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Abstract

Neuronal control of body energy homeostasis is the key mechanism by which animals and humans

regulate their long-term energy balance. Various hypothalamic neuronal circuits (which include

the hypothalamic melanocortin, midbrain dopamine reward and caudal brainstem autonomic

feeding systems) control energy intake and expenditure to maintain body weight within a narrow

range for long periods of a life span. Numerous peripheral metabolic hormones and nutrients

target these structures providing feedback signals that modify the default “settings” of neuronal

activity to accomplish this balance. A number of molecular genetic tools for manipulating

individual components of brain energy homeostatic machineries, in combination with anatomical,

electrophysiological, pharmacological and behavioral techniques, have been developed, which

provide a means for elucidating the complex molecular and cellular mechanisms of feeding

behavior and metabolism. This review will highlight some of these advancements and focus on the

neuronal circuitries of energy homeostasis.
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1. Introduction

Feeding and energy metabolism is a basic and vital life process essential for individual and,

consequently, species survival. It could be argued that the emergence and evolution of the

central nervous system is to promote the most effective means of dealing with feeding and

metabolism in support of survival. Accumulating experimental evidence is in agreement

with this basic assertion. Thus, it is not unreasonable to claim that even higher brain regions,

such as the archio- and neocortex, emerged under environmental pressures to support
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behaviors that more effectively deal with available energy resources. The pursuit to

understand the role that the brain plays in the control of body energy balance has continued

for more than a century, when patients with pituitary adenomas were initially observed to

rapidly gain body weight (1, 2). Increasingly sophisticated technologies and methods have

since been brought to bear on the topic and a vast number of observations have been made,

particularly within the last decade due to the cloning of the product of the obesity (ob) gene,

leptin, the mutation of this gene causes obesity in rodents (3), which brought about a wave

of discovery of other metabolic hormones, neuropeptides and signaling pathways, and

established their relationship to key neuronal structures in the hypothalamus (4, 5, 6, 7).

Based upon these fundmental findings, the studies of more complex signal intergrations and

neuronal adaptations that actually initiate changes in ingestive behavior and metabolism

have become possible. This review will follow this line of research history and highlight

some important new advances.

2. Discovery of the brain regions that control energy balance

The initial observations of Mohr (1840) and Frohlich (1901) regarding pituitary adenomas

led to the hypothesis that adenoma-related obesity is caused by damage to the hypothalamus

(8). This important idea was supported by the observation that obesity developed in an

experimental dog given that underwent a hypothalamic lesion (9). The actual identification

of specific hypothalamic structures that are directly involved in energy homeostasis,

however, was accomplished about three decades later, when a set of systematic lesion

experiments was performed in rats, in which various hypothalamic nuclei that include the

hypothalamic ventromedial (VMH), paraventricular (PVH) and dorsomedial (DMH) nuclei

were destroyed. The lesions of these nuclei induced hyperphagia and obesity (10, 11, 12);

whereas, lesions in the lateral hypothalamus (LH) led to hypophagia (13). This study, which

stands as a milestone in linking brain function to body energy balance, led to the proposal of

a “dual center model” that identified the hypothalamic VMN as the “satiety centre,” and the

LH as the “hunger centre” (14). More studies, including chemical lesions as well as

pharmacological applications of various hormones and drugs, which either stimulate or

inhibit the neuron populations locally, have since been done and all supported the initial

observations that lead to the proposed “dual center model.” In retrospect to our current

knowledge of specific hypothalamic neuronal populations, these lesion studies are strikingly

precise in distinguishing between subregions that contain circuits that either promote or

suppress feeding. These findings have since been used as a road map for studies concerning

the neurobiology of feeding and metabolism.

3. Linking the periphery to the brain

The brain regions that control energy homeostasis, by definition, need to “know” the amount

of pre-existing body energy stores in order to “wisely” determine the levels of energy intake

and expenditure. The nature of the signal(s) that conveys such information to the brain was

the subject of a couple of hypotheses. The “glucostatic hypothesis,” (15) suggested that

small changes in plasma glucose levels trigger meal initiation or termination. This

“depletion-repletion” model of energy intake correlated well with the initiation or

termination of feeding per se, however, it did not provide information about or a mechanism
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by which to ensure that food consumption with respect to existing energy stores would be

appropriate and it correlated poorly with energy expenditure (16). The “lipostatic model,” on

the other hand, hypothesized that signal(s) proportional to the amount of fat in the body

modulates the amount of food eaten at each meal to maintain overall energy balance (17).

Later discoveries have supported this hypothesis that food intake is controlled within a

lipostatic system to maintain energy homeostasis.

The findings from the initial parabiosis studies on hypothalamic lesioned rats appear to be

essential to the conclusion of the existence of humoral signal(s) in relation to an animal’s

lipostatics (18). In these studies, two live animals, one with a lesion in the VMH, were

joined by suturing, which allowed humoral factors to pass from one animal to the other. As

obesity developed in the lesioned rat, its partner became hypohagic and lost weight,

suggesting that a signal, in proportion to the amount of fat mass, is highly potent in

inhibiting food intake. Additional parabiosis studies on genetically obese mutant mice, ob/ob

and db/db (19, 20), concluded that ob/ob mice lack this lipostatic signal, whereas db/db mice

are insensitive to it. These hypotheses were later confirmed by the discoveries of the ob gene

that encodes leptin (3) and the db gene that encodes leptin receptor.

The detection of leptin and its receptor soon led to the recognition that all of the

hypothalamic nuclei associated with energy regulation, i.e., the VMH, DMH, PVN and LH,

are regions where leptin receptors are highly expressed. This promoted a new flourish of

gene discoveries, which identified novel neuropeptides, their receptors and transcription

factors that mediate leptin function in the hypothalamus and subsequently, led to the

discovery of the hypothalamic melanocortin system, the key neuronal system in the control

of energy balance by leptin signaling. Other metabolic signals, such as insulin, ghrelin,

estrogen, prolactin, glucocorticoids, resistin and interleukins, etc., as well as nutrients such

as glucose and free fatty acids (21, 22, 23), which, to a certain extent, modify energy balance

and body weight, also target the hypothalamic melanocortin system (16, 5 24, 25, 26),

presumably in coordination with leptin function.

4. The importance of the melanocortin system in energy homeostasis

The melanocortin model has held the most significance in explaining the neuronal control of

energy balance. In this model, the hypothalamic arcuate nucleus (ARC) is considered a

critical region for various reasons. First, the neurons within the ARC are anatomically

placed in close proximity to fenestrated capillaries at the base of the hypothalamus, giving

them access to humoral signals that are restricted from other regions of the brain (27, 28).

Indeed, they respond rapidly to fluctuations in neutrients (7, 29) and metabolic hormones.

These neurons are also innervated by axons containing all major neurotransmitters and

express receptors for most metabolic hormones (5, 27, 30, 31), implying that an extensive

neuronal control exists. Finally, they project broadly to the brain and pheriphery both

directly as well as indirectly.

Two sets of neurons, with opposite effects on feeding, have been identified in the ARC. The

neurons that express proopiomelanocortin (POMC) and cocaine-amphetamine regulated

transcript (CART) are anorexigenic (32, 33, 34), due to the release of the cleavage products
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of POMC precursor, α-, and β-melanocyte stimulating hormones (α- and β-MSH) (34).

These, in turn, reduce food intake and body weight as well as increase energy expenditure in

animals and humans (35, 36, 37) by acting on melanocortin receptor subtypes 3 and 4 (MC3

and 4R) (38), found to be abundant in the ARC, PVN, LH and DMH (39). In contrast, cells

containing neuropeptide Y (NPY) and the agouti gene related transcript (AgRP) are

orexigenic (40). NPY potently stimulates food intake and reduces energy expenditure (41).

In genetically obese animals, i.e., ob/ob and db/db mice, as well as those in a negative

energy state, i.e., fasted or lactating animals, the ARC NPY mRNA and protein content are

elevated (42, 43, 44, 45). AgRP acts as a natural antagonist of MC3R and MC4R, thereby,

reducing the anorectic effect of α-MSH (40, 46, 47, 48). An ectopic expression of Agouti,

an AgRP like peptide, results in an obese phenotype of the yA agouti mouse (40).

The selective expression of fluorescent reporter genes in specific neurons allows for the

visualization of hypothalamic neuronal subpopulations so that they can be studied in the

context of feeding circuits while the cells are still alive. Through the use of this method,

substantial neuroanatomical and electrophysiological data have been generated, which

demonstrate that NPY neurons contact nearby POMC cells and inhibit them through the

release of GABA (49). This unidirectional NPY to POMC interaction (50) may represent a

wiring blueprint that favors the tonic inhibition of satiety signals to not only promote

feeding, but also overfeeding when food is available in excess (51).

The ARC POMC and NPY neurons project to various parts of the brain, e.g., the PVN, LH

and perifornical hypothalamic region, all of which contain substantial numbers of MC3 and

4 receptors (39, 52). The projection from the ARC to the PVN is important for the regulation

of neurons that produce corticotropic and thyrotropin releasing hormones (CRH and TRH,

respectively) and for the modulation of sympathetic activity, both of which are significant

mechanisms in energy metabolism (53, Fig. 2). A recent study using a cre/loxP genetic

approach showed that mice with mutations to the MC4R gene (loxTB mc4) ate and weighed

less if the MC4R gene was restored selectively in the PVN (54). However, it was not

sufficient to bring energy expenditure levels to those of controls, suggesting that energy

expenditure is regulated by melanocortins elsewhere in the hypothalamus and/or through

receptors other than MC4R (54).

Recent studies showed that intact melanocortin neuronal circuitry is important for acute

regulation of feeding (55, 56). These studies stemmed from the considerable frustration

encountered due to the fact that neither NPY nor AgRP single gene knockout mice (57) nor

NPY/AgRP double knockout mice (58) exhibited the expected hypophagia. To examine

whether the NPY and POMC neurons themselves are crucial in adult energy regulation,

whereas the loss of NPY/AgRP or POMC genes may be compensated for during

development, both groups had used the cell-targeted expression of diphteria toxin receptors

that do not exist in mice, making these animals “immune” to diphtheria toxin-induced

necrosis. When the otherwise normally developing diphtheria toxin receptor expressing mice

were injected with two subsequent doses of diphtheria toxin, the targeted hypothalamic

neurons rapidly died resulting in hypophagia in NPY neuron–ablated mice (55, 565) and

hyperphagia in POMC neuron-ablated animals (55). Interestingly, the ablation of NPY

neurons during the early postnatal period did not result in an overt metabolic phenotype,
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indicating that functional effects of degenerated neurons in critical developmental periods

may be overcome by re-organization of the circuits.

5. The function of satiety center, VMH: does it modulate the melanocortin

circuits?

The VMH was directly implicated in feeding when Hetherington and Ranson showed that

electrolytic lesions to this region in rats resulted in rapid development of obesity (10, 59, 11,

12). Chemical lesions as well as pharmacological studies have since supported the notion

that the VMH inhibits feeding and increases metabolism and by doing so, restricts the

amount of body fat (60, 61). The VMH was found to highly express the long form leptin

receptor, LRb, and, therefore, is the region that mediates leptin’s effect on homeostasis (62,

63). Despite the early discovery of the anorexic effect of the VMH, little is known regarding

the cellular mechanisms by which VMH neurons contribute to homeostasis under the control

of leptin signals.

Recent studies, however, show that the VMH is equally important and functions alongside

the ARC in energy regulation in response to leptin (64). These studies examined the

behavioral and metabolic phenotype of animals with the leptin receptor selectively deleted

in POMC neurons (65). Surprisingly, these animals were at best only mildly obese and ate

similar amounts of food as controls. In contrast, a selective deletion of the leptin receptor

gene in the neurons that express steroid factor-1 (SF-1) in the VMH results in mice that are

not only obese but also hyperphagic (66, 67). SF-1 is a transcription factor necessary for the

development of the VMH (68, 69, 70). Mice with mutations to leptin receptors in both the

ARC POMC and the VMH SF1 neurons are more obese than those with mutations of leptin

receptors in either set of neurons alone (67).

How do VMH neurons act to deliver the anorectic effect in the context of hypothalamic

feeding circuits? A recent study showed that the VMH may directly increase the activity of

POMC neurons via microcircuits (71) that were previously difficult to detect by

conventional tracing techniques (72, 73, 74). Using laser scanning photo-stimulation (LSPS)

in combination with slice electrophysiology, these authors showed that the inputs from the

VMH neurons are mostly excitatory, thus increasing the activity of POMC cells; during a

fast, these inputs decrease (71). Whether or not these VMH neurons receive leptin signaling

requires further investigation.

Conversely, the ARC may also modulate the activity of the VMH. Although afferent

projections from the ARC to the VMH are sparser than those to other nuclei (73), the VMH

contains MC4R as well as NPY Y1, Y2 and Y5 receptors (75, 76, 77, 78, 79, 80), suggesting

that both POMC and NPY neurons project to the VMH. Infusions of NPY into the VMH

increase feeding; fasting is associated with elevated levels of NPY in this region (75, 5),

whereas electrophysiological responses of neurons in the VMH to α-MSH are decreased in

animals that are fasted and/or treated with AgRP prior to sacrifice than in animals that have

free access to food (80).
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A notable characteristic of the VMH is that it highly and specifically expresses the brain-

derived neurotrophic factor (BDNF) that has been shown to affect the metabolic functions

regulated by the VMH. Genetic deficiencies of BDNF or its TrkB receptor resulted in

obesity in both humans and mice (81, 82). Interestingly, leptin increases BDNF transcripts

(83, 84, 85, 86), whereas fasting decreases them selectively in the VMH, suggesting that the

BDNF is a regulatory component of leptin signaling. Since BDNF in the brain is known to

promote synaptic morphology and function (81), this raises the possibility that synaptic

plasticity in the hypothalamus may be a part of the regulatory mechanism of energy

regulation. Notably, the anorectic effects of BDNF are not directly mediated by the

melanocortin system since BDNF reduces the body weight and food intake of mice that lack

the MC4R (82), yet neurons in the VMH form excitatory microcircuits with POMC neurons

in the ARC (71), suggesting that the VMH may influence POMC neuroactivity by other

means, such as classic neurotransmitters and/or plasticity. Indeed, leptin and other hormones

increase the number of excitatory synapses on POMC cells (87, 88).

6. The lateral hypothalamic arousal-feeding system

In the lateral hypothalamus (LH), two sets of neurons that contain either hypocretin (orexin),

a peptide implicated in arousal and feeding, or melanin-concentrating hormone (MCH),

another potent stimulator of food intake, have been identified. These neurons are innervated

by both POMC and NPY terminals, suggesting that their function in motivating food intake

is also within the confines of the ARC melanocortin system (89, 90, 91, 92, 93, 48, 94, 95,

96, 97, 98, 99). Both MCH and hypocretin neurons have a wide projection field and

modulate a variety of behavioral responses related to learning, memory, emotion, motivation

and motor responses in association with changes in the energy state (100, 92, 101, 102, 97).

Although the projections of MCH and hypocretin neurons exhibit significant overlap, their

overall effects and actual targets are quite different (100, 96). Like that of the NPY and

POMC neurons, the activity of MCH and hypocretin neurons is regulated by numerous

hormones that include leptin and ghrelin, as well as by practically every neurotransmitter

system (91, 103, 104, 105, 106). Within the LH, MCH and hypocretin neurons have

reciprocal connections with each other, and with nearby neurons (99). Electrophysiological

studies in brain slices or isolated neurons indicated that hypocretin, in general, has a

stimulative effect on LH neurons including MCH neurons (107, 108), whereas MCH

depresses the synaptic activity of glutamate and GABA neurons from the rat LH (109). It is

not clear whether such electrical interactions between hypocretin and MCH neurons, at the

intensities and dynamics observed, are more relevant to feeding or arousal behavior.

MCH and hypocretin neurons are able to integrate metabolic signals to modulate energy

balance, more or less, independent of each other, despite their proximate location and

physiological interaction in the LH. The mRNA levels of hypocretin in the LH are up-

regulated upon fasting (93). Hypocretin neurons are rapidly activated by fasting in rodents

and non-human primates (110) and exhibit leptin-dependent synaptic plasticity during

fasting (111). Moreover, all of the hypothalamic neurons that are activated by fasting receive

strong hypocretin input. These observations, together with the earlier demonstration of a

massive hypocretin input to the ARC, particularly to the NPY neurons (112), as well as the

dependence of hypocretin function on NPY signaling (in particular on the Y1 and Y5
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receptors) (113, 114), and a synergistic action between NPY and hypocretin (at low

concentrations) to induce feeding (115) argue that hypocretin neurons may be upstream to

the NPY system with regard to feeding and metabolism. Mice with deletions of the

hypocretin gene are hypophagic, but maintain normal growth curves, suggesting that their

metabolic rates are reduced (116). This, in association with the critical role of hypocretin

neurons to promote arousal (117) through direct projections to the brain stem, including the

locus coeruleus (112) make the hypocretin neurons a likely candidate to provide the link

between obesity and insomnia.

The orexigenic peptide MCH, on the other hand, shows little or no interaction with NPY or

hypocretin in inducing food intake when injected together into the third ventricle of the rat

(115). This observation provides a physiological component concomitant to the pre-existing

morphological data that shows that the strength of MCH projections to the ARC is limited

compared to that of the hypocretin neurons. Thus, the action of MCH on feeding is likely

independent of NPY and hypocretin. However, like NPY, MCH does exhibit characteristics

of orexigenic genes: its mRNA levels are increased in obese mutant animals and fasting

further increases its expression in both normal and obese animals (89); and it has a potent

orexigenic effect. Targeted deletion of the MCH gene resulted in a phenotype of hypophagia

and leanness with an inappropriately high metabolic rate (118), suggesting that MCH is a

typical “thrift gene” that increases energy intake and reduces energy expenditure

simultaneously. Consistent with this idea, MCH suppresses thyroid stimulating hormone

(TSH) release (119).

The orexigenic effect of MCH appears to compete with the action of α-MSH (a mechanism

conserved from skin color regulation in fish to hypothalamic control of energy balance in

mammals), such that MCH administration increases feeding, while α-MSH acts to decrease

it. When the peptides are administered together, depending on the relative ratios, one

antagonizes the action of the other (92). Recently, a mouse model of MCH neuron ablation

was generated by expressing a toxin gene, ataxin-3, targeted at MCH neurons (120). Mice

that express this gene have a chronic loss of MCH neurons. Interestingly, the phenotype of

these mice highly resembles that of mice lacking only the MCH gene, exhibiting reduced

food intake and increased energy expenditure. Moreover, the ablation of MCH neurons in

mice with an ob/ob mutant background improved obesity and glucose tolerance. These

results suggest that the function of MCH cells in energy regulation is limited to the MCH

system itself, but not to other aspects of the cells such as their classic neurotransmitter

function and/or synaptic plasticity, which are distinct from NPY cells.

7. Other hypothalamic regions that regulate food intake and body weight

Receptors for leptin and ghrelin are also found in other hypothalamic nuclei including the

DMH and the suprachiasmatic nucleus (SCN) (103, 121). The DMH has been implicated in

the regulation of energy balance, however, its actual role remained obscure until recently

(122, 123, 124). The DMH is involved in a variety of regulatory mechanisms that include

the modulation of glucocorticoid secretion, body temperature, arousal, and circadian

rhythms of locomotor activity (123). The DMH receives inputs from cells in the ARC and

from brain stem centers that are also implicated in feeding (122). Lesions restricted to the
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DMH typically result in hypophagia, although animals can still maintain their body

composition (122). Recently, the DMH was shown to be critical for the entrainment of

circadian rhythms to feeding schedules (124). The DMH of animals with restricted access to

food (4 hours/day) had increased expression of c-Fos, indicating an increased cellular

activation at a time when the food was regularly presented compared to animals that had free

access to food throughout the day. Ibotenic lesions of the DMH resulted in reduced levels of

locomotor activity and decreased food intake. Furthermore, when lesioned rats were placed

in the restricted feeding schedule, they showed less preprandial increases in food

anticipatory locomotor activity than those of sham operated animals. DMH lesions also

blocked the rise in body temperature that is entrained to the timing of food presentation

(124). The phenotype of cells within this region remains obscure. A number of these cells

produce glutamate as a neurotransmitter and project to the PVN as well as to the preoptic

area, both thought to be involved in the circadian regulation of corticosteroid secretion and

body temperature (125, 122). Projections from the DMH to the LH and to the ventrolateral

preoptic area have been implicated in sleep and arousal and could presumably relate to the

enhanced activity of animals in restricted feeding schedules (126).

The role of the SCN in energy balance has been overshadowed by the critical role of this

region as a master clock that mediates circadian patterns of biological function (127).

Among these, the SCN controls the circadian secretion of metabolic hormones and is

thought to regulate seasonal adipose tissue content and maintain patterns of glucose levels

(128, 129). The SCN projects to most hypothalamic nuclei, with a strong projection that

terminates in the PVN and DMH (127). Recent evidence suggests that the ARC projects to

the SCN as well, indicating that the melanocortin system can influence its activity (130).

Importantly, mice with mutations of the clock gene, a transcript expressed in the SCN and

critical for the generation of circadian rhythms, exhibit an obese phenotype (131).

Hypothalamic clock gene expression is highest in the SCN, thus directly implicating this

region in obesity caused by this mutation (132, 133).

8. Midbrain dopamine system-the motivation or reward to eat

The midbrain dopamine system is known to be involved in the regulation of arousal,

locomotor activity, mood and reward (134). Dopamine deficiency in mice, generated by

selective inactivation of tyrosine hydroxylase, markedly suppresses food intake in a manner

similar to that of lesions of the LH (135, 136). These mice fail to eat in response to acute

glucose deprivation (137), as well as to PYY administration or leptin deficiency (138),

suggesting that dopamine signaling is absolutely required for promoting feeding and acts

downstream of the melanocortin system. Among the various functions of the dopamine

system, the reward pathways have received particular attention in explaining feeding

behavior given the universality of food as a natural reinforcer. Dopaminergic neurons within

the midbrain ventral tegmental area (VTA) that innervate the nucleus accumbens (the

ventral striatum) have been implicated in the rewarding aspects of food, sex, and drugs of

abuse (139). In support of a role for the mesolimbic reward circuitry in feeding regulation, it

was recently found that interfering with ghrelin signaling specifically in the VTA

diminished ghrelin-induced feeding (140). Surprisingly, however, the restoration of

dopamine production within the dorsal striatum restores feeding on normal chow, whereas
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restoration of dopamine in the nucleus accumbens does not. While these findings may

suggest a fundamental difference between feeding for nourishment and food as a rewarding

substance (141), a similar study in human subjects argues in the same vein: by using

[(11)C]raclopride positron emission tomography (PET) scanning, feeding was found to be

associated with dopamine release in the dorsal, but not the ventral striatum, and yet the

amount of dopamine released correlated with the degree of pleasure experienced (142).

Thus, further investigations are needed to discern the role of VTA versus nigral dopamine

neurons in the regulation of feeding and energy homeostasis in general (143, 144).

Nevertheless, feeding is associated with motivational mechanisms important for the

behavioral responses necessary for seeking food (145). Hypothalamic peptides like NPY, α-

MSH, AgRP, hypocretin and MCH, on the other hand, modulate the activity of

dopaminergic neurons that target the nucleus accumbens (146). The ARC funnels metabolic

information from signals like leptin to modulate the activity of the mesolimbic dopaminergic

system via direct projections to the nucleus accumbens, or indirectly through the activation

of hypocretin or MCH neurons that also project to both the VTA and nucleus accumbens

(146). Emerging evidence, however, supports the idea that at least the VTA is sensitive to

leptin, insulin and ghrelin, and that the activity of dopaminergic neurons within the VTA can

be modulated by these signals (147, 148, 121). The implications of these observations

remain controversial. Further research may reveal that, in contrast to the funnel hypothesis,

metabolic signals could act directly on reward systems, including the dorsal striatum, to

modulate motivational aspects of feeding in tandem with homeostatic systems (149, 148).

9. The caudal brainstem: autonomic control of eating

The caudal brainstem contains neurons and circuits that involve autonomic control of

ingestion, digestion, and absorption of food (150), and do so without forebrain influence

(151), just as for respiration and circulation, the functions essential for survival. Thus, the

regulation of nutrient supply is to a large extent autonomically organized within the

brainstem that generates most of the parasympathetic support during ingestive and digestive

processes through the vagus nerve, as well as sympathetic responses related to severe energy

depletion and energy expenditure. It has immediate access to the locomotor and oromotor

apparatuses that enable approach of food and orchestrate ingestion of food and fluid placed

into the oral cavity. Furthermore, the brainstem can terminate ingestion when the taste is

aversive or when visceral sensors detect noxious stimuli. Thus, complete ingestive behavior

and energy balance cannot occur without the circuits of the brainstem (152).

Interestingly, the caudal brainstem is involved in the control of meal size by signals arising

from the mouth and gastrointestinal tract based upon the chemical or mechanical properties

of food, which are relayed to the nucleus of the solitary tract (NST) via the vagus and other

cranial nerves (153). In a chronic decerebrate rat preparation, the taste concentrations,

gastric preloads and cholecystokinin (CCK; a peptide released from intestinal endocrine

cells during feeding) all affected the meal size in a manner similar to that of intact rats.

Thus, the brainstem isolated from its forebrain connection exhibits the basic behavior of

satiety (154). This challenges the classic view that hypothalamic integration of visceral

signals is necessary for the behavioral output that determines meal size. The specific neural
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pathways necessary for the “satiety” response have not yet been identified. CCK appears

required for the “satiety” response (155), which also involves neurons in the NTS as well as

the dorsomotor nucleus of the vagus (DMV), and is blocked by vagal deafferentiation (156).

In addition to meal size control, decerebrate rats also show a fully formed sympathoadrenal

response to systemic 2DG administration (157), indicating that the brainstem houses a

complete system responsive to glucoprivation. However, decerebrate rats are not able to

increase meal size appropriately in response to food deprivation (158), and, therefore, have

an inadequate response to a long-term homeostatic challenge, which requires interactions

between hypothalamic and caudal brainstem nuclei (152).

Consistent with these findings, the peripheral hormones leptin, ghrelin and insulin,

neuropeptides α-MSH and CRH as well as nutrients such as glucose all yield potent effects

on food intake and body weight similar to their effects in the hypothalamus (152, 151). LRbs

are found throughout the dorsal vagal complex (DVC, area postrema, nucleus of the solitary

tract, dorsal motor nucleus of the vagus nerve) and in various other structures in the caudual

brainstem (159). Localized stimulation of these receptors reduces food intake and body

weight (160); Ghrelin receptors, GHS-R are expressed in the area postrema and nucleus

tractus solitarius of the brainstem. Stimulation of GHS-R in the caudal brainstem led to a

hyperphagic response (161, 162). Ghrelin delivered to the fourth ventricles significantly

increased cumulative food intake, with maximal response approximately 3 h after injection.

In a separate experiment, ghrelin microinjected unilaterally into the dorsal vagal complex

(DVC) significantly increased food intake measured 1.5 and 3 h after treatment (163).

Insulin receptors are also found in the NST (164). Furthermore, unilateral DVC injection of

both MC3/4R and CRH1/2R agonists resulted in suppression of food intake, while a

MC3/4R antagonist induced hyperphagia (165, 166, 167). The innervation of the brainstem

by the perifornical and far-lateral hypothalamic MCH neurons has recently been identified

(168). Lastly, it is noteworthy that the brainstem also houses glucose-sensitive neurons that

are involved in the sympathoadrenal and ingestive responses to glucopenia in rodents (169).

10. Concluding remarks: questions on which to focus

Despite the complex and extensive involvement of the brain in energy homeostasis, a basic

picture of the neuronal control behind this process is emerging. In this representation, the

melanocortin system, broadly defined to include the hypothalamic ARC, VMH, DMH, PVN

and LH, is positioned at the center, with the other brain regions, such as the midbrain

dopamine system (controlling the motivation to eat or reward of eating) and the caudal

brainstem (autonomic control of eating) positioned downstream. The key molecule that

connects the entire network is the adipokine leptin, which conveys information from the

periphery regarding pre-existing energy stores to the brain. These neuronal structures are all

targeted, differentially, by leptin to modify their default settings, which otherwise tend to

increase energy intake and reduce energy expenditure. Although close interactions between

individual nuclei have been found, these nuclei and neuronal subpopulations act more or less

in parallel but are not hierarchical.

This relatively simplified representation of the neuronal control of energy regulation

highlights several issues that still need to be addressed. These include: 1) an intricate and
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detailed labeling of all of the LRb expressing neurons in the brain, with particular attention

given to the hypothalamus, midbrain and brainstem, in order to identify novel neuronal

subpopulations, specifically in the VMH, DMH and LH. In fact, this work is already quickly

progressing (personal communication, Myers); 2) focusing on neuronal adaptations, e.g.,

electrophysiological and plastic, directly induced by the metabolic hormones, leptin and

ghrelin, that actually alter feeding behavior and/or metabolism; 3) discerning the particular

effect of each nucleus and/or neuronal subpopulation in relation to homeostasis; identifying

the niche, through which different neuronal circuits interact, and, more importantly,

addressing the logic behind the parallel arrangement of brain structures/systems that control

long-term energy balance.
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