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Centrosome amplification is a hallmark of cancer. However, despite significant

progress in recent years, we are still far from understanding how centrosome

amplification affects tumorigenesis. Boveri’s hypothesis formulated more than

100 years ago was that aneuploidy induced by centrosome amplification pro-

moted tumorigenesis. Although the hypothesis remains appealing 100 years

later, it is also clear that the role of centrosome amplification in cancer is

more complex than initially thought. Here, we review how centrosome

abnormalities are generated in cancer and the mechanisms cells employ to

adapt to centrosome amplification, in particular centrosome clustering. We

discuss the different mechanisms by which centrosome amplification could

contribute to tumour progression and the new advances in the development

of therapies that target cells with extra centrosomes.
1. Introduction
The centrosome is the main microtubule (MT)-organizing centre in animal cells,

playing important roles in polarity, migration and cell division. The centrosome

consists of a pair of orthogonally positioned centrioles, embedded in a complex

proteinaceous structure, the pericentriolar material (PCM) [1]. In differentiated

cells, the mother centriole, the older of the two centrioles, functions as the basal

body that assembles the primary cilium, which, among other roles, can function

as a centre for cellular signalling [2]. During the cell cycle, centrosomes duplicate

only once during S phase to ensure that at mitotic onset a cell carries two centro-

somes that will form the poles of the mitotic spindle [3]. Although Theodor Boveri

originally described the centrosome as ‘the organ for cell division’, work in

Drosophila and mammalian cells showed that cells without centrioles can assem-

ble bipolar spindles [4–6], in part due to chromatin-mediated MT nucleation

during mitosis. However, the idea that centrosomes are dispensable for mitosis

is still controversial. Previous work showed that acentrosomal haploid cell cul-

tures obtained from unfertilized Drosophila eggs are aneuploid, suggesting that

centrosomes might be important to maintain genetic stability [7]. Supporting

this idea, recent work demonstrated that permanent centriole loss in vertebrate

DT40 cells leads to chromosome instability and aneuploidy [8].

A century ago, Boveri proposed that increased numbers of centrosomes cause

cancer [9]. This was a bold move, given that he had never actually worked with

cancer cells. Based on his observation that the sperm provided the functional cen-

trosome early during embryogenesis, Boveri created dispermic eggs containing

multiple centrosomes. These eggs, harbouring extra centrosomes, underwent

multipolar mitoses and division of cells into three or more highly aneuploid pro-

geny. These progeny all displayed different developmental characteristics, leading

to the famous conclusion that chromosomes transmit these cellular traits [10,11].

This idea was the foundation for his later proposal for the driving role of aneu-

ploidy in tumorigenesis [9]. The model that centrosome amplification caused

improper chromosome segregation during mitosis, which triggered malignancy,

had important contributions from his contemporaries Gino Galeotti and David

von Hansemann. Both Galeotti and Hansemann, by observation of tumour his-

tology, noted that abnormal mitotic figures are common features of cancer cells.
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Figure 1. Centrosome abnormalities in high-grade serous ovarian cancer.
Tissue sections of approximately 20 mm thickness were immunostained with
antibodies against CDK5RAP2 (green) and centrin-3 (red). DNA is stained
with Hoechst (blue). Area marked with rectangle is shown at higher magnifi-
cation on right to illustrate numerical and structural aberrancies. In particular,
note major variations in centrosome size and shape. Images shown are maxi-
mum intensity projections. Image is courtesy of Gayathri Chandrasekaran and
Fanni Gergely.
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Galeotti also recognized that abnormal mitoses were more

frequently present in rapidly developing tumours [12].

Hansemann’s work highlighted the presence of asymmetric

cell divisions with abnormal distribution of chromosomes to

daughter cells, which he termed asymmetric karyokinisis [13].
Although Hansemann reported that the presence of these

abnormalities was common in carcinomas, he stated in his

monograph of 1902 that a cancer diagnosis should not be

made based solely on asymmetric nuclear divisions. In fact,

Hansemann remarked that because these ‘faulty’ mitoses

could be also observed in benign lesions or in tissue over-

growth, they were unlikely to be the cause of cancer [14].

Thus, from the earliest studies, opinions about whether

chromosome segregation errors might cause cancer were

divided: Boveri was in favour and Hansemann was opposed.

It was not only Hansemann who remained sceptical

about the role of abnormal mitoses in cancer: indeed for

many years the cancer field focused on the discovery of

cancer-causing mutations in oncogenes and tumour suppres-

sors as the drivers of tumorigenesis. It was not until the late

1990s, with the observation that loss of the tumour suppres-

sor p53 was associated with centrosome amplification, that

centrosome defects returned to the limelight [15]. Following

this discovery, the work of many researchers established cen-

trosome abnormalities as a common feature of all major

classes of human cancer.
2. Landscape of centrosome abnormalities
in human tumours

The prevalence and complexity of centrosomal abnormalities

in human tumours is highlighted in a recent review that sum-

marizes the existing clinical data concerning centrosome

defects in cancer [16]. Centrosomal abnormalities have been

described in a variety of solid tumours, including breast,

prostate, colon, ovarian and pancreatic cancer [17–20], as

well as haematological malignancies such as multiple myel-

oma, non-Hodgkin’s and Hodgkin’s lymphomas, acute and

chronic myeloid leukaemia [21,22].

Centrosome abnormalities can be detected in early low-

grade lesions in some tumours, such as breast cancer and

several gastrointestinal cancers [23–25], suggesting the pos-

sibility of a role in tumour initiation, although the idea

remains controversial. However, in most human cancers cen-

trosome amplification has been associated with high-grade

tumours and poor prognosis [16]. In some tumours, such as

urothelial cancers, centrosome amplification is a strong pre-

dictor of tumour recurrence, highlighting its potential as a

biomarker for advanced disease [26]. Also in breast, prostate

and head and neck tumours, centrosome amplification is cor-

related with lymph node and distant metastasis, further

reinforcing its association with disease progression [27–29].

Understanding the nature of this association, whether it is

direct or indirect, could have a major impact in the developing

therapies and new biomarkers.
3. Types of centrosomal defects
(a) Structural defects
Centrosomal defects in human cancers can be classified as struc-

tural or numerical aberrations [30] (figure 1). Structural defects
can be divided into two groups: defects in centriole structure

and defects in the amount of PCM. The most straightforward

structural defects to identify are alterations in centriole size,

usually scored as an increase in length but could also include

increased variability in centriole length. The origins of centriole

structural defects in cancer are still unclear, but changes in the

expression of genes involved in controlling centriole structure

are one appealing idea. For example, over- or under-expression

of centrosomal components can lead to alterations in the cen-

triole structure; for example, such as CPAP/SAS-4, whose

overexpression increases centriole length, can affect centriole

structure in several model systems [31–34].

Defining what constitutes a centriole structural defect in

cancer is, however, not an easy task. First, because the size of

centrioles (0.2–0.5 mm long) is close to the optical resolution

of a standard light microscope, centriole length measurement

requires either specialized fluorescence techniques or electron

microscopy. Second, the common assays that are the basis for

classifying tumours as having ‘structural’ defects can be diffi-

cult to interpret. For example, increased amount of PCM,

deduced from measurement of the volume/diameter of the

centrosome using a pericentriolar marker [27,35], has been con-

sidered a structural defect [30]. However, there can be two

interpretations for a cell displaying an increased amount of

PCM. One possibility is that PCM is indeed increased, which

can be considered a structural alteration of the centrosome

[27]. Alternatively, this could reflect supernumerary centro-

somes that are typically clustered during interphase, and

thus in fact be a ‘numerical defect’ [23,27,36]. These possibili-

ties can only be distinguished with bona fide centriole

labelling. The reverse misclassification can also occur since

in vitro, increased centriole length was suggested to lead to cen-

triole fragmentation [32]. Thus, it is not trivial to ascertain the

origin of centrosome ‘structural’ alterations simply from fixed

cell imaging, and this issue is further complicated by the fact

that many primary tumour studies only examine PCM markers

and not centriole markers. For these reasons, better methods to

assess and classify centrosome abnormalities systematically are
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needed to understand better the landscape of centrosome

abnormalities in human tumours and to gain insight into

how these centrosomal defects arise.
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Figure 2. The centrosome duplication cycle. The master regulator of centriole
duplication, the kinase Plk4, is recruited to the centrioles at the end of mitosis by
the scaffolding protein CEP152/Asterless. Plk4 activity initiates the formation of
the procentriole in S phase that forms adjacent to the pre-existing centriole. The
centriole ninefold symmetry is established by the cartwheel, a structure formed
through the oligomerization of SAS-6. During S phase CDK2/cyclin E activity is
also important for centriole assembly together with the SCF complex which
plays important roles in regulating the ubiquitination and proteasome-depen-
dent degradation of many centriolar components. Procentriole elongation is
promoted by recruitment of CPAP/SAS-4 which assembles and stabilizes
the MTs that form the ninefold outer structure of the procentrioles. Elongation
of the procentriole continues through G2 phase and is controlled by the cap-
ping proteins CP110 and Cep97 which regulate centriole size. Centrosome
maturation is induced later in G2 phase and is promoted by Aurora A and
Plk1, leading to increased PCM accumulation. Later, in M phase, centrioles
disengage by a mechanism involving the activation of separase by the APC
complex and the kinase Plk1. Centriole disengagement is an important licen-
sing factor for centriole duplication, but exactly how this mechanism is
regulated is still unclear.
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(b) Numerical defects
Numerical aberrations, such as centrosome amplification, are

the most frequently described centrosomal defects in cancer.

A number of mechanisms can lead to centrosome amplification,

including cytokinesis failure, mitotic slippage, cell–cell fusion,

overduplication of centrioles and de novo centriole assem-

bly [37]. The large number of underlying mechanisms may

explain the diversity of proteins, including tumour suppressor

and oncogenes, associated with centrosome amplification in

cancer [38].

One major route for centrosome amplification is deregu-

lation of the centrosome duplication cycle, which is in part

controlled by the tight regulation of many of its components.

Thus, many positive and negative regulators of centrosome

duplication prevent centrosome amplification in normal

cells [39]. This tightly controlled cycle relies on a surprisingly

small number of core proteins that have been conserved

during evolution [40]. One important core protein is the

Polo-like kinase 4 (Plk4; SAK in Drosophila melanogaster, and

ZYG-1 is the functional homologue in Caenorhabditis
elegans), the master regulator of centrosome duplication

(figure 2) [41]. Plk4 activity is a critical factor that regulates

centriole number, as excess Plk4 activity leads to extra cen-

trioles [42,43], whereas its depletion causes decrease in

centriole numbers [4,42,44]. To ensure proper centriole dupli-

cation, the levels of Plk4 are regulated, mostly through

SCFbTrCP/ubiquitin-dependent proteolysis [45–47], which

is controlled, at least in part, by its own autophosphorylation

[48–50]. Another important core protein is SAS-6, essential

for the formation of the cartwheel structure that ensures the

centriole’s ninefold symmetry and whose levels are also con-

trolled by proteolysis [51–57]. After initial formation,

centrioles are stabilized and elongate until G2 phase, a pro-

cess that involves CPAP/SAS-4 [31–34,58]. Centriole length

is controlled by proteins such as CP110 and Cep97, which

associate with the distal ends of the centrioles and likely

function as capping proteins [32,33,59]. CP110 levels are

also regulated by SCFcyclinF/ubiquitin-dependent proteolysis

which is counteracted by the deubiquitinating enzyme USP33

[60], further highlighting the important role that proteolysis

plays in this process. After centriole duplication, the centro-

some undergoes maturation during G2/M phases leading

to the increase accumulation of PCM, a process depen-

dent upon Plk1 and Aurora A kinases [61,62]. At end of

M phase, the protein link between the two centrioles is

severed though the activities of Plk1 and separase, a process

termed disengagement that primes the centrioles for dupli-

cation in the following S phase [63].

In some tumours, centrosome amplification may result

from centriole overduplication, for example through the

overexpression of centriolar proteins. Deregulation of the ubi-

quitin regulators could play an important role in this process

by altering the stability of centriolar components. For example,

downregulation of bTrCP leads to centrosome amplification

through the stabilization of Plk4 [45,47,64,65], whereas over-

expression of USP33 leads to increased CP110 levels and

centrosome amplification [60]. Regulation of centriolar

proteins can also be altered at the level of transcription.
High-risk human papillomavirus (HPV)-associated tumours

are perhaps the best example of the occurrence of centrosome

overduplication in cancer. Overexpression of the HPV-16 viral

E6 and E7 oncoproteins has been shown to disrupt host cell

cycle checkpoints important for oncogenic transformation

[66]. In addition, the HPV-16 E7 disrupts normal centriole

duplication, inducing centrosome amplification through a

process that involves increased Plk4 mRNA steady-state

levels [67]. Plk4 mRNA levels are negatively regulated by

p53 through the recruitment of HDAC (histone deacetylases)

repressors to the promoter of PLK4 [68]. Thus, loss of p53

could potentially contribute to centrosome amplification

through increased levels of Plk4. This idea would fit with the

observation that p53 loss is associated with increased centro-

some numbers in mouse fibroblasts [15]. However, recent

analysis of brains of p53– / – mice revealed that these animals

have normal centrosome number [69], arguing that p53 loss

is not sufficient to generate centrosome amplification. Thus,

p53 may play either a direct contributory role or only an indir-

ect role in allowing cells to proliferate, enabling other

mechanisms that more directly produce centrosome amplifica-

tion [70,71] (discussed below). Clarifying the effects of p53 loss

on the propensity for centrosome amplification in different cell

types and genetic backgrounds will be an important future

direction for the field.
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Centrosome overduplication can also be induced by

overexpression of PCM components, such as pericentrin [72].

Similarly, loss of the tumour suppressor BRAC1 leads to cen-

trosome amplification via increasing the levels of the PCM

component g-tubulin [73]. Re-duplication of centrioles can

also be observed in cells during prolonged G2 arrest by a mech-

anism involving the maturation and premature disengagement

of the procentrioles promoted by Plk1 [74]. Thus pathological

conditions, such as persistent DNA damage, that may increase

the time cells spend in G2, could contribute to centrosome

amplification in cancer cells.

Centrosome amplification can also originate from tetra-

ploid cells, which themselves can be derived from cytokinesis

failure, mitotic slippage, endoreduplication or cell–cell fusion

[75]. Tetraploid cells, generated by cytokinesis failure,

endore-duplication or cell–cell fusion, induce tumorigenesis

[76–78]. Although the contribution of centrosome amplifica-

tion was not assessed in these studies, cells derived from

p53– / – tetraploid tumours exhibit high levels of centrosome

amplification [76]. These observations contrast with recent in
vitro experiments where the transient induction of cytokinesis

failure did not lead to the long-term amplification of centro-

somes in culture [79]. These observations illustrate the fact

that there is no simple correspondence between the generation

of extra centrosomes and the continued maintenance of super-

numerary centrosomes. It is clear that on its own, centrosome

amplification is deleterious, which is underscored by earlier

work showing that newly generated tetraploid cells spon-

taneously lose extra centrosomes with continuous passage in

culture [80]. For cytokinesis failure or other events that lead

to tetraploidy to generate long-term centrosome amplification,

other permissive conditions may need to coexist—either cell

type or genetic changes.

Consistent with the generally deleterious consequences of

centrosome amplification, overexpression of either Plk4 or

SAS-6 decreased cell proliferation via the stabilization of

p53 and the induction of p21 [81]. The growth disadvantage

caused by centrosome amplification probably prevents the

accumulation of cells with extra centrosomes in culture inde-

pendently of the method used to generate them. Consistently,

inhibition of p53 rescues the proliferation defects of cells with

extra centrosomes, allowing cells to maintain high levels of cen-

trosome amplification [81]. Stabilization of p53 provides a

similar mechanism to limit the proliferation of aneuploid cells

[82]. Although centrosome amplification generates aneuploidy

[80], p53-dependent loss of proliferation observed in cells with

extra centrosomes seems to be independent of aneuploidy.

Indeed, extra centrosomes themselves can induce p53 stabiliz-

ation through the activation of Hippo tumour suppressor

pathway prior to cell division (N. Ganem, H. Cornils &

D. Pellman 2013, unpublished data). Therefore, cells can

respond to both aneuploidy and centrosome amplification by

inducing a p53-dependent cell cycle arrest.

Given the potentially detrimental effects of centrosome

amplification, it is somewhat surprising that it is a widespread

characteristic of many human tumours. It is possible that centro-

some amplification might confer some unknown advantage to

the cells that is only revealed in vivo. Alternatively, but not exclu-

sively, other events that allow cells to proliferate and maintain

extra centrosomes must occur during cancer progression. This

last possibility suggests that centrosome amplification per se
may not have a role in tumour initiation and could explain

why centrosome abnormalities are mostly associated with
advanced tumour stages. However, we cannot exclude a role

for centrosome amplification in tumour initiation that could

be dependent on the cellular context, specific microenvironment

and genetic background of the patient.
4. Coping with centrosome amplification:
sticking together

Boveri’s initial hypothesis that multipolar cell divisions

induced by centrosome amplification cause aneuploidy and

tumorigenesis has been recently questioned. Whether cells

can survive the gross aneuploidy that would result from a

multipolar division has always been a nagging question. Fur-

thermore, an alternative outcome for cells with centrosome

amplification is known: cells can cluster supernumerary cen-

trosomes to assemble pseudo-bipolar spindles [83]. This

observation supports early work that suggests that in

human tumours multipolar anaphases are less frequent

than multipolar metaphases, raising the possibility that

these multipolar metaphases are transient [84]. Indeed, fol-

lowing cancer cells over time by live cell imaging clearly

demonstrated that the progeny of cells undergoing a multi-

polar division are typically unviable, further suggesting

that such chaotic cell divisions are dead ends [80]. It is there-

fore not surprising that cells have various mechanisms to limit

the detrimental consequences of a multipolar mitosis, such as

inactivation of centrosomes, centrosome loss and centrosome

clustering [37].

Centrosome inactivation is characterized by a reduction of

PCM levels and was observed in flies with amplified centro-

somes [85]. In this model system, centrosomes that were

scattered along the spindle had significantly lower levels of

PCM and thus decreased amounts of associated MT asters,

[85]. This is similar to what has been described in polysperm-

ic newt eggs where the formation of a gradient of cyclin B

and g-tubulin distribution (higher in the animal hemisphere)

ensures that only the centrosome associated with the princi-

pal sperm nucleus will contribute to the formation of the

bipolar spindle by preferential accumulation of cyclin B and

g-tubulin [86].

Centrosome loss is also a mechanism used by cells to pre-

vent centrosome amplification during fertilization in most

metazoans, including C. elegans and Homo sapiens. Centrosome

elimination during oogenesis ensures that fertilized zygotes

contain the correct number of centrioles. Centrosome loss is

also associated with a decrease in PCM and a loss of MT nucle-

ating activity [87], probably leading to centriole disintegration.

Although the mechanisms leading to centrosome loss are

unclear, a recent report found that the loss of the helicase

CGH-1 in C. elegans delays this process, probably by preventing

the degradation of a specific maternal mRNA [87]. Nevertheless,

it is still unknown whether mechanisms such as centrosome

inactivation and centrosome loss exist in cancer cells.

Centrosome clustering is the best-characterized ‘coping’

mechanism for cells with extra centrosomes and is perhaps

the most prevalent in cancer. Initially described in mouse

neuroblastoma N1E-115 cells more than 30 years ago, centro-

some clustering can be found in both interphase and mitotic

cells [88,89]. Centrosome clustering allows cells to undergo a

pseudo-bipolar mitosis despite high levels of centrosome

amplification [89]. More recently, work from several groups
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has elucidated mechanisms that contribute to centrosome

clustering [37,90–93].

(a) Mechanisms that contribute to centrosome
clustering

Several microtubule-associated proteins (MAPs) have been

described to be important for centrosome clustering. Indeed,

the first molecule described to have a role in centrosome clus-

tering was the minus-end-directed motor dynein [93]. Work

that followed showed that another minus-end-directed motor

HSET/KIFC1, and the Drosophila homologue Ncd, played

essential roles in this process, possibly by promoting the

crosslinking of antiparallel MTs between adjacent centrosomes

[85,92]. Other MAPs such as TACC3 and ch-TOG also play a

role in this process downstream of integrin-linked kinase

(ILK) protein [94].

A functional spindle assembly checkpoint (SAC) was also

shown to be required for clustering of supernumerary centro-

somes prior to anaphase. Cells with extra centrosomes spend

increased time in mitosis due to the formation of a transient

multipolar spindle that delays the normal biorientation of

chromosomes and thus the satisfaction of the SAC prior to

centrosome clustering. Hence, decreased time in mitosis by

inhibition of the SAC causes defects in centrosome clustering,

promoting multipolar mitosis [85,92,95].

In addition, several proteins that promote the tension

between kinetochores and spindle MTs seem to be important

to maintain centrosome clustering in cancer cells. These

include components of the chromosome passenger complex,

sister chromatid cohesion, augmin complex and proteins

involved in the kinetochore–MT attachment [96]. Similarly,

the MAP and Ran GTPase effector HURP that has important

roles in the stability of kinetochore fibres is also important

for centrosome clustering [97]. Thus, a theme is emerging

whereby the balance between forces that control the tension

of the mitotic spindle apparatus play important roles in cen-

trosome clustering. This is perhaps not surprising because of

the known role of the forces acting on spindle poles in resist-

ing the traction forces mediated by the motors Kid and CENP-

E during chromosome alignment to maintain bipolarity

[98,99]. Inhibition of NuMA in the human cancer cell line

CFPAC1 leads to disrupted/multipolar spindles that are res-

cued if polar ejection forces mediated by the chromokinesin

Kid are also inhibited [99]. Therefore, NuMA plays important

roles in generating forces at the centrosome that are essential

to antagonize polar ejection forces during chromosome align-

ment. Furthermore, bipolar spindles where both NuMA and

Kid were simultaneously inhibited were sensitive to HSET/

KIFC1, which is indispensable for bipolar spindle formation in

these cells [99]. Thus, changing the balance of forces within the

spindle alters the cellular requirements to establish and/or main-

tain bipolarity. Likewise, both ninein and CLASPs are required

for spindle bipolarity by generating forces at the spindle poles

that counteract the forces generated at the chromosomes by

Kid and CENP-E during chromosome alignment [98]. Because

of the MT nucleation capacity of extra centrosomes, centrosome

amplification might change this fine balance, thus rendering

cells with extra centrosomes more sensitive to proteins involved

in maintaining spindle and kinetochore–MT tension.

The distribution of the adhesive contacts with the microen-

vironment appears to play also an important role in centrosome

clustering [92]. This is achieved through the formation of
retraction fibres during mitotic round-up that provide cortical

cues at the cell cortex to promote spindle orientation [100].

Thus, the number and positioning of these cortical cues will dic-

tate whether cells are able to cluster extra centrosomes [92]. This

finding has interesting implications because it suggests that the

tumour microenvironment can affect centrosome clustering

and therefore the survival of cells containing extra centrosomes.

It will be interesting to determine how different three-

dimensional environments, for example with differing stiffness,

might affect centrosome clustering and the survival of cells with

extra centrosomes.

Altogether, it appears that cancer cells containing extra cen-

trosomes hijack several existing properties of normal cells to

promote centrosome clustering, perhaps explaining the preva-

lence of this clustering in cancer. Indeed, the normal pole

focusing components are also required for centrosome cluster-

ing, and to date no unique components to promote centrosome

clustering have been identified. However, in some cases, cen-

trosome amplification generates an increased requirement for

these normal components, raising the possibility of a new

cancer-specific therapeutic strategy (see §6). For example,

HSET/KIFC1 and HURP are not essential in normal somatic

cells [101,102] but become indispensable for bipolar spindle

assembly in cancer cells containing supernumerary centro-

somes [92,97]. In addition, both HSET/KIFC1 and HURP are

essential for bipolar spindle formation in acentrosomal spin-

dles [97,101], suggesting that the forces involved in pole

focusing in the absence of centrosomes are similar to the ones

required to bundle extra centrosomes together. Furthermore,

it is also possible that cancer cells with defective pole focusing

mechanisms, independently of centrosome amplification,

might also have increased requirement for some of these com-

ponents (see §6).
5. Consequences of centrosome abnormalities
To date, our knowledge on how centrosome abnormalities

contribute to tumorigenesis is still modest. This is particularly

true in the case of structural centrosomal defects, partly

because these are not always easy to classify. Intriguingly,

loss of centrioles can lead to aneuploidy in DT40 cells [8]. In

addition, the loss of centrioles proved to be tumorigenic in a

fly model where neuroblasts are transplanted into the abdo-

men, possibly through the impairment of asymmetric cell

division of neural stem cells. Thus, we should perhaps con-

sider the possibility that not only extra centrosomes but also

centrosome loss or decrease in PCM recruitment could lead

to alterations that could contribute to tumorigenesis. Thus,

although we focus this section on the consequences of centro-

some amplification in tumours (summarized in figure 3), other

centrosome abnormalities may be important.

(a) Consequences of centrosome amplification
during mitosis

(i) Chromosome segregation
The correlation between centrosome amplification and aneu-

ploidy has long been known in human tumours [16,103].

However, because multipolar cell divisions, driven by centro-

some amplification, are detrimental for cell proliferation and

cannot explain the observed rates of chromosome instability

(CIN), another mechanism was required to explain this
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Figure 3. Consequences of centrosome amplification in cancer. A model of how centrosome amplification could contribute to tumorigenesis is illustrated in this
figure. Most of our understanding of the consequences of centrosome amplification came from studying mitosis. It is known that extra centrosomes can affect cells
by promoting chromosome missegregation and also by impairing asymmetric cell division in Drosophila neuroblasts. It is also becoming clear that the role of
extra centrosomes is not limited to mitosis. Centrosome amplification can affect cilia signalling in interphase cells. In addition, increased MT nucleation in cells
with extra centrosomes, which are clustered in interphase, can also alter the regulation of Rho GTPases and thus affect the migration and invasive properties
of cells. It is also possible that supernumerary centrosomes could affect polarity and signalling.
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correlation. An alternative mechanism has now been

proposed [80,104]. During the process of clustering supernu-

merary centrosomes, multipolar spindles are transiently

formed. This multipolar intermediate favours the formation

of defective attachments of chromosomes to the spindle

MTs, known as merotelic kinetochore–MT attachments

[80,104]. Because merotelic attachments can escape the

robust control of the SAC, they are an important source of

aneuploidy because cells undergoing the missegrega-

tion event do not arrest and are thus not culled from the

population [105].

Aneuploidy seems to play a multifaceted role in cancer;

whereas in some mouse models aneuploidy per se can promote

tumorigenesis, in some conditions higher levels of aneuploidy

can function as a tumour suppressor [106]. How aneuploidy

contributes to tumorigenesis is still unclear, but the idea that

on-going aneuploidy, often termed CIN, could provide a plat-

form that allows tumours to evolve is very appealing [106]. In

addition, recent work suggests that lagging chromosomes

during mitosis, e.g. as a consequence of centrosome amplifica-

tion, could be a source of DNA damage, for example when

trapped at the cytokinetic furrow [107]. Moreover, lagging
chromosomes can be encapsulated into micronuclei causing

abnormal DNA replication and extensive DNA damage [108].

The generation of DNA damage in micronuclei is related, at

least in part, to their fragile nuclear envelopes which can

undergo abrupt loss of integrity [109]. This generation of exten-

sive DNA damage provides a mechanism by which mitotic

errors can lead to mutations. Because the damage is restricted

to the missegregated chromosome [108], its localization might

explain ‘chromothripsis’ a process where one or a few chromo-

somes or chromosome arms appear to have shattered, with

some of the fragments having been stitched together in

random order and orientation [110].
(ii) Asymmetric cell division
Although centrosome amplification could contribute to

tumorigenesis via the generation of aneuploidy, it is also

clear that extra centrosomes may impact cell physiology in

ways that are independent of chromosome segregation. In

fact, elegant work in Drosophila has shown that centrosome

amplification can induce tumorigenesis by a mechanism

that is likely independent of aneuploidy [85]. Transplantation
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of neuroblasts carrying extra centrosomes into the abdomen

of adult flies results in the generation of tumours that grow

rapidly and kill the recipient host. Interestingly, these

tumours show only minimal aneuploidy [85] and induction

of aneuploidy alone does not induce tumours in this model

system [111], indicating that other mechanisms are probably

responsible for this phenotype. Indeed, neuroblasts con-

taining extra centrosomes show defects in asymmetric cell

division, despite efficient clustering of extra centrosomes

[85]. These defects were previously shown to induce the

expansion of the neuronal stem cell compartments, leading

to tumours [112]. This type of mechanism could, in principle,

be applicable to human tumours thought to originate from a

small population of stem-like cells, if these cells similarly

undergo asymmetric cell division.

The ability to manipulate centrosome number by con-

trolled expression of Plk4 [42] has opened new ways to

address how centrosome amplification affects development

and tumorigenesis in vivo. One recent study described the

first such mouse model [69]. In contrast to the experiments

in the fly, induction of centrosome amplification in the

developing mouse brain is not sufficient to induce tumours.

Instead, owing to the accumulation of highly aneuploid

cells, mouse neuronal stem cells undergo apoptosis, leading

to microcephaly. This effect seems to be caused by inefficient

centrosome clustering in these cells and the consequent gen-

eration of multipolar mitoses, suggesting that in these cells

centrosome amplification leads to tissue degeneration [69].

The implication is that efficient centrosome clustering is key

for the ability of cells to proliferate and possibly to form

tumours. If methods could be developed to ‘force’ centro-

some clustering in this model, it would then be possible

to determine if centrosome amplification can promote the

development of brain tumours.
(b) Consequences of centrosome amplification
in interphase

(i) Cell polarity and microtubules
Centrosomes play an important role in maintaining the

organization of MT arrays in non-dividing interphase cells,

which affects many aspects of cell signalling [1]. It is therefore

possible that centrosome amplification could also influence

tumour biology independently of generating aneuploidy by

altering cell shape, polarity or motility, which could influence

the architecture of tumour tissue as well as the tendency of

tumours to metastasize. Indeed, increased MT nucleation

capacity in cells containing extra centrosomes is correlated

with high histological grade in breast cancer, independently

of the degree of aneuploidy [113].

During interphase, extra centrosomes are typically clus-

tered, but how this occurs is unclear. Clustered extra

centrosomes in interphase recruit extra PCM leading to an

enlarged centrosome with increased MT nucleation capacity

[23,27], a kind of ‘super-centrosome’. The consequences of

enlarged centrosomes for cell polarization are not known.

Centrosomes play major roles in the establishment of cell

polarity, in part by dictating the organization of the MTs that

in turn will determine cell shape and motility [114]. The

position of the centrosome, by directing MT nucleation,

can determine the site of axon outgrowth in neurons, the

proper secretion of lytic granules during formation of the
immunological synapse, or directional migration by position-

ing the Golgi towards the leading edge [114]. In principle, the

presence of an enlarged ‘super-centrosome’ has the potential

to promote stronger polarization, but the biological conse-

quences of this enlargement need further detailed study.

Increased MT nucleation capacity from centrosome ampli-

fication could affect cellular physiology in many ways. Focal

adhesion (FA) disassembly, essential for cell migration, is regu-

lated by MTs, which involves components of the endocytic

machinery, such as dynamin and clathrin, inhibition of acto-

myosin-mediated contractile forces, or proteolytic cleavage of

the link between FA and the actin cytoskeleton [115]. More-

over, MTs affect the activity of Rho GTPases which are

known to play central roles in the regulation of invasion

[116]. Depolymerization of MTs leads to RhoA activation,

probably through the release of the guanine nucleotide

exchange factors GEF-H1 and p190RhoGEF [117,118]. By con-

trast, MT polymerization can induce Rac1 activation, leading to

Arp2/3-mediated actin polymerization, essential for lamelipo-

dia formation and cell migration [119]. Hence, it is likely that

centrosome amplification, through increased MT nucleation,

could affect processes such as migration and invasion.

Indeed, we recently reported that increased MT nucleation in

cells with extra centrosomes leads to increased Rac1 activity

and cell invasion in three-dimensional culture models, a pro-

cess that is independent of aneuploidy (figure 4) [36]. In this

model, centrosome amplification mimicked and enhanced

the effects of expression of a bona fide breast cancer oncogene,

ERBB2. Interestingly, in breast cancer, increased MT nucleation

capacity in cells containing extra centrosomes is correlated with

high histological grade, independently of aneuploidy [113].

These findings could partially explain the strong association

between centrosome amplification and advanced tumour

stage, in particular metastasis formation.
(ii) Signalling
Activation of signalling pathways in cells often requires

that an initial threshold of activation to be reached. One

common way to cross this threshold is to concentrate sig-

nalling components locally on a structure such as the

centrosome. Locally concentrating signalling molecules can

also enhance signalling specificity if there is a requirement

for multiple independent molecular events to occur simul-

taneously, a scenario often referred to as ‘coincidence

detection’. The idea that centrosomes can function in this

way as solid-state platforms for cellular signalling is clearly

established in both budding and fission yeast [120,121].

One clear example of signalling promoted by the centro-

some is the regulation of mitotic entry in fission yeast [122].

A compelling body of work suggests that the spindle pole

body (SPB) functions as a platform to increase a feedback

loop that amplifies cyclin B/Cdk1 activity, which is then pro-

pagated throughout the cell. This positive feedback loop

involves the recruitment of the Plk1 homologue, Plo1, to the

SPB. During late G2, NIMA kinase, Fin1, blocks the recruit-

ment of the protein phosphatase 1 to the SPB, which then

allows the recruitment of Plo1 to Cut12 and the SPB [123].

Increased Plo1 activation at the SPB is thought to further acti-

vate cyclin B/Cdk1 by enhancing Cdc25 (Cdk1 activator) and

inhibiting Wee1 (Cdk1 inhibitor) activities [124]. Importantly,

regulation of mitotic entry by the centrosome has also been
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observed in human cells, C. elegans and Xenopus egg extracts,

suggesting a broadly conserved mechanism [125–128].

In mammals, proteomic analysis of purified centrosomes

has shown that components of many signalling pathways can

associate with the centrosomes, if only transiently [129,130].

Members of the Wnt, NF-kB and integrin signalling that

are known to contribute to tumorigenesis can localize to

the centrosomes [131–133]. For example, the centrosomal

localization of Diversin, an inhibitor of the Wnt pathway,

seems to be important for its function. Diversin mutants

defective for centrosome localization failed to antagonize

Wnt signalling [132]. The centrosome is also a focal point

for ubiquitin-mediated proteolysis [134]. In response to

bone morphogenic protein (BMP) signalling, phosphorylated

and polyubiquitinated Smad1 is targeted to the centrosome.

Inhibition of the proteasome leads to a greater accumula-

tion of phospho-Smad1 at the centrosome suggesting the

possibility that centrosome might function as a site for pro-

teasome-mediated degradation [135]. This supports earlier

observations showing that the size of the centrosome can

change in response to proteasome inhibition and increased

levels of misfolded proteins [134]. Thus, whether by promot-

ing phosphorylation, degradation or simply by sequestering

proteins from the cytoplasm, the centrosome could exert

either positive or negative regulatory effects on intracellular

signalling, similar to what has been described during mitotic

entry. Thus we can envision a model where by increasing the

centrosome size, centrosome amplification could affect

the balance of many of these pathways that are typically

deregulated in cancer.

Alterations of signalling pathways mediated by centro-

some amplification do not necessarily need to be mediated

directly by the centrosomes. Centrosomes can moonlight as

cilia, which are themselves signalling hubs and control

several pathways, such as the sonic hedgehog (Shh) path-

way [136]. Activation of Shh involves the transport of the

transmembrane protein smoothened to the cilium, thereby

allowing the transcription of Gli-responsive genes. Recently,

it was shown that centrosome amplification can generate

extra cilia that, somewhat surprisingly, diminished Shh sig-

nalling and induced defects in tissue architecture [137]. The

finding that more cilia produce less Shh signalling may be

reconciled by the observation that extra cilia seem to dilute
some signalling molecules. Defects in cilia signalling are

associated with several ciliopathies and brain developmental

defects, such as primary recessive microcephaly. Interest-

ingly, the presence of centrosome amplification has been

recently described in some patients with cilia-related diseases

[138]. However, it is unclear whether the extra centrosomes

are cause or consequence in these diseases. It is also not

known whether the extra centrosomes reported in these dis-

eases result in extra cilia. At least in a mouse model, the

induction of centrosome amplification appears to induce

microcephaly independently of cilia. Instead, gross aneu-

ploidy that leads to cell death appears to be the basis for

the observed disease phenotype [69].
6. Targeting cells with extra centrosomes
for cancer therapy

Selective cancer therapies rely on the identification and tar-

geting of features that are unique to cancer cells. Inhibition

of centrosome clustering by depletion of the kinesin HSET/

KIFC1 or the ILK selectively kills cancer cells containing

extra centrosomes [92,94]. Notably, flies without Ncd are

viable [101] and human cells also have minimal requirement

for HSET during normal somatic mitosis [102,139]. These

observations form the basis for new therapeutic strategies

that target cells carrying extra centrosomes. The recent devel-

opment of inhibitors that compromise centrosome clustering

could be the beginning of the validation of this idea in vivo.

Several inhibitors have been developed that induce

multipolar mitosis preferentially in cancer cells, such as a phe-

nanthrene-derived PARP inhibitor, GF-15, a derivative of

griseofulvin and taxol [140–142]. There is interest in the clinical

use of these compounds, such as for example GF-15 which

decreases tumour growth in xenograft mouse models [141].

Although cells with extracentrosomes have increased sensitivity

to such inhibitors, whether this is specifically due to centrosome

amplification in tumour cells is not firmly established. An

alternative possibility is that indirect effects on MTs could, at

least in part, explain the induced spindle multipolarity. Griseo-

fluvin shares many properties with taxol, an MT-stabilizing

drug well known to induce multipolar spindles [142]. Griseoful-

vin promotes MT stabilization at low concentrations and the
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tubulin binding of griseofulvin overlaps with the taxol binding

site, thus suggesting a common mechanism for the induction of

multipolar spindles [143].

More recently, a screen to identify small molecules that inhi-

bit centrosome clustering resulted in the identification of 14

chemical compounds that specifically induced multipolar

spindles in a breast cancer cell line containing extra centrosomes,

BT-549. One of the tested compounds significantly reduced

the viability of cancer cells while sparing normal mammary epi-

thelial cells and also bone marrow haematopoietic progenitors,

which are frequently affected by conventional chemotherapies

[144]. The first HSET/KIFC1 inhibitor described, AZ82, was

shown to specifically induce multipolar spindles in BT-549

cells, but not in cancer cells with normal centrosome number,

such as HeLa [145]. A novel allosteric HSET/KIFC1 inhibitor

has also recently been described [146]. As predicted, this inhibi-

tor, CW069, induces multipolar spindles in cells with extra

centrosomes (e.g. N1E-115, MDA-231 and BT-549) without com-

promising the ability of cells with normal centrosome number

(NHDF, MCF-7 and HeLa) to form a bipolar spindle. The for-

mation of multipolar spindles led to multipolar cell divisions

in cells with centrosome amplification, as previously shown

for depletion of HSET/KIFC1 [92]. Importantly, CW069 signifi-

cantly decreased the viability of cells with extra centrosomes

without compromising normal cells. However, this drug also

compromised the viability of the MCF-7 breast cancer cell line

without inducing multipolar mitoses [146]. The basis for the sen-

sitivity of MCF-7 cells to CW069 is not clear and whether this

effect is direct or indirect, and whether it is ‘on target’ or off

target’ is likewise not known.

In addition to the requirement of HSET to cluster extra cen-

trosomes, some cancer cells appear to have fragile spindle poles

and thus upon HSET inhibition generate acentrosomal spindles

[147]. Depletion of HSET/KIFC1 in BT-549 cells caused not only

centrosome declustering but also induced the formation of mul-

tipolar spindles with acentrosomal poles [147]. These

observations demonstrate that HSET has a dual role in promot-

ing bipolar spindle formation in cancer cells: promoting the

clustering of extracentrosomes and the coalescence of acentroso-

mal poles that are aberrantly generated in BT-549 cells [147]. This

study suggested that DNA damage signalling, which is com-

monly activated in cancer cells and is induced by many

chemotherapeutic agents, contributes to the generation of acen-

trosomal spindle poles that need to be clustered to achieve a

bipolar mitosis. Thus, in addition to centrosome amplification,

other cancer-specific pathologies may sensitize cancer cells to

HSET/KIFC1 inhibitors.

Although inhibitors that specifically target cells with extra

centrosomes are appealing because of their potential cancer

selectivity, it will be essential to assess the tolerance of

normal polyploid tissues containing extra centrosomes to

such inhibitors, in particular hepatocytes that still retain a

capacity to divide [148]. In addition, because most tumours

are a heterogeneous mixture of cells with and without cen-

trosome amplification, it is unclear how depletion of the

population containing extra centrosomes will affect tumour

progression. Because extra centrosomes are correlated with

both aneuploidy and increased tumour grade, elimination

of these cells may have a beneficial effect for patients, but

this remains to be tested.

The utility of these newly developed inhibitors in the clinic

is hindered by our ability to identify the patients who will

respond to such therapy. To date, the best method to identify
tumours containing extra centrosomes is by immunostaining

for centriolar components, which is cumbersome and gives

results that are difficult to quantify. One alternative would

be to identify a gene signature that predicts the presence of

centrosome amplification in tumour samples. However, this

too is expected to face challenges of specificity, separating

centrosome-specific effects from the general mitotic signature

common in aneuploid tumours [149], and also sensitivity,

given that cells with extra centrosomes often comprise only a

fraction of the tumour cells. Perhaps most realistically, it

would be better to define the genetic changes that lead to cen-

trosome amplification and then stratify patients based on

mutational status. Irrespective of the challenges, it is clear

that the clinical utility of agents that target centrosome ampli-

fication will be highly dependent on our ability to identify the

relevant patients rapidly and inexpensively.
7. Future perspectives
Almost 100 years after the pioneering work of Boveri,

Hansemann and Galeotti, centrosomes are once again centre

stage for cancer biology. Although we are still far from having

a complete picture of the role of centrosome amplification in

tumorigenesis, it is becoming clear that extra centrosomes are

more than simple bystanders in tumour progression. Whether

through the generation of aneuploidy [80,104], effects on signal-

ling, such as through Rho-type GTPases [36], centrosome

amplification is likely to affect cancer cells in multiple ways.

Whatever the potential for a positive contribution to tumour

development, centrosome amplification has known detrimental

effects for cell proliferation. It is therefore expected that the net

effect of centrosome amplification will be context-

dependent. In this sense, centrosome amplification can be

viewed as being similar to aneuploidy, which in different

models can be cause, consequence or a neutral bystander to

the process of tumour development [106].

Remarkably, most tumours consist of a heterogeneous

population of cells with normal and abnormal centrosomes,

suggesting that centrosome defects are a source of tumour het-

erogeneity. The dynamics of centrosome duplication within

tumours, how the fraction of cells with centrosome ampli-

fication develops and is maintained are important and

unresolved questions. Whether the heterogeneity that comes

from having a fraction of cells with extra centrosomes

contributes to tumorigenesis is also unknown. This is an inter-

esting possibility because tumour heterogeneity, whether

defined by genetic alterations or influenced by the tumour

microenvironment, plays major roles in tumour evolution

and response to therapy [150].

Taken together, much progress has been made over the

past 20 years in understanding the centrosome—its parts

and the complex controls of its duplication. Even with a

nearly complete parts list, we are still discovering unexpected

things about how these parts fit together. For example, the

application of super-resolution imaging technology has

only recently enabled the discovery of previously unantici-

pated structure of the PCM [151]. Together with these

imaging approaches, much of the forefront for the basic

understanding of centrosome organization is coming from

structural studies and in vitro reconstitution [54,55]. By con-

trast, progress in understanding how centrosomes impact

cellular signalling has been slower. This is in essence a problem
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of defining the local function of proteins, and may benefit from

new approaches using light to control protein activity at differ-

ent locations within cells. We are also beginning to obtain a

better understanding of how the process of centrosome biogen-

esis goes awry in cancer. However, there is much to be done to

understand both causes and consequences of centrosome

defects in cancer. In this review, we have tried to identify key

unanswered questions. Although there has been important

work done in tissue culture cells, an important direction for
the field will be in newly developed mouse models, more

physiologically relevant three-dimensional culture systems

and ultimately human patient samples.
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