reducing the data-analysis time. Practically, the recent

development of mass spectrometers with increasing MS2 acquisition speeds has made the

possibility of acquiring MS2 data for every metabolomic feature more likely; however, the

data quality of the MS2 spectra obtained at such speeds can still be problematic5. Notably,

many MS2 spectra end up being acquired for compounds that are not of interest to the

investigator at the expense of decreased data quality for the compounds that are of interest.

The introduction of data streaming, however, offers an improvement upon the autonomous

metabolomic workflow. Instead of acquiring MS2 data for every metabolomic feature, we

suggest acquiring MS2 data only for the features of interest to the investigator based on pre-

defined statistical thresholds and whether or not the compounds have accurate mass matches

in the METLIN metabolite database. Although this is conceptually similar to data-dependent

MS2 acquisition, a workflow that has been used in proteomics6, this biological dependent

data acquisition is unique in that MS2 is not triggered on the basis of ion intensity. Rather,

MS2 is triggered based on the previously acquired and processed files that have already been

uploaded and analyzed by XCMS Online. The data processing involved with automated

selection of ions targeted for MS2 analysis is analogous to that which has already been

described7, but here ion selection and MS2 acquisition will occur within the same set of

experimental runs. In this context, XCMS-based streaming allows for biological-dependent

data acquisition.

To demonstrate XCMS Online-based streaming and the utility of biological-dependent data

acquisition, we performed a set of experiments on tumor samples and normal tissues using

our existing XCMS Online platform (Fig. 2 and Supplementary Fig. 3). For this comparison,

28 normal and tumor samples were prepared for LC/MS analysis. In brief, metabolites from
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10 mg of tissue were isolated as described previously by using an acetone/methanol

extraction and analyzed by an Agilent QTOF8. The experiment was carried out by using the

script mentioned above, which communicated with the application programming interface of

the mass spectrometry software. For biological dependent data acquisition, instead of

processing the data after the final sample upload as shown in Figure 1, the data were

uploaded to XCMS Online after each LC/MS run and reprocessed (using a paired Wilcoxon

signed-rank test) to identify ions with an m/z of the most statistically meaningful biological

candidates. The statistical analysis started when the number of samples uploaded per group

was equal to three, and the univariate analysis was performed consecutively after each

sample was acquired. The thresholds for ions selected by biological dependent data

acquisition were set at a P-value ≤ 0.001, a fold change ≥ 1.5, and an intensity of > 10,000.

Those that had accurate mass matches (< 15 ppm) to the METLIN metabolite database were

further designated for MS2 analysis. As data streaming progresses, the P-value of the ion

shown to be dysregulated between normal and tumor tissues decreases (Fig. 2), and MS2 is

triggered to allow for identification. To augment biological dependent data acquisition, we

also introduce a script that enables automated metabolic pathway analysis (Supplementary

data file 2 is downloadable at https://xcmsonline.scripps.edu/nbt.php). This script identifies

putatively identified metabolites (based on accurate mass) in the same metabolic pathway

that are dysregulated and then selects these ions for MS2 analysis. In short, metabolite

identifiers (name, Kyoto Encyclopedia of Genes and Genomes (KEGG) or Chemical

Abstracts Service (CAS)) are transmitted via Simple Object Access Protocol (SOAP) or

Representational State Transfer (REST) Internet query methods to the three following

metabolic pathway databases concurrently Reactome (www.reactome.org)9, The Small

Molecule Pathway Database (www.smpdb.ca)10 and IMPaLA: Integrated Molecular

Pathway Level Analysis (http://impala.molgen.mpg.de)11. When two or more putatively

assigned metabolites are found to be in the same pathway, the MS1 data are then searched

for the accurate masses of each metabolite in that pathway and putative matches are then

targeted for MS2 analysis (even if they are not dysregulated. In the data shown here,

IMPaLA identified four metabolites belonging to the same pathway “urea cycle and

metabolism of arginine, proline, glutamate, aspartate, and asparagine”. As a result, this

pathway was a target for subsequent analysis and enabled assessment of its role in cancer. In

a similar streaming analysis applied to bacterial samples chemically stressed, we found

glutamate metabolism to be dysregulated (Supplementary Fig. 3). It should be noted that

although we have only demonstrated our approach by using Agilent instrumentation, data

streaming and biological dependent date acquisition can be performed on instruments from

any vendor (Agilent, AB SCIEX, Thermo, Bruker and Waters) (Supplementary Fig. 4).

Also, although our biological dependent MS2 acquisition is designed to generate data on

important peaks of relevance to the investigator, some interesting metabolites may be missed

and therefore coupling this platform with standard full-data analysis may provide additional

insight.

In summary, cloud-based processing of metabolomic data offers many benefits, but is

largely limited by the speed of data transfer over the Internet, a problem reminiscent of

online media communications. However, the application of mass spectrometry data

streaming will facilitate web-based processing of metabolomic results and additionally offer
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the possibility of biological-dependent data acquisition. Although here we have only

demonstrated the benefits of data streaming for mass spectrometry-based metabolomics, we

expect that this concept could be extended to any experimental analysis requiring data

upload and real-time feedback from cloud-based processing.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
XCMS-based data streaming workflow (top left) allows for data upload and processing after

each LC/MS run is performed, dramatically reducing the processing time after the data are

acquired for the final sample (top right). A thousand XCMS Online data sets were examined

for their average processing time without streaming. For low-resolution data (~1.4GB) and

high-resolution data (~14.0GB) over 10 and 20 hours was required after the final LC/MS

analysis was performed, respectively. Streaming allowed for a 7-fold decrease in average

processing time after data acquisition.
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Figure 2.
Biological-dependent data acquisition from tumor samples. Instead of using data driven

acquisition of MS2 data that relies on intensity, signal-to-noise ratio (S/N), or prior

acquisition of precursor ions, biological-dependent data acquisition relies on statistics

generated after each sample run for mass spectrometry data acquisition decision making.

The representative example, generated from cancer tumor samples, shows a decreasing P-

value for a feature of interest over the time-course of data streaming. When the P-value for

the features reaches 0.001, MS2 is carried out. A two-tailed Wilcoxon signed-rank test was

used to calculate the statistical significance for n=28. Box and whisker plots display the full

range of variation (whiskers - median with min-max, boxes - the interquartile range).

Rinehart et al. Page 7

Nat Biotechnol. Author manuscript; available in PMC 2014 December 09.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript


