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Abstract

When researchers evaluate brain-computer interface (BCI) systems, we want quantitative answers

to questions such as: How good is the system’s performance? How good does it need to be? and:

Is it capable of reaching the desired level in future? In response to the current lack of objective,

quantitative, study-independent approaches, we introduce methods that help to address such

questions. We identified three challenges: (I) the need for efficient measurement techniques that

adapt rapidly and reliably to capture a wide range of performance levels; (II) the need to express

results in a way that allows comparison between similar but non-identical tasks; (III) the need to

measure the extent to which certain components of a BCI system (e.g. the signal processing

pipeline) not only support BCI performance, but also potentially restrict the maximum level it can

reach. For challenge (I), we developed an automatic staircase method that adjusted task difficulty

adaptively along a single abstract axis. For challenge (II), we used the rate of information gain

between two Bernoulli distributions: one reflecting the observed success rate, the other reflecting

chance performance estimated by a matched random-walk method. This measure includes

Wolpaw’s (1998) information transfer rate as a special case, but addresses the latter’s limitations

including its restriction to item-selection tasks. To validate our approach and address challenge

(III), we compared four healthy subjects’ performance using an EEG-based BCI, a “Direct

Controller” (a high-performance hardware input device), and a “Pseudo-BCI Controller” (the

same input device, but with control signals processed by the BCI signal-processing pipeline). Our

results confirm the repeatability and validity of our measures, and indicate that our BCI signal-

processing pipeline reduced attainable performance by about 33% (21 bits/minute). Our approach

provides a flexible basis for evaluating BCI performance and its limitations, across a wide range

of tasks and task difficulties.
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1. Introduction

Many studies over the past few decades have focused on research and development of brain-

computer interface systems—see [1, 2] for review. According to the definition in Wolpaw

and Wolpaw [2], a brain-computer interface (BCI) is a system that translates activity of the

central nervous system into an artificial output signal that can replace, restore, enhance,

supplement or improve conventional central-nervous-system outputs. Such systems are also

called brain-machine interfaces (BMI) or neuroprosthetics.

BCIs can replace important functions normally served by the motor system by allowing

people to use brain signals, instead of muscles, to control the functions of a computer or the

movements of a prosthetic limb or other external device. Such BCIs have the inspiring

potential to improve the lives of people who are paralyzed due to disabling neurological or

neuromuscular disorders.

Previous research has included demonstrations of BCI control using neuronal firing rates

detected using intracortical implants (e.g. [3–5]), population-level activity measured using

subdural electrocorticographic (ECoG) arrays [6, 7], and sensory-motor rhythms extracted

from electroencephalographic (EEG) recordings from the scalp [8–11]. These studies are

impressive demonstrations of the potential of BCI control. However, one of the most vexing,

elusive, widely acknowledged problems of BCI research is that the performance of such

demonstrations is actually very low when measured against the demands of real-world tasks,

or against the performance of competing control methods for prosthetics and other assistive

devices. For example, for BCIs that support continuous movement control, BCI performance

is still substantially slower and more variable than muscle-based control [10]. While a

success rate of, say, 95% would be considered very impressive in most BCI target tasks, the

same performance (i.e. one failure per 20 attempts) falls far short of the human motor

system’s reliability in performing important tasks of even greater complexity, such as

grasping and picking up objects without dropping them.

Thus, a critical question for the future of BCI technology is the degree to which performance

can be increased and its minute-to-minute and day-to-day variation can be decreased. Such

improvements hinge on the ability to compare and contrast different BCI approaches

systematically, to allow the most promising approaches to be identified.

Whenever a BCI demonstration is published, researchers would like to be able to quantify its

performance in a way that allows meaningful comparison with other data. The first question

is “how good is it?” This can be posed in a number of different ways—for example: how

good is the BCI relative to other assistive technology that might be used to do the same job?

How good is the BCI relative to the level of performance necessary to perform useful real-

world tasks safely? How good is the BCI relative to competing BCI approaches that have
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similar goals? The second question is “how good can it get?” If BCI performance is

currently not close to the desired level, then is it at least theoretically possible for

performance to improve—perhaps by user training—until the desired level is reached? Or,

might there be some fundamental limitation, intrinsic to the way the brain signals are

elicited, measured and translated, that will prevent the BCI’s performance from ever

exceeding a certain level?

Unfortunately, three critical shortcomings of current performance measurement approaches

greatly impede such systematic evaluations. First, most current methods use fixed levels of

task difficulty and thus cannot readily be applied across the whole possible spectrum of BCI

performance—for example, from current levels of performance to the levels we would like

to see for real-world BCI usage. Second, current methods do not readily provide metrics that

allow performance comparison across similar but non-identical tasks. For example, two

laboratories may both report results on control of a prosthetic arm, but the contraints within

which the arm moves, and the task it is required to perform, will likely differ, so that it is

unclear how the performance results may be compared. Third, current methods cannot

determine to what extent limitations in BCI performance may be due to the intrinsic BCI

methodology rather than the underlying abilities of the user. As an example, current BCI

methods integrate information from comparatively long time periods (typically 50–500

milliseconds) to extract brain signal features such as single-neuron firing rates, population-

level ECoG activity, or the amplitude of EEG oscillations. This temporal smoothing is

necessary to increase the signal-to-noise ratio to a level that supports reasonable BCI

performance, by the standards we can reach today. However, any such smoothing operation

imposes a limit on the maximum rate at which the system can transfer information.

Therefore, we must consider the possibility that such necessary elements of current BCI

approaches actually impose fundamental limits on the level of performance that BCI

systems can ever reach, regardless of such factors as the amount of time invested in user

training.

Due to these shortcomings of current performance assessment methods, we do not know

where such fundamental limits lie relative to the practical demands of everyday tasks, and

we are ill-equipped to quantify users’ progress meaningfully during training. Furthermore,

scientists who are setting out to improve BCI performance must either compare performance

only within narrow task parameters, or resort to subjective choices and personal preferences

rather than objective and widely applicable criteria. This has left substantial room for several

long-standing debates about the relative performance characteristics of different BCI

approaches (for example, invasive vs. non-invasive methods). In consequence, a central

need in BCI research is to establish a generally applicable methodology that can provide the

basis for objective comparisons. In this paper, we describe and demonstrate a package of

methods that supports such objective comparisons. It addresses the following three

important challenges:

Challenge I: Build an Efficient Adaptive Performance Measurement System. The first

challenge was to establish a performance measurement scale, and a procedure for making

measurements efficiently on the scale, with which we can adaptively capture performance at

all possible levels. We also wanted to equalize the degree to which a user’s capabilities were
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challenged, and the user’s consequent success rate, as far as possible across users and

contexts. We addressed this challenge by basing our task implementation on a single

abstract task difficulty variable that could be adjusted to make our task easier or harder to

perform. Though the task difficulty variable could be linked to multiple parameters of the

task, the crucial aspects of the design were (i) that the conditions experienced by very

unskilled subjects and the conditions experienced by very proficient subjects were

distinguished only by changes in the single underlying variable, and (ii) that the variable

could be adjusted automatically without any intervention from the investigator. To adjust

task difficulty automatically, we implemented an adaptive staircase procedure that was

originally developed in the field of psychophysics—specifically, we used Kaernbach’s

weighted up-down method [12]. We used the staircase procedure’s built-in method for

within-study assessments of user performance—this returns a value on the axis of task

difficulty.

Challenge II: Develop a Transferable Performance Metric. The second challenge was to

express the results not in arbitrary task-difficulty units, but on a universal, familiar scale that

will allow comparison of results across studies. Though many metrics exist for quantifying

BCI performance (see [13–15] for reviews), many of these are highly specific to the context

of particular tasks, particularly when the task requires movement control rather than item

selection. There is little consensus regarding the measures that should be used to compare

performance in one task (for example, a monkey feeding itself with a robot arm, as in [4])

with performance in another (for example, a tetraplegic human guiding a mouse cursor, as in

[3]). Our strategy was to develop a relative entropy or information gain measure,

quantified in bits per unit time. This measure reflects the extent to which a user’s

performance exceeds the performance we would expect by chance, under the null hypothesis

that the user has no control over the BCI system. Importantly, this measure is identical to

that proposed by Wolpaw et al. [16] in the specific case of equiprobable item selection (i.e.

when the chance-level success probability is simply the reciprocal of the number of items).

However, it can also be applied to movement control or other tasks that are different from

item selection (i.e. tasks in which there is no easy way to determine a priori the performance

we would expect by chance). To address the problem of estimating chance performance in

this wider range of tasks, we develop and apply a general trial-by-trial random-walk

simulation method—a strategy that has been adopted by some others in BCI movement

control[17, 18].

Challenge III: Measure Limitations in BCI Performance. The third challenge was to use

the measurement and evaluation techniques to assess not only what a BCI signal processing

pipeline enables us to do, but also what limits it imposes on performance. The performance

measurement methodology that resulted from our solutions to the first two challenges

allowed us to address this challenge. We did so by conducting a within-subject performance

comparison between a Direct Controller and a Pseudo-BCI Controller. The Direct

Controller was a hardware input method with which a healthy user could attain a high level

of performance in the task via conventional motor control. The Pseudo-BCI Controller used

the same input device as the Direct Controller, but its control signal was processed using the

signal processing pipeline that we used for BCI control. We refer to the difference in
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performance between the two conditions as the false performance ceiling for the signal

processing pipeline. It reflects the extent to which a particular system component restricts

the performance a BCI user can achieve—even, perhaps, irrespective of the amount of

training the user receives.

Our experimental demonstration of these approaches was a cursor task in which subjects had

to catch falling targets. Both cursor width and target speed varied as a function of the

underlying task difficulty variable. Our subjects modulated their sensory-motor rhythms to

control this 1-dimensional computer game. While we used this particular task design and

BCI approach in our validation experiments, the same principles and methods could readily

be applied to any BCI-controlled system, whether invasive or non-invasive, whether 1-, 2-

or 3-dimensional, and whether the effector is virtual or physical.

2. Materials and Methods

2.1. Subjects

Four healthy subjects took part in the experiment: two male and two female, all right-

handed, aged 21, 28, 55 and 55. All subjects had normal or corrected-to-normal vision and

no history of neurological defects. Some of them had previously taken part in EEG studies

of BCIs based on event-related potentials (P300 speller systems) but none of them had had

prior experience with BCI systems based on sensory-motor rhythms. Subjects gave informed

consent according to a protocol approved by the Institutional Review Board of the

Wadsworth Center. Each subject participated in ten 90-minute sessions on separate days

(total: 60 subject-hours). One additional pilot subject also performed the experiment during

development. The pilot subject’s results are not reported, because we frequently re-tuned the

method’s parameters over the course of this subject’s sessions, which prevented valid

comparisons with other data. Apart from the pilot, there are no unreported subjects (subjects

were not dropped from the analysis on the basis of performance).

2.2. Hardware and Software Setup

EEG recordings were made using a 16-channel g.USBamp series B amplifier (g.tec medical

engineering GmbH, Austria) in conjunction with a 16-channel EEG cap (Electrocap, Inc.).

The cap used gelled 9 mm tin electrodes at positions F3, Fz, F4, T7, C3, Cz, C4, T8, CP3,

CP4, P3, Pz, P4, PO7, PO8 and Oz of the extended international 10–20 system of

Sharbrough et al. [19], with the reference at TP10 (the right mastoid) and the ground

electrode at TP9 (the left mastoid). The amplifier performed appropriate anti-alias filtering

before digitizing with a resolution of 24 bits and downsampling to 256 Hz.

Data acquisition and signal processing were performed using the BCI2000 software platform

[20, 21] v.3.0. Stimulus presentation was implemented in Python using the ‘BCPy2000’

add-on to BCI2000 [22]. The software executed on a Lenovo ThinkPad T61p laptop with a

2.2 GHz dual-core processor.

Two Wii Remote controllers or “Wiimotes” (Nintendo Co. Ltd., Japan) were connected to

the computer via Bluetooth. Signals from their accelerometers were acquired with BCI2000

and synchronized with the EEG signals.
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Data analyses were performed using custom Matlab code.

2.3. Controller Conditions

As we will describe in more detail in Section 2.4, the task involved one-dimensional control

of a cursor, which had to be moved left and right on the screen in order to catch or avoid

falling targets. The velocity of the cursor could be controlled in various different ways,

which we will describe below.

In designing these different controller conditions, we set out to address two of the challenges

described in the Introduction. First, we aimed to address Challenge I, the need for a

measurement scale that allows us to assess the performance of a BCI Controller relative to

the lowest possible floor (random chance performance) and a high ceiling (close to the

performance achieved in daily tasks by a healthy human motor system). We designed a

Random Baseline and a Direct Controller condition, respectively, to measure these two

reference points. Second, we aimed to address Challenge III, the need to assess the

limitations that current BCI methods might impose on the level of performance that a

subject can reach. We addressed this by computing the difference between Direct Controller

performance and performance in a condition we call the Pseudo-BCI Controller.

We refer to the BCI Controller, Direct Controller and Pseudo-BCI Controller as the active
controller conditions because they all required the active participation of the subject (in

contrast to the Random Baseline condition). In each 90-minute session, the subject played 3

games in each of the 3 active conditions, for a total of 9 games. The controller conditions

were as follows:

• BCI Controller: the cursor was controlled by motor imagery of the hands:

imagined left-hand movement caused the cursor to move left, and imagined right-

hand movement caused the cursor to move right. As described in Section 2.6, EEG

signals were translated into control signals via spatial filtering followed by

temporal windowing, detrending, auto-regressive spectral amplitude estimation,

differential linear weighting of amplitudes in chosen frequency bands, and

normalization.

• Direct Controller: the subject held a NintendoWiimote in each hand. The cursor

velocity was proportional to the total power of accelerometer fluctuations in the

right Wiimote minus the total power in the left: hence, the more the subject shook

the left-hand Wiimote, the faster the cursor would move to the left, and the more

the subject shook the right-hand Wiimote, the faster it would move to the right.

This condition was intended to be comparable with the BCI condition in the sense

that control was still based on the difference between activity of the left and right

hands. However, within this constraint, the purpose of the Direct Controller

condition was to investigate our system’s ability to measure performance levels that

were as high as possible.

• Pseudo-BCI Controller: the subject held the Wiimotes and shook them as in the

Direct Controller condition. However, translation into cursor velocity was different:

the accelerometer power in each Wiimote inversely modulated the amplitude of an
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artificial white noise signal, which was then passed through exactly the same signal

processing pipeline that was applied to brain signals in the BCI controller

condition, i.e. starting with the temporal windowing stage and ending with a

separately-calibrated normalization stage. The purpose of this condition was to

provide a contrast with the Direct Controller condition, by which we could evaluate

the extent to which high performance was limited or otherwise affected by the

signal processing pipeline used for BCI. The white noise played an analogous role

to the sensory-motor rhythm in a real subject’s EEG, in that it acted as a carrier for

the amplitude modulation that encoded movement intention. Since white noise has

energy at all frequencies, the modulation signal could be extracted by the

processing chain we already optimized for the subject’s BCI data, regardless of

which frequency happened to have been chosen during optimization.

• Random Baseline: this condition was performed after the subject had left. It

involved playing back the subject’s EEG for each BCI game, but with a 3-minute

time-shift, and running this through the BCI signal processing pipeline to generate

a control signal to drive the game. Therefore, although the control signal was

determined by input signals whose distribution of amplitudes and other temporal

properties were identical to those of the original EEG used in the BCI Controller

condition, the time-shift removed the temporal relationship between intended and

required movements. The purpose of this condition was to establish a baseline for

the performance that might be expected if one randomly moved the cursor left and

right with similar speed, frequency and amplitude to the movements achieved by

the subject in the BCI Controller condition.

The four controller conditions are illustrated schematically in the right panel of Figure 1.

2.4. Basic Gameplay

Each 90-minute session comprised 9 game cycles: 3 in each of 3 active controller

conditions. Each game cycle consisted of multiple fueling and flying phases, followed by a

final measurement/adjustment phase that provided a single measure of performance for

the cycle and adapted the task difficulty for future cycles.

The fueling and flying phases were designed to accustom the player to the current playing

conditions, stabilize their performance, and provide enough variety and goal-directed

motivation to prevent their becoming bored. Players first had to collect fuel for their

spaceship: the cursor took the shape of a fuel cart, which the player moved left and right

along the bottom of the screen to catch drops of water that fell from a randomly-moving

cloud at the top. Once the fuel cart had caught 10 drops, the player had to fly their spaceship

towards a planet: the cursor, in the shape of a spaceship, stayed at the bottom of the screen

and the player had to move it left and right to avoid missiles that scrolled down the screen

towards it. If the spaceship struck a missile, the player was sent back to the beginning of the

fueling phase, but the distance covered in the journey towards the planet was recorded, and

the next flying phase would resume from the furthest point reached. The game cycle entered

its final phase when 4 minutes of attempted fueling and flying had elapsed, or when the

planet was reached (which typically took between 1 and 2 minutes when the subject’s
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control was good). The final phase, for measurement and adjustment, is described in the next

section.

For each controller condition, three game cycles were performed consecutively with short

breaks between them, resulting in three separate performance measurements per session per

controller condition.

All three phases are exemplified in Movie S1 in the Supplementary Material: a subject is

shown performing a measurement/adjustment phase first, followed by the first fueling phase

and then the first flying phase of the subsequent game cycle, all in the BCI Controller

condition.

2.5. Measurement and Adjustment

The concluding phase of each game cycle was similar to the fueling phase described above,

in that the player had to move the cursor left and right to catch falling water droplets from

the randomly moving cloud. However, during this phase the difficulty of the task was

adjusted using the weighted-up-down psychophysical staircase procedure of Kaernbach

[12]. The task difficulty level d (expressed in arbitrary units) was increased by an amount

Sup every time the player caught a droplet, and decreased by an amount Sdown every time the

player missed. We set Sup = 1.0 and computed Sdown according to Kaernbach’s formula

Sup/Sdown = (1−p)/p, where p is the target hit rate on which the procedure converges (we

used p = 0.65). Over a broad range of values, the task difficulty value d was mapped

logarithmically to the size of the cursor: a unit increase in d meant a 10% reduction in width,

although the cursor was never made smaller than 1/20, or larger than 1/2, of the width of the

screen. To allow the range of difficulty levels to extend beyond these limits, task difficulty

also determined the speed with which water droplets fell: whenever the cursor was at

minimum size, or larger than 1/5 of the screen, a unit increase in d translated into a 10%

increase in speed. During pilot testing we found subjectively that this had the additional

advantage of increasing the pace of the game for more-proficient players, thereby preventing

players from becoming bored.

The staircase procedure continued until the 8th reversal, i.e. until the change in d reversed

direction 8 times. Discarding the first two reversals, the median of the d values at the last 6

reversals was computed: this is known as the mid-run estimate of task difficulty, which we

denote by MREd. We recorded MREd as a measure of performance for the current game

cycle, and used it as the starting difficulty level (in respect of both cursor width and speed)

for the next game cycle.

An example of an adjustment phase is illustrated in the upper and lower left panels of Figure

1. The upper panel shows the time course of the cursor’s position and width over the course

of the game, relative to the spatio-temporal windows that the cursor must hit in order to

catch the targets. Hits and misses cause step changes in the task difficulty variable d, plotted

in the lower panel. The lower panel also illustrates how MREd is computed.

The measurement/adjustment phase is exemplified at the start of Movie S1 in the

Supplementary Material.
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2.6. Calibration and Signal Processing

Our procedures for calibration and signal processing are similar to those used in previous

studies of cursor control using non-invasive BCI systems based on sensory-motor rhythms

[8, 10]. We set up the BCI system in three phases: an initial cued motor-imagery calibration

measurement phase; second, a phase in which feature-extraction and classification

parameters were chosen for the current subject, in the context of a particular signal

processing pipeline; finally, a second calibration phase in which the control signal was

centered and standardized. The three phases and the signal processing pipeline itself were as

follows:

Calibration Phase I (BCI): Before the first game cycle of each session’s BCI Controller

condition, the subjects performed 40 cued motor-imagery trials in response to text prompts

on the video screen: 20 left-hand and 20 right-hand, in random order. Subjects performed

motor imagery for 6 seconds on each trial and then relaxed for 2 seconds.

Signal Processing (BCI, Pseudo-BCI and Random): Signals were processed, both offline

and in real time, using the BCI2000 software system. First, they were spatially filtered using

a surface-Laplacian filter matrix, buffered in a 500 msec moving window (moving in steps

of 31.25 msec), and linearly detrended. At each time step, spectral amplitudes were then

estimated in 3 Hz bins using an auto-regressive model of order 20. Based on the motor

imagery trials from Calibration Phase I, BCI2000’s OfflineAnalysis tool was used by the

experimenter to select the electrodes and frequency bins that would be positively or

negatively weighted in the linear sum that produced the final control signal. A positive

weight on bandpower meant that a reduction in bandpower due to event-related

desynchronization (ERD) would move the cursor to the left, and negative weight meant that

ERD would move the cursor to the right. The choice was limited to electrodes C4, CP4 and

P4 for positive weightings (since we assumed these locations would best capture left-hand

motor imagery signals) and to C3, CP3 and P3 for negative weightings (right-hand motor

imagery). The choice of frequency bins was restricted to the 9–24 Hz range (μ and β bands).

Calibration Phase II (BCI and Pseudo-BCI): The subject then performed 20 further

calibration trials, using the setup determined at the end of Phase I, but with BCI2000’s

Normalizer system turned on [21]. This system maintained a rolling buffer of control signal

values, which was updated every trial, with balanced contributions from imagine-left and

imagine-right trials. The Normalizer system used these data to compute, and to update after

every trial, a linear offset and gain value that standardized the balanced control signal to

mean 0 and variance 1. From the sixth trial onwards, the cursor was continuously visible,

moving according to the standardized control signal from the real-time motor-imagery

processing pipeline. At the end of this phase, the Normalizer returned the final offset and

gain values that were then fixed for the remainder of the session. This calibration phase was

performed separately for the BCI Controller and Pseudo-BCI Controller conditions.

2.7. Evaluation Criterion

In the Introduction, we described Challenge II as the need for a transferable performance

metric that allows comparison between different experimental setups. To address this
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challenge, we define a criterion that we call the rate of information gain (RIGB), measured in

bits per unit time. Specifically, we measure information gain between two Bernoulli

distributions. A Bernoulli distribution is the simplest possible probability distribution,

consisting of just two numbers: the probability of hitting a desired target and the

complementary probability of missing it. Thus, our measure can apply to an assessment of

any a set of events (“trials”), provided that each event can be judged unequivocally to have

succeeded or failed. The BCI user’s observed probability of success is denoted by P. We

assume that there is some method of estimating P0, the rate of success according to chance

(i.e. under the null hypothesis that the BCI user has no control over the system). RIGB is

computed by dividing the information gain in bits per trial by t̄, the mean duration of a trial:

(1)

A numerical example, along with details of the method we use to compute standard error

bars and other confidence intervals on RIGB, can be found in the Supplementary Material in

Section S2.

The term in square brackets in equation (1) is the information gain term, otherwise known

as Kullback-Leibler divergence, Kullback-Leibler information criterion (KLIC), or

relative entropy. More precisely, it is the Kullback-Leibler divergence of a Bernoulli

distribution reflecting chance probability of success, from a Bernoulli distribution reflecting

the empirically-observed probability of success.‡ Thus, our information gain term quantifies

the extent to which the user’s hit-vs.-miss distribution departs from a model that assumes

hits happen by chance [23, 24].

In principle it would also be possible to compute information gain for other measures of

success—for example, a total number of hits obtained in time t̄, or survival duration in the

flying phase of our game, or a correlation between ideal and actual trajectories, or average

task completion time, or any other ordinal-valued game score. Such scores will no longer be

Bernoulli-distributed, but the Kullback-Leibler divergence of a chance model from the data

can still be computed, provided that there is a method for estimating the distribution of the

chosen measure under the null hypothesis. The result will also be expressed in bits, although

it is not meaningful to attempt to compare the information gain computed from one type of

score (for example, one with a Gaussian distribution) with information gain computed from

another (say, a Bernoulli-distributed indicator of success). For current purposes, we will

stick to hit probabilities as a measure of success, and hence operate on Bernoulli

distributions, and thus retain the B subscript on RIGB to stand for Bernoulli.

For performance levels at or above chance (P ≥ P0), our RIGB is a generalization of the

well-known and frequently-used criterion introduced by Wolpaw et al. [16]. Wolpaw’s

information transfer rate (ITRW) is equal to RIGB in the particular case where P0 = 1/N, for

some finite integer number N of discrete, non-overlapping, exhaustive target classes—as is

‡Note, however, that relative to a classic Kullback-Leibler divergence, our term is actually scaled by a factor of (ln 2)−1, which serves
to convert the units into bits.
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the case, for example in many item selection tasks. For the purpose of comparing BCI

performance across conditions, users and studies, we find ITRW to be a more relevant

measure than channel capacity—a criterion from Information Theory, sometimes referred

to as Nykopp’s ITR, against which ITRW has sometimes been compared.

Note that, even for P0 = 1/N, we depart from the ITRW definition by explicitly negating the

measure in the (presumably rare) cases in which P < P0: we find this to be more consistent

with the assumptions that implicitly underlie the preference for ITRW over channel capacity.

Specifically, ITRW and RIGB are best regarded as measuring performance given two

assumptions: that targets cannot be arbitrarily recoded, and that errors have already been

corrected to whatever extent is possible. By contrast, channel capacity takes account of

potential future recoding and error correction.

In the Supplementary Material, we present a more detailed discussion of the relationship

between RIGB and other performance measures. In Section S4.1, we contrast it with

approaches based on Fitts’ Law. In Section S4.2, we argue that, in the context of BCI, it is

more appropriate to exclude potential recoding and error-correction, and hence to prefer

RIGB or ITRW over channel capacity. We also explain the ways in which our approach

differs from ITRW, adapting ITRW to cope with cases in which its default assumptions are

inappropriate.

Relative to the classic definition of ITRW, the main advantage of our formulation of RIGB

for the purposes of the current study is that we no longer rely on the assumption of N

exhaustive, mutually-exclusive, equiprobable target classes—an assumption that is often not

met, for example in most continuous control tasks. Instead, we require only a method for

estimating the rate at which desired targets are hit by chance, according to some model that

embodies the null hypothesis of no voluntary control, under conditions that match those

experienced by the user. In Section 2.8, we develop such a method.

2.8. Estimating Chance Performance

The performance metric defined above in Section 2.7 requires an estimate of P0, the success

rate we expect by chance under the null hypothesis that the user has no voluntary control

over the BCI system. To borrow terminology from Fitts’ Law analysis, if equation (1) can be

seen as an index of performance, the corresponding index of difficulty quantifying the

difficulty of a given trial in bits, could then be defined as −log2 P0. The chance probability

estimate may also be used in other performance metrics, such as Cohen’s κ [25]—see

Billinger et al. [15] for discussion of the importance of taking chance levels into account

when reporting BCI performance.

There are multiple ways of computing such a chance-performance estimate. In fact, we

already have one route for doing so, in the Random Baseline condition described in Section

2.3. This method relied on replaying the recorded EEG signal through the same online BCI

software system that the subjects used to play the game in the other controller conditions.

The disadvantage of such online-replay methods is that they rely on running a fully-

functioning implementation of the online system. An online BCI system typically must

perform a large number of tasks that are not directly related to the evaluation of control
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signals and success rates (for example, interfacing with hardware, presenting visual and

auditory stimuli, processing EEG). Therefore, the analysis often cannot be replicated offline,

cannot be performed quickly, and cannot be repeated an arbitrarily large number of times to

increase the precision of the estimate of P0. It is also no trivial task to engineer an online

BCI system to be fully deterministic so that it can support a reliable replay analysis. By

contrast, we wished to develop a general re-usable offline method that is applicable to a

wide variety of control scenarios—one that could easily simulate some of the more common

game mechanics, such as the fact that the cursor would stop when it hit the edges of the

screen.

Our solution was to re-simulate each trial repeatedly using a random-walk method. Although

the current study only used one-dimensional control, we will describe the general multi-

dimensional case. As described, the approach is suitable for any control task in which targets

must be hit and/or avoided, the cursor is prevented from moving through certain barriers,

and the targets’ behavior is not dependent on the cursor’s behavior within a given trial. The

random-walk approach would also allow further game mechanics and physical constraints to

be simulated relatively easily.

We defined the scope of a simulation to be the set of trials over which a single estimate of

P0 must be computed—for our current study, the scope comprised all 3 measurement/

adjustment phases performed by the same person in the same session in the same controller

condition. Each trial was simulated S times, and the success rates for all trials within the

same scope were averaged to arrive at an estimate of P0. We used S = 1000 and the number

of trials within one scope was between 45 and 129. Hence, each of our P0 estimates was

based on 45,000–129,000 simulations.

Each simulated trial began with the same initial conditions (cursor position and width) as the

corresponding trial of the original data-set. It contained barriers (in our case, only the edges

of the screen prevented the cursor from moving) and targets (objects that the cursor must

either hit or avoid) which occupied the same positions in space and time that they occupied

in the original trial. We then generated a series of normally-distributed random step vectors.

We smoothed the time-series of steps so that it had the same auto-correlation (at a lag of one

time-step) as the trials in the original scope. We also scaled it so that its variance matched

that of the steps in the trials in the original scope (in higher-dimensional tasks, we would

match the co-variance). In this way, we match the smoothness, distribution of sizes and

distribution of directions of the cursor trajectories actually produced by the user. The

random steps were then integrated numerically to form a simulated trajectory under the

constraint that the cursor may not pass through barriers. Each simulated trajectory was then

assessed to determine whether it collided with a target, and the simulation was scored as a

success or failure accordingly. Our estimate for P0 was the proportion of successes during

all simulations of a given scope.

We describe and discuss the approach in greater detail in Section S1 of the Supplementary

Material, and provide a Python implementation on our website, at http://schalklab.org/

downloads.
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3. Results

In this section, we report the results of our experiment in three parts, to address the three

respective challenges outlined in the Introduction. Section 3.1 examines the repeatability and

consistency of the adaptive staircase procedure we designed to address Challenge I. The

staircase procedure’s mid-run estimates are also used to examine the extent to which our

subjects’ performance improved significantly over time. Section 3.2 validates and examines

the information gain metric that we developed to address Challenge II, and the random-walk

simulation method on which it relies. The information gain results are shown to agree very

closely with the mid-run estimates of the staircase procedure, despite the very different

origins of these two performance measures. Finally, in answer to Challenge III, Section 3.3

uses the information gain measure to quantify the false performance ceiling imposed by our

BCI signal processing pipeline, i.e. the difference in performance between the Direct

Controller and the Pseudo-BCI Controller, which reflects the negative impact that the signal

processing pipeline has on high-end performance.

3.1. Challenge I: Build an Efficient Adaptive Performance Measurement System

In the Introduction, we described Challenge I as the need to develop a measurement scale,

and an efficient measurement procedure, that allow us to measure performance

automatically and adaptively both at very high levels (close to the performance of the human

motor system, and perhaps beyond) and also at very low levels (random chance

performance).

Our adaptive performance measurements consisted of 4 subjects × 10 sessions × 4 controller

conditions × 3 repetitions per session. The results are shown in Figure 2. Performance is

plotted for each of the four subjects, in each of the four controller conditions introduced in

Section 2.3. As explained in Section 2.5, the measure of performance MREd is the output of

the performance estimation procedure that is built into our adaptive staircase method:

specifically, it is the mid-run estimate (MRE) of our unit-less task difficulty variable d. Each

data-point is the MRE from one adjustment phase: across all subjects and all active

controller conditions, measurement of such a value took an average of 59 seconds, and one

such measurement was performed approximately every 4 minutes.

It is clear from Figure 2 that performance in the Direct Controller condition is consistently

better than performance in Pseudo-BCI: if we perform an unpaired two-tailed t-test for each

subject, we obtain p < 4 × 10−7 for every subject. Pseudo-BCI, in turn, is consistently better

than BCI (similarly, p < 2 × 10−14 for every subject). BCI performance is better than chance

for only two of the four subjects, namely subjects B (p = 4 × 10−6) and C (p = 4 × 10−11).

Note that this is to be expected in cases where subjects are not pre-selected according to

their ability to use BCI or according to their resting sensory-motor rhythm amplitude, since

it has been been observed that a substantial proportion of people cannot control sensory-

motor rhythm BCIs (see for example [26]).

Though the BCI performance of subjects B & C is above chance overall, their performance

approaches the random baseline in some individual sessions. Relative to the other controller

conditions, there is large session-to-session variability in BCI control. Large session-to-
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session variability has been observed in many other BCI studies (see for example Figure 2 of

[10]). It seems likely that the observed variation in performance is the result of the intrinsic

day-to-day variability of the EEG signals, rather than any property of the measurement

procedure (for further analysis, see the Supplementary Material, Section S3).

To assess the extent to which performance improves over time, we computed a Spearman

correlation coefficient between session number and MREd for each subject in each

controller condition. The results are shown in Table 1. All subjects improved their Direct

Controller performance significantly over the course of 10 sessions. There was a significant

improvement in Pseudo-BCI performance for subjects A and B, but not for subjects C and

D. There is a significant increasing trend in BCI performance for subject A, but also for the

Random Baseline data of subject D. This illustrates the importance of considering factors

other than voluntary control when interpreting performance results that are close to random.

In subject D’s Random Baseline data, we found a significant increasing trend in the mean

squared step size over the course of 10 sessions, which may explain the increase in

performance: random movements may be more or less successful in a particular task

depending on simple parameters like their amplitude. Furthermore, it is clear that at low

performance levels, d may vary according to factors other than the user's degree of voluntary

control, as evidenced by the increasing trend in random baseline performance for two of our

subjects. Therefore, a performance estimate from an active control condition must always be

assessed relative to an estimate from the corresponding random baseline condition. For these

reasons, in the random-walk simulations described in Section 2.8, we match parameters of

the random walk to those of the original data.

Figure 2 also allows the following observations about the measurement approach itself:

• Our system successfully captured both very high performance (the Direct

Controller) as well as chance performance (Random Baseline), while still being

able to distinguish beginners’ BCI performance from chance (BCI Controller for

Subjects B and C). These could all be represented on the same scale, and were

measured in a single task without any manual adjustment of parameters by the

experimenter.

• Even at the high-performance end of the scale, our system was able to track and

quantify improvements in the subjects’ performance as a function of time. Thus,

even on the scale that successfully registered the very large difference between the

subjects’ BCI performance and their Direct Controller performance in the early

sessions, the measurement still had not hit a ceiling, and still retained a useful

degree of precision for measuring further improvements.

• The measurements were repeatable: generally, the within-session spread (of the

three MREd values per session) was small relative to the differences between

controller conditions. (As an illustration of this, suppose that an experimenter had

only one session’s data available, and wished to establish whether there was a

significant impact of the signal-processing chain on control performance. The

experimenter might use a single two-tailed two-sample t-test based on the session’s

3 one-minute adjustment-phase measurements in the Direct Controller condition
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and 3 in the Pesudo-BCI condition. Despite the small data-set sizes, the test would

distinguish the two conditions at the 5% significance level on 25 out of the 37

sessions in our data-set.) The within-session variability was also small relative to

the session-to-session performance variations we saw in both the BCI Controller

condition (likely due to variability in the EEG signal quality) and the Direct

Controller condition (largely due to improvement as a result of practice).

Therefore, we conclude that an adaptive staircase approach is an efficient and effective way

of measuring control performance in BCI, and of tracking changes in performance over

time. The mid-run estimates provided by the staircase method are repeatable and reliable.

The key to enabling measurements to capture both high and low performance automatically,

without the intervention of the experimenter to change task parameters, is to ensure that task

difficulty d is univariate, and to compute mid-run estimates on the scale of d. This allows us

to compare performance across subjects, sessions and controller conditions.

However, since the units of d are arbitrary, and unique to the configuration of the other

(fixed) task parameters, comparisons become invalid as soon as there is a change in any of

the game mechanics or other contextual variables. For this reason, we developed the method

explained in Sections 2.7 and 2.8, which we validate in the following section.

3.2. Challenge II: Develop a Transferable Performance Metric

In the Introduction, we described Challenge II as the need to develop a transferable

performance metric that could allow comparison of performance between different tasks. In

this section, we examine and validate the results of the methods introduced in Sections 2.7

and 2.8 to address this challenge.

Figure 3 shows estimates of the subjects’ performance expressed as rates of information

gain, RIGB, computed using equation (1). Each data-point is based on the combined trials

from the three adaptive staircases performed in one controller condition during one session.

Chance-level performance P0 was estimated using 1,000 random-walk simulations per trial

as described in Section 2.8. Most of the patterns and trends we see in Figure 3 are very

similar to those of the MREd results in Figure 2. One notable difference is that the Random

Baseline, and the BCI performance of subjects A and D, now appears flat and very close to

0.

Figure 4 examines in greater detail the relationship between the original task-specific

performance measure MREd and the other more general measures: success probabilities P

and P0 in panels (a) and (b), respectively, and information gain rates in bits per trial and bits

per minute in panels (c) and (d) respectively. We can see that MREd is highly consistent

with the information gain measures, with a Spearman rank correlation coefficient of 0.97

between MREd and bits per trial, and 0.98 between MREd and bits per minute.§

§The slight difference between bits per trial and bits per minute, and the motivation for examining them separately, arises because the
speed of the targets, and hence the rate at which they can be hit, is varied as a way of varying difficulty and keeping pace with the
subject’s ability level (see Section 2.5). Thus, game difficulty may affect RIGB in equation (1) through both the numerator (by
affecting P0) and the denominator (t̄).
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The information gain measures agree so well with MREd that it is worth pointing out that

their similarity was not inevitable a priori—they are not merely transformations of each

other. MREd is the result of a heuristic designed to estimate performance rapidly—

specifically, the weighted up-down staircase procedure. The heuristic’s output depends not

only on the relative proportion of hits and misses and the difficulty levels at which they

occur, but also on the serial order in which they occur. It is therefore affected not only by

binomial variability, but by the accuracy with which the heuristic converges on the desired

success rate of 65%.‖ This is in contrast to the information-gain measures of performance:

while they benefit from the fact that the staircase procedure kept the difficulty level away

from the performance ceiling—as panel (a) also confirms—they do not rely on the task

difficulty variable, nor on the order in which the adaptive steps occurred. They do, however,

rely on the estimation of P0 by random-walk simulation, which MREd estimates do not. Due

to the differences in their origin, the very high degree of agreement between MREd and

RIGB is an encouraging indicator of their validity as performance metrics.

We should note that there are other ways besides equation (1) to express P relative to P0.

We would also expect other such measures to exhibit good validity. A well-known example

of such a statistic is Cohen’s κ coefficient [15, 25], defined as κ = (P − P0)/(1 − P0). This

statistic also agrees very well with information gain: the Spearman correlation between κ

and information gain was 0.98 in our current data-set. The Spearman correlation between

MREd and κ was 0.95, very close to the value of 0.97 we observed between MREd and

information gain in bits per trial.

A further desirable property of RIGB is demonstrated in Figure 5. Ideally, we would like our

measure to reflect the capabilities of the BCI user and the BCI system, but in a way that is

invariant of the difficulty of the task they are performing.¶ To test this property, we

separated the trials of each session into two groups according to the task difficulty value d at

which they were performed. We computed P and RIGB separately for the easier half and the

harder half of the trials of each session. The left panel of Figure 5 confirms that this

separation according to d values has the expected effect on the success rate P: the data-

points lie predominantly below the diagonal line of equality, indicating that the success rate

is lower on trials that were designed to be harder. In the right panel, however, the

corresponding RIGB values are distributed equally on both sides of the line of equality,

indicating that the information gain rates measured by our system were similar regardless of

whether they were measured on easier or on harder trials. It is interesting to note that our

task does not elicit higher information transfer at greater task difficulty levels: this is an

encouraging sign that the subjects are unlikely to have been “coasting” or “slacking” during

easier trials.

‖Note also that, when we consider all the trials performed during the course of each staircase, the procedure does not succeed perfectly
in making the subjects’ success rate independent of d, as is clear from panel (a) of Figure 4.
¶A bit rate computed by Fitts’ Law analysis typically exhibits this property. It is computed from the gradient of a line relating trial
duration to task difficulty. A straight line usually fits empirical data very well, indicating that the bit rate is the same whether one
looks exclusively at easier or exclusively at harder trials. See the Supplementary Material, Section S4.1 for further discussion of Fitts’
Law analysis.
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3.3. Challenge III: Measure Limitations in BCI Performance

In the Introduction, we described Challenge III as the need to assess the extent to which BCI

system components (such as the BCI signal processing pipeline) not only enable BCI

performance, but also potentially restrict the maximum level to which performance might be

expected to rise as the user learns to use the BCI system more effectively.

The information gain results are summarized in Table 2. Of particular interest is the false

performance ceiling, which is the difference between the Direct Controller and the Pseudo-

BCI Controller conditions. This reflects the extent to which the EEG signal processing

pipeline restricts the maximum control performance that can be achieved under our chosen

constraints. The false ceiling is marked by the yellow shaded region in Figures 2 and 3. The

average difference across all four subjects was 21 bits per minute. From this, we conclude

that the signal processing pipeline imposed a performance ceiling at least 21 bits per minute

below the maximum that could be achieved in this task. This a large and unexpected

decrease, as it lowers the maximum bit rate by 33% on average.

4. Discussion

In this study, we developed novel approaches for measuring performance in BCI control

tasks. We identified three challenges: Challenge I was to address the need for efficient

measurement techniques that could adapt rapidly and reliably to capture a very wide range

of performance levels; Challenge II was to express performance results in task-independent

units that could allow comparison across a wide range of tasks; Challenge III was to

measure the extent to which certain components of a BCI system (for example, the signal

processing pipeline) not only enable good performance, but also potentially limit the

maximum level we can expect performance to reach.

Our experiments with healthy human subjects confirmed that our approach can provide

efficient performance measures on a scale that captured both beginners’ performance in a

non-invasive EEG BCI and the much higher levels of performance supported by

conventional human-computer interface hardware in the same task. (We assume that the

latter is much closer to the performance required for real-world tasks.) Our approach

consisted of three separate but complementary strategies: the first addressed experimental

task design in answer to Challenge I; the second addressed data analysis in answer to

Challenge II; and the third took advantage of the combined power of the first two to address

Challenge III.

The task-design strategy was to use an adaptive staircase method coupled to a single

variable that automatically and monotonically varied the difficulty of the task. Our task was

a computer game in which the player had to move a cursor in one dimension to catch falling

targets. We used Kaernbach’s well-known weighted up-down staircase method [12], and

found that it produced reliable and repeatable results efficiently, allowing us to assess

differences in performance between subjects, between sessions, and between controller

types, as well as improvements in performance due to learning. The staircase procedures

themselves took approximately a quarter of the experimental time, indicating that it is

feasible to combine this assessment method with other experimental designs. Note that there
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are many staircase methods, of varying sophistication, efficiency and robustness—see Leek

[27] for a review. We chose Kaernbach’s procedure for its simplicity and flexibility, but it is

possible that other more sophisticated staircase procedures might produce even better

results.

The data analysis strategy was based on success rates (the proportion of successes in a

number of discrete trials). This is in contrast to popular approaches based on Fitts’ Law

analysis (FLA).We avoided FLA due to its limitations—its assumption of negligible rates of

failure, its applicability only to tasks in which speed can be traded for accuracy, and its lack

of invariance to nuisance parameters (for a more detailed discussion of these points, see

Section S4.1 in the Supplementary Material). Instead, we took advantage of the fact that the

staircase procedure automatically kept the subject’s success rate P below ceiling, even

across a very wide range of performance conditions. The subject’s success rate was assessed

relative to the success rate P0 that might be expected by chance, under the null hypothesis of

no voluntary control. Chance performance was estimated by a random-walk model in which

the random steps’ size and smoothness in time, as well as the difficulty levels of the trials,

were matched to the subject’s original input. The two success rates may be combined in a

number of ways to obtain performance metrics that should allow comparison between

similar but non-identical tasks. One such approach might be to use Cohen’s κ [15, 25]. We

chose to use a formula for the rate of information gain between two Bernoulli distributions,

which we denote RIGB, yielding a result in bits per minute or bits per trial. This measure is

closely related to the information transfer rate ITRW previously proposed by Wolpaw et al.

[16], but we adapted it in two ways: first, we removed the reliance on an integer number of

discrete equiprobable task outcomes; and second, we introduced a sign term to make the

measure more consistent with the implicit assumptions that distinguish ITRW from channel

capacity measures. For more detailed discussion of this and other aspects of ITRW, see

Section S4.2 in the Supplementary Material.

Since we found it was possible to obtain reliable results from just three one-minute

measurement phases per session, it is conceivable that an adaptive assessment system might

be incorporated into a BCI system deployed for real-world usage, as a way of monitoring the

user’s progress. Adaptive assessment would necessarily be carried out as a brief regular

exercise separate from ordinary day-to-day BCI usage, since in day-to-day usage there

would be no sense in artificially making the user’s tasks more difficult than they needed to

be. With or without the adaptive staircase, information gain analysis could also be applied to

monitor performance in the field. This would also be easier in the context of a structured,

perhaps somewhat artificial exercise. It is conceivable that RIGB could be used to assess

performance during actual day-to-day usage, but here its limitations become apparent. First,

discrete “trials” must be identified somehow, and each trial must be categorized

unequivocally as either successful or unsuccessful. Second, the environment and constraints

under which the tasks are performed must be detected and modeled with sufficient accuracy

to allow valid random-walk simulations. Third, the results are only comparable across tasks

of sufficient similarity: one cannot compare information gain between Bernoulli and non-

Bernoulli tasks, for example, nor would it be meaningful to compare tasks with very
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different goals (comparing a movement-control bit rate with an item-selection bit rate, for

example).

Either the task-design strategy or the data-analysis strategy can be applied alone, but they

are particularly powerful in combination, and open the door to exploring some of the

important long-term questions for the BCI field. For example, in the current study, we

illustrated how the combined approaches can be used in conjunction with a contrastive

experimental design to quantify a false performance ceiling. By this, we mean the

difference between performance under unavoidable constraints (those imposed by the task

itself, and those imposed by the capacities of our normal motor output pathways) and

performance under the same constraints when a particular necessary BCI component or

algorithm is in use. This reflects the extent to which the component or algorithm in question

restricts the maximum control performance that can be achieved. Note that “maximum” in

the context of any one particular experiment is always defined relative to the constraints we

choose to accept. In this study we chose to limit ourselves to control methods that contrasted

total left-hand activity against total right-hand activity, using either motor imagery or the

shaking of two Nintendo Wii remotes. If we had allowed our subjects to use conventional

computer game controllers in the same task, their “maximum” performance would

presumably have been even higher.

Our study examined the false ceiling imposed by the artificial signal processing pipeline that

is necessary to extract BCI control signals from non-invasive EEG measurements of

sensory-motor rhythm modulation. We demonstrated that this can be assessed by using our

combined task-design and data-analysis approach to measure the performance difference

between a Direct Controller (i.e. a non-BCI input system that is engineered to maximize

performance) and the corresponding Pseudo-BCI Controller (i.e. the same input device that

is used by the Direct Controller, but interfaced with the same signal processing pipeline that

is used in BCI). In our one-dimensional control task, the average size of the false ceiling

imposed by the signal processing pipeline was 21 bits per minute (0.3 bits per trial), a 33%

reduction in bit rate. Furthermore, while all four subjects showed a significant improvement

in Direct-Controller performance over the course of the study, two of the four subjects did

not significantly improve their Pseudo-BCI performance. This raises the question of whether

the signal processing pipeline imposed an absolute limit that BCI performance could never

be expected to exceed, even with an arbitrarily large amount of practice.

We believe that in future, such techniques will be vital for evaluating components of a BCI

system, whether they are hardware or (like the signal processing algorithms we examined)

software. Each algorithm, component or set of components should be evaluated not only in

terms of what it enables us to do, but also in terms of the limits it may impose on

performance. We believe that this approach will be critical for achieving the substantial

performance improvements that will be necessary if neuroprosthetic devices are to meet the

demands of real-world tasks.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
The panels on the left show the time course of the adjustment phase of an example game,

plotting cursor and target positions (upper panel) and the task difficulty variable d (lower

panel) as a function of time. In the upper panel, the thick wavy blue line indicates the

portion of the screen occupied by the cursor at each time point. The vertical gray lines

indicate the times at which trials end. The small rectangular patches indicate the spatial

extent of the targets (raindrops) and the temporal window during which the cursor (cart) had

to catch them. Light green patches indicate targets that were hit, whereas dark red patches

indicate targets that were missed. In both panels, circles highlight the reversals, i.e. hits that

followed misses and misses that followed hits. The first two reversals (gray circles) were

discarded, and the subsequent six (black circles) were used to compute the mid-run estimate

of task difficulty (MREd) that was recorded as a measure of performance. Step changes in

the task difficulty variable d, triggered by the hits and misses, are shown in pink in the lower

panel. The MREd is indicated by the triangle and dotted line: it is equal to the median of the

d values at the last six reversals.

The panel on the right schematically illustrates the four controller conditions used in our

experiments—see Section 2.3 for a full description.
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Figure 2.
Performance levels are plotted as a function of number of sessions, for each subject (panels

left to right), in each of the four controller conditions (different symbol shapes/colors). Each

point marks the mid-run estimate of task difficulty (MREd) obtained during the adjustment

phase at the end of one game cycle. Solid lines show the session means. The yellow shaded

area marks the “false performance ceiling”. We discarded Subject A’s first two sessions and

Subject B’s first session, because they were recorded before slight changes to the game

framework introduced a change to the difficulty scale.
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Figure 3.
Performance levels are plotted as a function of number of sessions, for each subject (panels

left to right), in each of the four controller conditions (different symbol shapes/colors). Each

point marks the rate of information gain (RIGB) in bits per minute, computed over the all

trials in the 3 adjustment phases performed during a given session. Error bars are equal-

tailed 68.3% confidence intervals (the same coverage as the mean ±1 standard error for

normal variables) computed as described in the Supplementary Material, Section S2. The

yellow shaded area marks the “false performance ceiling.”
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Figure 4.
This figure shows the relationship between our initial measurement of performance, MREd

expressed in arbitrary units on a highly task-specific scale, and the re-computed, more

general metrics based on information gain. Each panel shows a scatter-plot of performance

values for all four subjects in all four controller conditions, each point denoting one session.

The four controller conditions are distinguished by different symbol shapes and colors,

according to the legend at the top right of panel (b). In all panels, the horizontal axis

measures MREd, averaged across the 3 separate measurements of each session. The four

panels illustrate the relationship between this measure and (a) the subject’s average success

rate P, across all trials of a given session, the number of which varied from 45 to 129; (b)
the probability P0 of succeeding according to the null hypothesis of no voluntary control,

estimated using 1000 random-walk simulations of each trial in a given session; (c)
information gain in bits per trial, obtained using the estimates P and P0 in equation (1), with

t̄ = 1 trial; (d) the rate of information gain in bits per minute, obtained using the estimates P

and P0 in equation (1) with t̄ equal to the average trial duration in minutes for each session.

At the bottom of each panel, we give the Spearman rank correlation coefficient ρ between

each respective measure and MREd.
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Figure 5.
This figure illustrates that the rate of information gain RIGB was to some extent invariant of

the difficulty level of the task. Success rates P (left panel) and information gain rates RIGB

(right panel) were computed separately for the easier half and harder half of the trials in each

session. Each panel is a scatterplot of all four subjects’ data in all four controller conditions

and all sessions: one point represents the result from one subject in one session in one

condition. Different symbol shapes/colors represent the different controller conditions, as

indicated in the legend on the left. Performance on the easier half is plotted on the horizontal

axes, and performance on the more difficult half is plotted on the vertical axes. The diagonal

lines are lines of equality.
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Table 1

For each controller condition and each subject, this table shows the degree of improvement in performance, as

measured by the Spearman correlation coefficient ρ between session number and MREd. Significance

probabilities are given in parentheses after each correlation coefficient.

Subject A Subject B Subject C Subject D

Direct 0.58 (p = 3.1 × 10−3) * 0.55 (p = 2.6 × 10−3) * 0.71 (p = 9.1 × 10−6) * 0.71 (p = 9.4 × 10−6) *

Pseudo-BCI 0.64 (p = 8.4 × 10−4) * 0.65 (p = 2.4 × 10−4) * 0.52 (p = 3.5 × 10−3) 0.18 (p = 0.34)

BCI 0.66 (p = 4.6 × 10−4) * −0.40 (p = 0.039) 0.17 (p = 0.37) 0.14 (p = 0.47)

Baseline 0.35 (p = 0.027) −0.22 (p = 0.17) −0.02 (p = 0.90) 0.49 (p = 6.0 × 10−4) *

A star indicates significant correlations at the significance threshold of 0.05, with Bonferroni correction for the fact that we are testing 16

hypotheses simultaneously (so, p ≤ 3.125 × 10−3).

J Neural Eng. Author manuscript; available in PMC 2015 April 01.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Hill et al. Page 28

Table 2

For each controller condition (first four rows) and each subject (first four columns), this table shows the mean

and standard error across sessions of the estimated bit-rates RIGB, in bits per minute (black rows) and bits per

trial (red italic rows). The last column shows the mean and standard error of each row (i.e. the mean and

standard error across subjects of the per-subject means). The bottom row is similar, but the statistic of interest

is the false performance ceiling, i.e. the session-by-session difference in bit rate between the Direct

Controller and Pseudo-BCI Controller conditions.

Subject A Subject B Subject C Subject D Average

Direct (bits per minute) 72.4 ± 2.89 69.0 ± 4.70 55.6 ± 3.97 52.1 ± 3.08 62.3 ± 4.96

(bits per trial) 1.70 ± 0.050 1.66 ± 0.078 1.52 ± 0.071 1.47 ± 0.058 1.59 ± 0.054

Pseudo-BCI (bits per minute) 44.2 ± 1.88 46.6 ± 3.53 41.5 ± 1.92 34.1 ± 1.18 41.6 ± 2.71

(bits per trial) 1.30 ± 0.064 1.38 ± 0.093 1.32 ± 0.043 1.14 ± 0.028 1.28 ± 0.051

BCI (bits per minute) 0.1 ± 0.18 5.1 ± 1.62 1.9 ± 0.42 −0.2 ± 0.15 1.7 ± 1.22

(bits per trial) 0.00 ± 0.014 0.25 ± 0.079 0.11 ± 0.025 −0.04 ± 0.020 0.08 ± 0.064

Baseline (bits per minute) −0.1 ± 0.07 −0.1 ± 0.11 −0.1 ± 0.06 −0.1 ± 0.12 −0.1 ± 0.02

(bits per trial) −0.01 ± 0.010 −0.02 ± 0.018 −0.01 ± 0.006 −0.03 ± 0.021 −0.02 ± 0.004

False Ceiling (bits per minute) 28.2 ± 1.87 22.4 ± 2.75 14.1 ± 3.49 18.1 ± 2.95 20.7 ± 3.04

(bits per trial) 0.40 ± 0.027 0.28 ± 0.042 0.21 ± 0.068 0.33 ± 0.056 0.30 ± 0.041
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