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A strong correlation between centrosome age and fate has been reported in some

stem cells and progenitors that divide asymmetrically. In some cases, such

stereotyped centrosome behaviour is essential to endow stemness to only one

of the two daughters, whereas in other cases causality is still uncertain. Here,

we present the different cell types in which correlated centrosome age and fate

has been documented, review current knowledge on the underlying molecular

mechanisms and discuss possible functional implications of this process.
1. Introduction
Paraphrasing T. Dobzhansky archcited quote one could say: ‘nothing in cell

biology makes sense except in the light of development’ [1]. Admittedly an

overstatement—like the original—this sentence does hold a great deal of

truth. In Metazoa, cells have a time, a place and a function, and all cellular pro-

cesses are orchestrated to fulfil the needs dictated by these critical coordinates.

Metabolic pathways, the cell cycle, gene expression or cell shape cannot escape

this principle; and, indeed, neither can centrosomes.

Self-renewing asymmetric division (SRAD) is a type of asymmetric cell div-

ision (ACD) in which one daughter retains the identity of the mother cell and

can therefore undergo SRAD repeatedly. Current knowledge of the molecular

cell biology of ACD and SRAD, including the mechanisms of asymmetric cell

fate, spindle assembly and the function of cell asymmetry in development and

disease, has been abundantly covered in the literature [2–15] and will not be

further introduced. This article focuses exclusively on the topic of centrosome

asymmetry in cells that divide by SRAD, be they stem cells (SCs) or progenitors.

Because the founding articles appeared only 7 years ago [16–18] and because

the total count of articles published until now is still below 10 (four of which have

been published in the last 12 months), it is fair to state offhand that the subject of

centrosome asymmetry in SRAD is in its infancy: only a few cell types have been

observed and the molecular details are still sketchy [19,20]. Yet, the stereotyped

behaviour that mother and daughter centrosomes display in these cells, so mark-

edly different and tightly linked to the unequal fate of the resulting daughter cells

has caught the attention of cell and developmental biologists alike.
2. Intrinsical centriolar asymmetry
Asymmetry is built-in in the semiconservative nature of centriole duplication; in

any given diplosome (the centriole pair of a centrosome), one centriole is mother

to the other, hence older (figure 1a, red). Typically, diplosome duplication results

in a lineage of four centrioles that includes one grandmother centriole (figure 1b,

red) that identifies the mother centrosome (figure 1c). The other centrosome,

which happens to contain the only granddaughter centriole of the lineage of four,

is referred to as the daughter centrosome (figure 1c). Indeed, and most importantly,

asymmetry goes beyond age because mother and daughter centrioles also pre-

sent notable differences in molecular composition, ultrastructure and function

[15,21–24]. For example, in mammals several proteins such as outer dense fibre

protein 2, ninein and centrosomal protein 164 [21,25–28] are found only in the
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Figure 1. Centrosome asymmetry. (a) Diplosomes contain one mother cen-
triole (red) and its daughter centriole (blue). (b) Following centrosome
duplication, two new daughter centrioles are assembled (dark and pale
green) and the cell contains a lineage of four centrioles. (c) The mother cen-
trosome is earmarked by carrying the only grandmother centriole within this
lineage of four centrioles. Centrosome segregation during mitosis results in
daughter cells that are always asymmetric in terms of centriole age.
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Figure 2. Centriole age and fate in self-renewing ACD. Position of mother (red)
and daughter (green) centrosomes during SRAD in five cell types. (a) Drosophila
mGSC; hub cells are labelled blue; differentiating gonialblast is labelled as GB.
(b) Drosophila NB; the apical and basal sides of the cortex are labelled brown and
purple, respectively; the differentiating ganglion mother cell is labelled as GMC.
(c) Drosophila fGSC; terminal filament and cap cells are labelled blue;
differentiating cytoblast is labelled as CB. (d ) Mice and rat RGPs/APs.
(e) Neuroblastoma cell line; the NuMA crescent is labelled brown. Pink areas
mark the position of the cells that retain stemness and dotted lines represent
the stemness/differentiation axes that, in all these five cell types, coincide
with the position of centrosomes at mitosis.
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mother centriole while others like centrobin (CNTROB) are

daughter centriole specific [21,29–32]. Moreover, in these cells,

only the mother centriole contains ultrastructural appendages

and can form cilia [21,25,26,33–35].

The obvious corollary derived from the above is that far

from exception, ACD is the rule as far as centriole segregation

is concerned; in any mitosis, only one daughter cell inherits

the mother centrosome (figure 1). This peculiarity, although

acknowledged by researchers in the field, has been traditionally

disregarded in as much as mitosis was defined as the process

where a single cell divides to produce two identical daughters.

The remarkable finding of a link between centrosome asymme-

try and the unequal fate of daughter cells, first reported in

Drosophila male germline SCs (mGSCs) [16] and soon afterwards

in larval neuroblasts (NBs) [36,37], put an end to this view.
3. Unequal centrosomes in unequal daughter
cells

(a) In Drosophila
Drosophila mGSCs are arranged around hub cells that serve

as a niche that provides stemness signals (figure 2a). SRAD

in mGSCs occurs along a proximo-distal axis defined by

the hub (figure 2, dotted line): the renewed mGSC daughter

cell always remains proximal to the hub, while the differentiat-

ing daughter is delivered distally [38]. In 2007, Yamashita

and co-workers showed that the mother centrosome stays

proximal-cortex bound throughout interphase, organizes
the spindle pole that is nearest the hub and is retained by the

renewed mGSC. Concomitantly, the daughter centrosome

migrates distally where it organizes the second spindle pole

and is delivered to the daughter cell that enters the spermatogen-

esis programme [16]. Yamashita’s observations established for

the first time that for some SCs, centrosome asymmetry is an

integral part of SRAD and revealed a tantalizing link between

centrosome age and fate. The stage was then set for the ‘immortal

centrosome’ hypothesis proposing that upon SRAD, the daugh-

ter cell with more proliferative potential retains the mother

centrosome [39], which may perhaps contribute to the

asymmetric segregation of proteins, RNAs, organelles [40] or

old-versus-new DNA strands (i.e. the ‘immortal strand hypo-

thesis’) [41]. A similar observation had previously been made

in the budding yeast Saccharomyces cerevisiae where the longer

lived budding daughter inherits the old spindle pole body (the

yeast functional counterpart of animal centrosomes) [42].

Two independent reports published later in the same year

revealed features of the centrosome cycle in Drosophila larval

NBs that were closely reminiscent of those described in

mGSCs (figure 2b). Drosophila NBs undergo repeated rounds

of SRAD, each of which generates a daughter cell fated to

divide once more before terminal differentiation (ganglion

mother cell; GMC) and a renewed NB. The two reports pub-

lished in 2007 showed that one of the NB’s centrosomes
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remains apical-cortex bound during interphase and is retained

by the renewed NB, whereas the other migrates to the basal

side of the NB and is delivered to the differentiating daugh-

ter [17,18]. Which of these were the mother and daughter

centrosomes could not be established at that time. These studies

also revealed aspects of the centrosome cycle that underscored

the unequal nature of centrosomes in these cells. Live

microscopy recordings obtained by following a centrosomin-

green fluorescent protein (CNN-GFP) fusion as a pericentriolar

material (PCM) reporter, and Asterless-(ASL)-GFP to trace cen-

trioles, showed that centrosome asymmetry has a very early

onset in NBs; only 10 min after cytokinesis, the centrosome

splits in two centrosomes that remain markedly different through

the entire cell cycle. The centrosome that stays at the apical cortex

retains as much CNN as a mature mitotic centrosome, whereas

the other loses most, if not all CNN immediately after splitting

and moves across the cell for most of the cell cycle until settling

down near the basal cortex, prior to mitosis. The CNN-rich cen-

trosome organizes a very prominent microtubule network

throughout interphase, which is remarkable since the inter-

phase microtubule cytoskeleton is almost non-existent in

most Drosophila diploid cell types, including indeed, both the

neuroectodermal cells from which NBs derive, and GMCs, the

NB daughters that do not retain stemness [30,43,44]. The same

stereotyped centrosome behaviour was observed a few years

later in embryo NBs [45], an exception made of the first cell

cycle during which NBs delaminate [46].

Thus, despite notable differences in tissue architecture

and stemness signalling, a clear theme common to mGSCs

and NBs emerged. In a ‘differentiation axis’, defined as the

straight line that bisects the two unequally fated daughters

during cell division (figure 2, dotted line), one centrosome

is permanently located at the stem-proximal end (i.e near

the hub in mGSCs; near the apical cortex in NBs) and is

inherited by the SC, whereas the other centrosome migrates

distally and is delivered to the differentiating daughter cell.

By extension, the observations from NBs were taken as

further, albeit indirect, evidence in support of the immortal

centrosome hypothesis, a conclusion that was to be proved

wrong only a few years later.

In 2010, using the relative greater loading of GFP-

pericentrin-AKAP450 centrosomal targeting (PACT) in the

mother centriole as a reporter, Conduit & Raff [36] concluded

that the apical-cortex-bound centrosome, which is the one

retained by the NB, is the daughter, not the mother as the

immortal centrosome hypothesis would have predicted.

Januschke et al. [37] confirmed these findings by photo conver-

sion experiments with which they were able to unequivocally

trace mother centrosomes. This study also showed that in

NBs, at the time of splitting, mother and daughter centrosomes

contain only one centriole rather than a diplosome. Very recent

results published by the Yamashita laboratory demonstrate

that correlated centriole age and fate also operates in the

female germline, and that like NBs, female GSCs (fGSCs)

inherit the daughter centrosome [47] (figure 2c).

Altogether, these observations falsify the immortal centro-

some hypothesis in Drosophila NBs and fGSCs, but provide

further evidence to substantiate the hypothesis that centrosome

maturation and fate are tightly correlated during SRAD. More-

over, these observations call for reassessing mother–daughter

equivalence in Drosophila. As referred to before, in mammals,

appendages and satellites are distinct attributes of mother cen-

trioles that bear mother-centriole-specific functions such as
PCM retention and cilia formation [25]. For decades, the lack

of these features in Drosophila centrioles has been taken as sug-

gestive of the absence of maturation-dependent centriolar

functions in this species [48]. Age-dependent functional centro-

some asymmetry in male and fGSCs and NBs shows that

mother and daughter centrioles are unequal in Drosophila.

Consistently, recent reports are starting to reveal some aspects

of ultrastructural centriole dimorphism in flies [49,50].

(b) In rodents
SRAD of radial glia progenitor cells (RGPs; also known as

apical progenitors, APs; referred to as RGPs/APs henceforth)

in the ventricular zone in mice produce self-renewed RGPs/

APs and differentiating cells [51]. In 2009, Wang et al. [52]

showed that RGPs/APs retain the mother centrosome

(figure 2d ). Furthermore, they assayed the effect of ninein

depletion in these cells. Ninein is a coiled-coil centrosomal

protein that localizes to the subdistal appendages that charac-

terize mature centrioles and plays a key role in the anchorage

of gTUB-containing complexes and microtubule minus-ends

[26,53–55]. They found that ninein depletion disrupts the

asymmetric inheritance of mother and daughter centrosomes

and results in loss of RGPs/APs, suggesting a function for

preferential inheritance of the mother centrosome in RGPs/

APs maintenance in the developing mammalian neocortex

[52]. The same effect was observed upon depletion of

ninein in rat embryos [56]. Retention of the mother centro-

some upon SRAD in RGPs/APs has also been documented

by Paridaen et al. [57].

(c) In human cancer cells
In 2012, Izumi & Kaneko [58] showed that in human neuroblas-

toma cells that assemble a NuMA cortical crescent at mitosis,

the nuclear mitotic apparatus (NuMA) retaining daughter pre-

ferentially inherits the daughter centrosome (figure 2e). NuMA

is the vertebrate homologue of Drosophila mushroom body

defect, which during SRAD polarizes to the apical cortex that

is inherited by the NB. However, in this case, the greater

proliferation potential of the NuMA retaining cell is still

hypothetical, suggested only by analogy to mouse dermal

epidermis cells [59] and Drosophila NBs [60–62].
4. The mechanistic insight
In mouse RGPs/APs, recent progress on this front links mother

centriole to stemness through the retention of part of the ciliary

membrane that is brought into the cell by the endocytosed

mother centriole at mitosis onset and is thus delivered to

one of the two daughter cells [57] (figure 3). Incidentally, the

presence of the ciliary membrane remnant through mitosis

challenges the long established view of the total disassembly

of cilia during cell division. The presence of this ciliary mem-

brane remnant speeds up primary cilium assembly and with it

primary-cilium-dependent signal transduction that contributes

to stemness. This is an excellent example of how evolution can

exploit the general principle of centriolar asymmetry that is

inherent to every animal cell to differentially fine tune the ability

of two sister cells to respond to environmental signals in order to

fulfil their roles in neural development [57]. These observations

are very much along the lines proposed in 2009 by Anderson and

Stearns who showed that in stable cell lines that divide
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Figure 3. A model for mother centriole retention and stemness in mice APs. (a) The mother centriole (red) serves as a basal body for the cilium that is essential for
cell signalling transduction. (b) After centriole duplication, the cilium starts to be disassembled in preparation for mitosis. (c) The centrosome containing the old
mother centrosome is finally internalized, bringing with it a remnant of the ciliary membrane (blue). (d ) Mitosis is asymmetric because only one daughter cell
inherits the mother centrosome, which carries the ciliary membrane remnant. (e) The cell that lacks the ciliary membrane remnant takes longer to organize the
cilium than its sister and enters the differentiation programme.
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‘symmetrically’, the daughter cell receiving the older mother

centriole usually grows a primary cilium and is capable of

responding to Sonic hedgehog (Shh) before its sister [63]. The

same asymmetry in cilium formation and Shh response was

later observed in ex vivo cultures of mouse neuroepithelial cells

[64]. The recent identification of the dismantling of the primary

cilium as a key event in neuronal differentiation underscores

the role of cilia in maintaining proliferation potential during neu-

rogenesis [65]. Another interesting finding recently reported

regards the role of Wingless-related integration site (Wnt) signal-

ling in centrosome fate. In mouse embryonic SCs in culture, a

localized source of Wnt3a is sufficient to drive the segregation

of the mother centrosome towards the Wnt-source proximal

daughter cell that expresses high levels of nuclear b-catenin

and pluripotency genes [66].

Progress has also been made regarding the molecular details

of centriole asymmetry control in SRAD cycles in Drosophila
larval NBs. Five essential players have been identified: POLO,

CNN, pericentrin-like protein (PLP), centrobin (CNB) and part-

ner of inscuteable (PINS). POLO is a multipurpose Ser/Thr

kinase with numerous substrates [17,30,37,67,68]. CNN is a

large coiled-coil reach protein that accounts for a significant frac-

tion of the PCM mass and that plays a fundamental role in the

recruitment of gTUB complexes [18,36,69,70]. PLP, the fly homol-

ogue of human pericentrin, is also a large coiled-coil reach protein

that localizes to both PCM and centrioles [36,71–74]. Drosophila
CNB, like its human homologue (CNTROB) is a distinct daughter
centriole marker [37], and co-immuno precipitates with POLO,

CNN and other centriolar proteins [30]. PINS (partner of inscute-

able), homologue to mPins/LGN in mammals, is a modular

protein with several tetratricopeptide repeat and GoLoco

domains that plays a critical role in cell cortical polarity and spin-

dle orientation [2,3,5,11]. POLO, CNN and PLP are critical for

mitotic centrosome maturation, but CNB and PINS are not.

Experiments showing that CNB depletion in Drosophila NBs

impedes retention of the relatively large quantities of PCM that

characterize daughter centrioles during interphase, while CNB

ectopic localization enables mother centrioles to do so, demon-

strating that centriolar CNB is both necessary and sufficient to

trigger this process [30] (figure 4). POLO’s function in interphase

PCM retention is at least twofold: to phosphorylate CNB, which

is essential for CNN recruitment [30,37] and to phosphorylate

CNN, which is essential for the recruitment of other PCM com-

ponents, including of g-tubulin (gTUB) complexes [75]. PLP is

more abundant in mother than in the daughter centrioles

[36,72] and comes into the equation as an inhibitor of PCM reten-

tion whose centriolar localization is negatively regulated by

CNB. Consequently, PLP depletion phenocopies CNB ectopic

localization enabling the mother centriole to retain PCM

(figure 4) and pancentriolar CNB-PACT displaces PLP in the

mother centriole that can then bind POLO and stabilize PCM

[72]. The role of the fifth component, PINS, essential as it is,

remains a mystery. In PINS, loss of function conditions the

post-mitotic centrosome migrates to the apical cortex and soon
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after splits in two, just as it does in wild-type NBs. However,

soon after centrosome splitting, PINS requirement becomes

apparent as the daughter centrosome starts to behave like the

mother, losing PCM and apical attachment [18]. Intriguingly,

this phenotype can be observed at a time, early in interphase,

when no sign of the PINS cortical crescent that characterizes

mitotic NBs is still visible [18,30]. Furthermore, daughter cen-

trioles detached from the cortex by microtubule poisons

efficiently retain PCM. The involvement of POLO, CNN and

PLP suggests that at least part of the pathway of centrosome

maturation, which recruits PCM on mitotic centrosomes in

most animal cells, has been co-opted to maintain mitotic-like

levels of PCM on one of the centrioles throughout interphase

in Drosophila NBs. Mitotic centrosome maturation, however,

requires neither PINS, nor CNB, and is less sensitive to

inhibition by the POLO inhibitor BI2536 [30] (figure 4a).

These results place centriolar CNB as a key factor that inhi-

bits PLP centriolar binding, thus allowing the centriolar

localization of POLO, which in turn leads to CNB phosphoryl-

ation, gTUB complex recruitment and microtubule organizing

centre (MTOC) activity (figure 4b). It is important to stress that

although most of these proteins, including CNB, are found in

all sorts of cell lineages, the pathway described here has only

been shown to operate in NBs. Thus, for instance, expression

of the pancentriolar CNB fusion that forces the mother-to-
daughter centriole behaviour in NBs does not appear to do

so neither in GMCs nor in cells from wing imaginal discs [30].
5. A few answers among many questions
The following questions and, when available, accompanying

answers summarize the current state of knowledge and

future research on the topic of correlated centriole age and fate
in SRAD.

Is it a universal principle, or is it species or just cell-type specific?
Currently available data are still fully consistent with the

hypothesis of a tight link between centrosome age and fate in

cells that divide through SRAD; such is the case in all five

cases of SRAD in which mother–daughter centrosome fate

has been determined. Indeed, based as it is in only five cell

types, there is no way of predicting the likelihood of this

hypothesis being a general principle, or whether it will be fal-

sified in the next type of SRAD studied in detail. Either way,

however, the case would remain open as to its functional

relevance in the cell types to which it applies.

Does it always go such that it is the mother centrosome the one
retained by the daughter cell with renewed stemness?

Data currently on hand demonstrate that the answer is no.

In Drosophila, it does not even hold true for adult SCs since
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mGSCs retain the mother centrosome while fGSCs retain the

daughter centrosome.

Does the negative answer to the previous question imply that corre-
lated centriole age and fate cannot contribute to non-random old-
versus-new DNA strand segregation (immortal strand hypothesis)?

Certainly not; of course, it could. In fact, centrosomes,

through mother–daughter centrosome differences, remain

the primary suspects to understand biased chromatid segre-

gation [41]. Indeed, a recent report shows that in Drosophila
mGSCs, X and Y sister chromatid segregation is highly

biased during SRAD and that this process requires the

PCM protein CNN as well as components of the linker of

nucleoskeleton and cytoskeleton complex [76].

Why should the mother–daughter fate be inverse in mGSCs
compared with fGSCs and NBs?

No answer has been provided so far. The recent demon-

stration that fGSCs, like NBs, retain the daughter centrosome

complicates the issue further because it rules out a simple

interpretation based on differences between adult SCs that per-

dure during the lifespan of the organism and cells like NBs that

proliferate only at a certain period of development. To compli-

cate the issue even further, it must be noted that vertebrate

RGPs/APs that are in this regard much more related to NBs

than to GSCs retain the mother centrosome.

Does correlated centriole age and fate operate in ACD that is
not SRAD?

We do not have an answer to this question yet.

Altogether, the above considerations underscore the need

to characterize centrosome behaviour in SRAD in as many

cell types and species as possible.

Is correlated centriole age and fate necessary for SRAD
and development?

The answer is clearly yes in RGPs/APs in rodents where

mother centriole retention contributes to stemness [52,57].

The situation is not so clear in flies. Equalizing the two cen-

trioles of an NB as either mothers or daughters does not appear

to affect NB cortical polarity, asymmetric cortex segregation or

daughter cell size difference [30,72], nor does it result in gross

anatomic abnormalities in larval brains. In NBs with centrioles

equalized as mothers, the site of budding of the small differen-

tiating daughter does not coincide with the previous bud with

the same precision that it does in wild-type NBs [30]. However,

this phenotype might be attributable to the lack of an inter-

phase aster rather than to the loss of centriole asymmetry

because it is not observed when centrioles are equalized as

daughters [30]. Indeed, cortical centrosome anchoring during

interphase is essential to defining the site of apical cortical

polarity, and as a consequence, to defining SRAD orientation

and the site of budding of the small daughter cell [77]. SRAD

does not seem to be affected by swapping centrosomes’ fate

either (i.e. mother centrosome inherited by the NB and daugh-

ter centrosome inherited by differentiating daughter) at least

within a couple of consecutive cell cycles [77].
Could it be an epiphenomenon owing to interphase aster assembly?
Drosophila mGSCs and NBs retain the centrosome that

during interphase remains bound to the stem-proximal side

of the cortex, near the hub or the apical cortex, respectively.

Such a centrosome happens to be the mother in mGSCs

and the daughter in NBs. Because cortical binding is microtu-

bule-dependent, the MTOC-capable centrosome is retained.

The loss of centrosome-age-dependent fate in NBs with

equalized centrioles is fully consistent with this interpretation

[30]. But of course this still leaves open the crucial question of

why are centrosomes made so markedly different in the first

place in these cells, a question for which no epiphenomenal

answer springs to mind.
6. Final remarks on function
If complex processes like SRAD depended critically on single

pathways, most mutant conditions for genes involved in these

processes would result in total disaster. However, one of the les-

sons derived from two decades of research on SRAD in

Drosophila NBs in particular, as well as from many decades

of research on Drosophila development and cell biology in

general, is that complex processes are often made robust through

different layers of control that are partially redundant; hence par-

tially dispensable. The last minute correction of cortical defects

and spindle alignment in a number of mutants that display pro-

minent cortical polarity defects up to metaphase in Drosophila
NBs, known as ‘telophase rescue’ [78], speaks well to this end

and so does the recently identified basal-cortex-dependent, spin-

dle-independent mechanism of cleavage furrow positioning [79].

While neither the elaborated process of PCM loss from the

mother and stabilization over the daughter centriole nor the

resulting interphase aster that is conspicuously displayed

by NBs and forecasts in interphase the position of the oncom-

ing mitotic apical cortex demonstrate function, it may be

unwise to dismiss these complex processes as non-functional

on the basis of soft evidence; the devil tends to be in the

details [80], and most of the details on this issue we are still

missing. Despite the long list of questions still standing, a

phenomenon like correlated centrosome age and cell fate

asymmetry is a strong advocate on behalf of centrosomes as

organelles with functions in somatic cells, and, thus, a signifi-

cant contributor to these days’ ‘centrosomes renaissance’.

After all, processes that are observed across species and are

dependent on complex molecular interactions, but serve

no purpose are hard to reconcile with the, this time real,

Dobzhansky’s principle: ‘nothing in biology makes sense

except in the light of evolution’ [1].
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2013 Asymmetric inheritance of centrosome-
associated primary cilium membrane directs
ciliogenesis after cell division. Cell 155, 333 – 344.
(doi:10.1016/j.cell.2013.08.060)

58. Izumi H, Kaneko Y. 2012 Evidence of asymmetric
cell division and centrosome inheritance in human
neuroblastoma cells. Proc. Natl Acad. Sci. USA 109,
18 048 – 18 053. (doi:10.1073/pnas.1205525109)

59. Lechler T, Fuchs E. 2005 Asymmetric cell divisions
promote stratification and differentiation of
mammalian skin. Nature 437, 275 – 280. (doi:10.
1038/nature03922)

60. Bowman SK, Neumüller RA, Novatchkova M, Du Q,
Knoblich JA. 2006 The Drosophila NuMA homolog
MUD regulates spindle orientation in asymmetric
cell division. Dev. Cell 10, 731 – 742. (doi:10.1016/j.
devcel.2006.05.005)

61. Siller KH, Cabernard C, Doe CQ. 2006 The NuMA-
related MUD protein binds PINS and regulates
spindle orientation in Drosophila neuroblasts. Nat.
Cell Biol. 8, 594 – 600. (doi:10.1038/ncb1412)

62. Izumi Y, Ohta N, Hisata K, Raabe T, Matsuzaki F.
2006 Drosophila PINS-binding protein MUD
regulates spindle-polarity coupling and centrosome
organization. Nat. Cell Biol. 8, 586 – 593. (doi:10.
1038/ncb1409)

63. Anderson CT, Stearns T. 2009 Centriole age underlies
asynchronous primary cilium growth in mammalian
cells. Curr. Biol. 19, 1498 – 1502. (doi:10.1016/j.cub.
2009.07.034)

64. Piotrowska-Nitsche K, Caspary T. 2012 Live imaging
of individual cell divisions in mouse
neuroepithelium shows asymmetry in cilium
formation and Sonic hedgehog response. Cilia 1, 6.
(doi:10.1186/2046-2530-1-6)

65. Das RM, Storey KG. 2014 Apical abscission alters cell
polarity and dismantles the primary cilium during
neurogenesis. Science 343, 200 – 204. (doi:10.1126/
science.1247521)

66. Habib SJ, Chen B-C, Tsai F-C, Anastassiadis K, Meyer
T, Betzig E, Nusse R. 2013 A localized Wnt signal
orients asymmetric stem cell division in vitro.
Science 339, 1445 – 1448. (doi:10.1126/science.
1231077)

67. Llamazares S, Moreira A, Tavares A, Girdham C,
Spruce BA, Gonzalez C, Karess RE, Glover DM, Sunkel
CE. 1991 polo encodes a protein kinase homolog
required for mitosis in Drosophila. Genes Dev. 5,
2153 – 2165.

68. Archambault V, Glover DM. 2009 Polo-like kinases:
conservation and divergence in their functions and
regulation. Nat. Rev. Mol. Cell Biol. 10, 265 – 275.
(doi:10.1038/nrm2653)

69. Li K, Kaufman TC. 1996 The homeotic target gene
centrosomin encodes an essential centrosomal
component. Cell 85, 585 – 596.

70. Conduit PT, Brunk K, Dobbelaere J, Dix CI, Lucas EP,
Raff JW. 2010 Centrioles regulate centrosome size
by controlling the rate of CNN incorporation into the
PCM. Curr. Biol. 20, 2178 – 2186. (doi:10.1016/j.cub.
2010.11.011)

71. Martinez-Campos M, Basto R, Baker J, Kernan M,
Raff JW. 2004 The Drosophila pericentrin-like protein
is essential for cilia/flagella function, but appears to
be dispensable for mitosis. J. Cell Biol. 165, 673 –
683. (doi:10.1083/jcb.200402130)

72. Lerit DA, Rusan NM. 2013 PLP inhibits the activity
of interphase centrosomes to ensure their proper
segregation in stem cells. J. Cell Biol. 202, 1013 –
1022. (doi:10.1083/jcb.201303141)

73. Kawaguchi S, Zheng Y. 2004 Characterization of a
Drosophila centrosome protein CP309 that shares
homology with Kendrin and CG-NAP. Mol. Biol. Cell
15, 37 – 45. (doi:10.1091/mbc.E03-03-0191)

74. Gillingham AK, Munro S. 2000 The PACT domain, a
conserved centrosomal targeting motif in the coiled-
coil proteins AKAP450 and pericentrin. EMBO Rep. 1,
524 – 529. (doi:10.1093/embo-reports/kvd105)
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