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Abstract

Arachidonic acid (ARA) undergoes enzyme-mediated oxidative metabolism, resulting in the

formation of a number of biologically active metabolites. For over a century, these biochemical

transformations have been the target of numerous pharmacological drugs for inflammation and

pain. In particular, non-steroidal anti-inflammatory drugs (NSAIDs) and cyclooxygenase-2

(COX-2) selective inhibitors (coxibs) are widely used in the treatment of inflammation and pain.

However, gastrointestinal (GI) and cardiovascular adverse effects of NSAIDs and coxibs, and

recent findings demonstrating that there are significant risks from the disruption of oxylipin levels

when pharmacologically inhibiting a single ARA cascade metabolic pathway, have led to studies

involving the simultaneous inhibition of multiple pathways in ARA cascade. These studies suggest

that multitarget inhibition represents a new and valuable option to enhance efficacy or reduce side-

effects in the treatment of inflammation and pain. This review focuses on the crosstalk within the

three pathways of the ARA cascade (cyclooxygenase (COX), lipoxygenase (LOX), and

cytochrome P450 (CYP450)), and summarizes the current and future approaches of multitarget

inhibitors for the treatment of eicosanoid driven inflammation and pain.
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1. INTRODUCTION

There are three major pathways associated with the arachidonic acid (ARA) cascade,

cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P450 (CYP) pathways [1, 2].

Since the synthesis of acetylsalicylic acid (Aspirin®) as the first COX inhibitor [3], non-

steroidal antiinflammatory drugs (NSAIDs) have become the most widely used

pharmaceuticals to treat inflammation and pain world-wide [4]. NSAIDs act by blocking the

action of the COX enzymes, COX-1 and COX-2, resulting in the reduction of pro-
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inflammatory ARA metabolites, and in particular, prostaglandin E2 (PGE2) [5]. COX-1 is

reportedly involved in maintaining the homeostatic balance of COX metabolites and is

responsible, in part, for normal gastrointestinal (GI) function [6]. Prostacyclin (PGI2) and

PGE2 produced in the GI tract play important roles in modulating GI mucosal defense and

repair [7]. Therefore, the use of NSAIDs is often limited by side effects emanating from

disrupting the levels of these protective COX metabolites. Following the discovery of a

second form of COX enzyme (COX-2) which is inducible by cytokines and growth factors

[8–10], COX-2 selective inhibitors (coxibs) such as celecoxib (Celebrex®) and rofecoxib

(Vioxx®) were subsequently developed in an effort to circumvent these problems [8, 11].

Coxibs are effective against inflammation and pain, with less risk of severe GI toxicity

associated with conventional NSAIDs [12]. However, there are safety concerns with coxib

use due to an increase in the risk of cardiovascular events associated with the imbalance of

the PGI2 and thromboxane (TXA2) metabolite levels [13]. Inhibition of COX-1 reduces

platelet-derived TXA2, an eicosanoid which functions as a vasoconstrictor and facilitates

platelet aggregation [14]. PGI2 is a major metabolite of ARA in the heart and is associated

with vasodilation and the prevention of platelet aggregation [15]. Selective inhibition of

COX-2 affects the PGI2/TXA2 ratio to favor TXA2, increasing the risk of mortality from

ischemic heart disease [16–18]. These findings were supported by several clinical trials

involving coxibs including APPROVE, VIGOR, CLASS, and TARGET [17]. Recently, a

metabolomic approach to understand the relationship between adverse cardiovascular events

and the use of rofecoxib suggested that this drug acts, in part, through accumulation of 20-

hydroxyeicosatetraenoic acid (20-HETE) which is a potent vasoconstrictor among ARA

metabolites [19]. In addition, it is reported that chronic use of coxibs also increases GI side

effects, albeit the risk is lower than NSAIDs [20, 21]. Treatment of inflammation and pain

constitutes significant medical needs because more people are afflicted with these conditions

than any other disease state. Thus, there is a growing demand for safer but efficacious

NSAIDs or coxibs [4]. Emerging concepts and approaches for the treatment of inflammation

and pain have moved towards simultaneously targeting multiple enzymes in the ARA

cascade through combination therapy and multitarget inhibitors such as dual inhibitors with

the aim of overcoming the risks involved in single enzyme or pathway inhibition.

2. THE ARA CASCADE

ARA, a twenty-carbon fatty acid, is one of the most abundant polyunsaturated fatty acids

found in the phospholipid bilayer of cells involved in inflammatory responses [22].

Activation of phospholipase A2 (PLA2, generally cytoplasmic PLA2) [23] and other lipases

in response to various stimuli, leads to release of ARA into the cellular milieu. ARA is then

metabolized by three major enzymatic pathways, the COX, LOX, and CYP pathways [24].

The ARA metabolites of the COX enzymes, or prostanoids, are primarily pro-inflammatory

mediators [25]. The eicosanoid metabolites of the LOX pathway include both pro-

inflammatory leukotrienes (LTs) [26] and hydroxyeicosatetraenoic acids (HETEs) [27], as

well as mediators of inflammation resolution, the lipoxins (LXs) [28]. The CYP

hydroxylases generate the vasoconstrictor 20-HETE [29], and the CYP epoxygenases

generate anti-inflammatory epoxyeicosatrienoic acids (EETs) [30]. The EETs are further

metabolized by soluble epoxide hydrolase (sEH) to their corresponding diols,
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dihydroxyeicosatrienoic acids (DHETs), which are reported to have less biological activity

[31] (Fig. 1).

Detailed discussions on each of these metabolic pathways are beyond the scope of this

review. Therefore, the focus is on the major enzymes that are targeted in combination

therapy by dual inhibitors or multitarget agents, and crosstalk among the ARA metabolizing

pathways.

2.1. The COX Pathway

The COX pathway is well studied and has recently been summarized in several reviews [32–

34]. It is well established that there are two isoforms of COX, COX-1 and COX-2 in

mammals. While COX-1 is constitutively expressed in most mammalian cells under

physiological conditions [35], the expression of COX-2 can be induced by pro-inflammatory

stimuli such as cytokines, bacterial lipopolysaccharide (LPS), growth factors, and tumor-

promoting agents [36, 37]. Recent evidence has shown that COX-2 is constitutively

expressed in several tissues including spinal cord [38], brain [39] and kidney [40], and

although the roles of constitutively expressed COX-2 are not fully understood, this

expression pattern creates challenges in selectively targeting COX-2 for therapeutic

purposes [41, 42]. The COX enzymes are dual function enzymes that initially transform

ARA into unstable prostaglandin G2 (PGG2) via the COX function, and then into the more

stable prostaglandin H2 (PGH2) via the peroxidase (POX) function. PGH2 is then converted

to various bioactive prostanoids such as prostaglandins (PGD2, PGE2, PGF2α, and PGI2)

and TXA2 by cell- and tissue-selective prostanoid synthases [41–43] (Fig. 2). Among these

prostanoid synthases, PGE2 synthases (microsomal PGE synthase-1 (mPGES-1), membrane

PGES-2 (mPGES-2), and cytosolic PGES (cPGES)) [44], have recently attracted a great

deal of attention as potential targets in the treatment of inflammation and pain [45]. These

enzymes are downstream of COX and therefore may not produce the same side-effects as

the COX mediated disruption of PGI2 formation. Both mPGES-2 and cPGES are

constitutively expressed enzymes, while mPGES-1 is inducible by inflammatory stimuli and

primarily coupled with COX-2 [46, 47]. These findings have made mPGES-1 attractive as a

potential target for inflammation and pain [45].

Biological Effects of Prostanoids—Prostanoids are autocrine and paracrine lipid

mediators, which are widely distributed and involved in a broad range of physiological

responses (reviewed in [6]). Typically these metabolites are high-affinity agonists of their

respective receptors all of which are G protein-coupled receptors that modulate second

messenger levels (e.g., Ca2+, cAMP and inositol phosphates) [48]. Since the initial studies of

von Euler describing prostanoids in late 1936 [49], nine human prostanoid receptors have

been isolated and cloned including two isoforms activated by PGD2 (DP1, DP2), four by

PGE2 (EP1, EP2, EP3, EP4) and three by PGF2α, PGI2, and TXA2 (FP, IP and TP

respectively). These receptors and their diverse functions explain much of the multiplicity of

the biological effects of prostanoids [50]. The roles and functions of prostanoids vary in a

context dependent manner in the body [25]. They have important roles in GI function, with

PGE2, PGF2α and PGI2 protecting the gastric mucosa blood flow and stimulating mucus

formation as well as bicarbonate secretion [51]. In the cardiovascular system, PGD2, PGE2
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and PGI2 mediate vascular tone by eliciting vasodilation, whereas TXA2 is a potent

vasoconstrictor [52]. In the airways, PGF2α acts as a bronchoconstrictor and PGE2 acts as a

bronchodilator [53]. The role of PGs in inflammatory pain is well established [54].

Specifically PGE2 is one of the most painful endogenous substances known to man and

mediates a number of inflammatory processes including redness, swelling, and pain [55].

Binding of PGs to prostanoid receptors sensitizes pain specific neurons in several distinct

ways to stimulate pain. For example PGE2 acts on EP1 and EP2 receptors in the peripheral

and central nociceptive systems respectively, and PGI2 acts on IP receptors in the peripheral

nociceptive system [56]. PGE2 also acts on neurons and contributes to the systemic

responses to inflammation such as fever, fatigue, and pain hypersensitivity [57]. These

diverse and differential roles of prostanoids obviously require an intricate balance to

maintain homeostasis and to avoid overacting inflammatory responses [58].

2.2. The LOX Pathway

There are three LOX isozymes, 5-, 12-, and 15-LOX, that have been identified in human

which convert ARA into their respective pro-inflammatory hydroperoxyeicosatetraenoic

acids (HPETEs), 5-, 12-, and 15-HPETE respectively [59]. In contrast to other LOX

enzymes, 15-LOX also initiates the synthesis of lipoxins (LXs) which are involved in the

resolution phase of inflammation [60]. Although 12-LOX and 15-LOX have been implicated

in inflammatory diseases such as psoriasis [61] and arthrosclerosis [62], this review will

focus on the role of 5-LOX and synthesis of LTs as targets for treating inflammation. 5-

LOX is a unique LOX isozyme which utilizes two co-factors, Ca2+ and adenosine

triphosphate (ATP) [63], and protein-protein interactions with five-LOX activating protein

(FLAP) for catalytic activity [64]. The metabolism of ARA by 5-LOX first generates 5(S)-

HPETE [65], and then this intermediate is either reduced to the corresponding alcohol, 5-

HETE, or to the very short-lived epoxy-leukotriene, LTA4 [66]. Further systematic

metabolism of LTA4 results in a series of LTs starting with the hydrolysis of its epoxide by

LTA4 hydrolase (LTA4H) [67] to the corresponding diol, LTB4, or its metabolism to the

cysteine-adduct LTC4 [68]. Other cysteinyl-LTs (Cys-LTs), LTD4 and LTE4, are

sequentially formed from LTC3 (Fig. 3). Recently a detailed description of the synthesis and

biological action of the LOX metabolites has been reviewed [69].

Biological Effects of LTs—LTs are paracrine lipid mediators that play various roles in

inflammation and immunological function through specific rhodopsin-like G protein-

coupled receptors (reviewed in [70]). Four LT receptors including two cysteinyl LTs

receptors (CysLT1 and CysLT2) and two LTs B4 receptors (BLT1 and BLT2) have been

isolated and cloned [71–73]. LTB4 is a potent chemotactic agent for inflammatory cells

including neutrophils, macrophages and eosinophils [74, 75]. These LTs increase leukocyte

tissue infiltration and play an important role in immune reactions by enhancing the release

of pro-inflammatory cytokines by macrophages and lymphocytes [76]. Cys-LTs such as

LTC4, LTD4, and LTE4, are involved in immediate hypersensitivity reactions and are potent

constrictors of airway smooth muscles leading to bronchoconstriction [26, 77]. Cys-LTs also

increase vascular permeability leading to edema by contracting endothelial cells (EC) in the

microvasculature. LTs also play an important role in GI mucus protection [78, 79]. In

addition, they can interact with sensory nerve fibers, leading to changes in their excitability
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and enhanced release of tachykinins. Therefore LTs are important mediators of various

inflammatory diseases and allergic disorders including asthma, rheumatoid arthritis,

inflammatory bowel disease, ulcerative colitis, psoriasis and allergic rhinitis [80].

2.3. The Cytochrome P450/sEH Pathway

The role of mammalian CYPs in the oxidative metabolism of ARA was not uncovered until

1981 [81–85]. The CYP enzymes relevant to ARA metabolism include two distinct

pathways: the ω-hydroxylases (CYP4A) which produce HETEs such as 20-HETE, and the

epoxygenases (CYP2C and CYP2J) which produce the EETs [86]. Research into the

biological activity of 20-HETE has shown this metabolite possesses potent vasoconstrictor

activity [87]. The EETs have been suggested to be endothelium-derived hyperpolarizing

factors (EDHFs) with vasodilatory properties [88], and have various biological activities in

several inflammatory diseases [89, 90] and pain [91]. EETs are primarily synthesized in

endothelial cells [92–96], and are further metabolized by sEH, to their corresponding and

less active diols, DHETs (Fig. 4) [97, 98]. EETs not only decrease inflammation, but also

decrease platelet aggregation in order to maintain vascular homeostasis [99]. Importantly,

other fatty acids such as the ω-6 linoleic acid (LA) and the ω-3 α-linolenic acid (ALA),

eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are oxidized by CYPs

through mechanisms similar to those for ARA [100]. Recent work by Morisseau et al.

showed these various epoxy-fatty acids (EpFAs) are efficiently metabolized by sEH to the

corresponding diols. The epoxides of DHA have demonstrated to be potently anti-

hyperalgesic, although their other biological actions remain unclear [101]. Potential roles of

EpFAs in pain are well-described in recent review [102].

Biological Effects of Epoxyeicosatrienoic Acids—The CYP epoxygenases convert

ARA to four EET regioisomers, 5,6-, 8,9-, 11,12-, and 14,15-EETs, that function as

autocrine and paracrine mediators [103]. The presence of a receptor(s) for EETs has been

suggested [48], but membrane receptor(s) or binding protein(s) have yet to be reported.

EETs have been shown to exhibit anti-inflammatory effects on the endothelium by

inhibiting activity of IKK and TNF-α, thus attenuating cytokine-induced NF-κB activation

[93]. This, in turn, suppresses the expression of adhesion molecules such as vascular cell-

adhesion molecule-1 (VCAM-1), intracellular adhesion molecule-1 (ICAM-1), and E-

selectin [93, 104–106]. Inhibition of sEH by small molecules has been shown to reduce

inflammatory responses by stabilizing the blood levels of EpFAs including EETs, and

indirectly reduce the expression level of COX-2, 5-LOX, iNOS, and VCAM-1 in LPS-

induced mouse models of systemic inflammation [107, 108]. These findings are consistent

with the opinion that EETs prohibit amplification of an inflammatory event by preventing

nuclear translocation of NF-κB, and thus its subsequent transcriptional activity [93, 106].

Animal models of inflammatory pain have shown that exogenous administration of EETs or

treatment with sEH inhibitors, results in antihyperalgesic responses [91, 109]. While some

types of pain respond well to treatment with opioids, NSAIDs and coxibs, treatment of

neuropathic pain including diabetic neuropathy remains a challenge because of side effects

and low efficacy of current treatments [110, 111]. Therefore the evidence of sEH inhibitor

mediated antihyperalgesia in a diabetic neuropathy model offers an important new approach

in meeting this challenge. The biological roles of EETs in inflammatory disease and pain is
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extensive [112] and in the following articles further information about EETs and specific

disease can be found: vascular inflammation [113], pulmonary hypertension [114, 115],

metabolic syndrome [116, 117], renal inflammation [118, 119], cardiovascular diseases

[120–122], cancer [123], pain [112, 124]. In addition, mono-epoxides of EPA and DHA also

possess antihyperalgesic properties [101] and their roles in pain relief have been reviewed

[112].

3. CROSSTALK BETWEEN PATHWAYS IN THE ARA CASCADE

It is clear that bioactive lipid mediators from ARA metabolism evoke potent inflammatory

and anti-inflammatory responses. Therefore, an intricate communication between the COX,

LOX, and CYP pathways would be required to regulate inflammation and inflammation

resolution. This communication, or crosstalk, between pathways is far from being well

understood, but recent technologies such as lipid profile analysis has enabled the ability to

examine changes in the ARA metabolome when inhibiting one or more of the ARA

pathways. Coupling this type of technology with a better understanding of the role of certain

metabolites in human disease will greatly increase the ability to predict potential risks from

inhibiting enzymes in the ARA cascade. The next section will discuss recent findings in the

interactions between the multiple pathways.

3.1. Crosstalk Between COX and LOX Pathways

It has been theorized that inhibition of a single pathway in the ARA cascade may lead to the

shunting of ARA into the other untargeted pathways within the cascade. For example,

inhibiting COX pathway can shunt the metabolism of ARA towards LOX pathway, resulting

in an increase synthesis of LTs, and thus potentially diminishing the beneficial effects of

reducing prostanoid synthesis [125, 126]. While this theory is currently viewed as an overly

simplistic contributor to biological effects, such an event was observed in the case of

aspirin-induced asthma, where the inhibition of the COX pathway resulted in a significant

increase in the 5-LOX product, LTE4 [127]. Recently, using an LPS-challenged murine

model, Liu et al. demonstrated that inhibition of 5-LOX not only reduced both 5-HETE and

15-HETE, but also significantly decreased both PGE2 and TXB2 in the COX metabolites

[128]. Cumulatively, these data demonstrate that communication exists not only within the

LOX pathway, but between LOX and COX pathways, and this crosstalk is bidirectional. It is

unclear if these responses are due to effects on the transcriptional regulation of the

associated enzymes, or if this is a result from direct effects on enzyme activity. However, it

has been shown that LOX metabolites of ARA and LA can differentially affect the substrate

selectivity [129] and reaction mechanism [130] of the LOX enzymes through allosteric

regulation. This suggests a direct protein/metabolite interaction may regulate crosstalk

within the ARA cascade, and that metabolite interactions may extend into other pathways

such LA and ω-3 fatty acids metabolizing cascades.

3.2. Crosstalk Between COX and CYP/sEH Pathways

In addition to the COX/LOX pathway crosstalk, Kozak et al. showed that 11,12-EET, a

CYP monooxygenase-derived ARA metabolite, suppresses production of PGE2 in

monocytes through modulating COX-2 activity [131], and Schmelzer et al. demonstrated in
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vivo that co-inhibition of both the COX pathway and CYP pathway (via sEH inhibition)

elicited an additive response in alleviating pain [132]. In the latter experiment, there was an

observed reduction in the COX-2 protein expression levels and a dramatic shift in the

oxylipin metabolomic profile [107]. This work demonstrated that crosstalk within the ARA

cascade can, in part, result from effects on transcriptional regulation of proteins involved in

ARA metabolism. It was proposed in this work, that increasing the anti-inflammatory EETs

level by sEH inhibition, while simultaneously decreasing the pro-inflammatory PGE2 level

by the reduction in COX-2 expression, synergistically affected the inflammatory signaling

and the associated pain response. It should be noted that this synergistic effect was obtained

by a combination of sEH inhibitor and a low-dose of NSAIDs or coxibs that are not

effective doses when used alone. These findings are significant in that incidences for the

cardiovascular adverse effects of NSAIDs or coxibs are typically higher with chronic high-

dose treatment [133]. In addition, the inhibition of sEH alone or in combination with

NSAIDs or coxibs did not disrupt the relative ratio of PGI2 to TXA2 in the plasma of LPS-

challenged mice. These data indicated that a combination therapy involving sEH and COX-2

inhibition may result in the desired decrease in inflammatory eicosanoids such as PGD2 and

PGE2 without the potential cardiovascular risks from the imbalance of the TXA2-to-PGI2

ratio.

3.3. Crosstalk Between LOX and CYP/sEH Pathways

Recent evidence now links the LOX and CYP pathway [134], closing the ARA cascade-

feedback loop. In this work, Liu et al. demonstrated that inhibition of sEH in a LPS-

challenged murine model significantly decreased the plasma DHETs and TXB2, while

unexpectedly reducing two LOX metabolites, 5-HETE and 15-HETE, in plasma [128].

These results suggest that the CYP-generated EETs and their metabolizing enzyme, sEH, are

intricately connected to both the LOX and COX pathways. Interestingly, oral administration

of acetylsalicylic acid significantly lowered plasma levels of metabolites from all three

pathways of the ARA cascade. It is clear from these results that there is a complex

mechanism of interaction between the distinct pathways of the ARA cascade, and therefore,

disturbances in any one of these pathways may lead to undesirable consequences from the

over-production or under-production of critical lipid signaling molecules [115].

4. RATIONALLY DESIGNED MULTITARGET AGENTS

Because selectively blocking one of the pathways in the ARA cascade in most cases also

causes the production of undesirable or unexpected metabolites, new approaches have been

developed to combine therapies to modulate multiple pathway targets simultaneously [135–

137]. However, administering two drugs in combination therapy raises safety concerns and

presents unique challenges for optimizing dosage. For example, it is not safe to assume that

two drugs with relatively high individual safety profiles will be safe when co-administered

[138]. Co-administration treatment requires extensive investigations into optimal dose

regiments including safety studies, a complex dosage ranging investigation, and drug-drug

interaction analysis, all of which may significantly raise the practical cost and complexity of

developing combination therapies [139]. During the drug development process, predicting

pharmacodynamic and pharmacokinetic relationships is substantially less complex if
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multitarget inhibition is obtained from a single agent rather than from combination therapies

(co-administration). In addition, improvement of patient compliance is expected with these

multitarget inhibitors as fixed-dose drug combinations [140]. For these reasons, interest has

grown in designed multiple ligands (also known as DMLs) [135, 141] with the following

aims: 1) to enhance drug efficacy, 2) to improve drug safety by acting specifically on

multiple targets, 3) to amend patient compliance, and 4) to eliminate the challenges of

formulation problems and drug-drug interactions in coadministrative therapies [142]. This

review article will focus on current research on DMLs as dual inhibitors which target two or

more enzymes in the pathways in ARA cascade.

4.1. COX/5-LOX Dual Inhibitors

Dual inhibition of COX and LOX pathways by a single entity has been attracting attention in

academia and industry. Many of the COX/LOX dual inhibitors developed have focused on

inhibition of COX and specifically 5-LOX. They can be classified into three classes based

on the type of 5-LOX inhibition: redox inhibitors, iron chelators, and nonredox/ non-

chelators.

4.1.1. Redox Inhibitors—Benoxaprofen which is a radical scavenger is the first

commercially available COX-2/5-LOX inhibitor. However, it has been discontinued due to

reports of causing photosensitivity, effects on nail and hair growth, and liver and kidney

failure. These side-effects were not proposed to be associated with the inhibition of their

target enzymes but remain significant obstacles to their clinical use [143, 144].

Di-tert-Butylphenols: This class of di-tert-butylphenol derivatives is the most extensively

studied group of dual inhibitors of COX and 5-LOX enzymes. It was found that naturally

occurring diarylheptanoids such as curcumin or yakuchinones exhibited COX and LOX

inhibition in vitro [145], but these compounds failed to demonstrate inhibition of LTB4

biosynthesis or anti-inflammatory activity in vivo [146]. Therefore, in an effort to improve

both the in vitro and in vivo activities of these diarylheptanoids, various analogues

containing similar structural 2,6-di-tert-butylphenols have been developed as dual inhibitors

(Fig. 5). Structure-activity relationship (SAR) studies have indicated that 2,6-di-tert-butyl-1-

hydroxybenzene substituted in the fourth position is optimum for dual activity. The

substituents are either five- or six-membered heterocycles or chains. The phenol moiety

possesses the antioxidant and radical scavenging properties which is considered to be

responsible for anti-inflammatory potency and low ulcerogenic potential. The therapeutic

index of these compounds (ratio of anti-inflammatory efficacy to GI safety profile) has

uniformly been shown to be superior to that of conventional NSAIDs [147]. For these

reasons, a variety of COX/5-LOX dual inhibitors containing such a phenol have been

developed including darbufelone (CI-1004) [148], S-2474 [149], and tebufelone [150].

Among them, S-2474 also displays cytokine-modulating properties and is currently being

evaluated in clinical trials for arthritis [147–149, 151–153].

Pyrazoline Derivatives: BW-755C and phenidone are COX/5-LOX dual inhibitors

functioning as one-electron reducing agents (see Fig. 6). These compounds were originally

developed as antioxidant 5-LOX inhibitors and later demonstrated to possess inhibitory
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activity towards COX isozymes [143, 154, 155]. Phenidone significantly decreased

eosinophils (ED50 = 15 mg/kg) in bronchoalveolar lavage (BAL) fluid of guinea pigs

sensitized to ovalbumin and those challenged with aerosoilized antigen, while indomethacin

had no effect in eosinophils accumulation [156].

4.1.2. Iron Chelators

Hydroxamic Acids: Tepoxalin (Zubrin®) is a COX-2/5-LOX dual inhibitor which exhibited

potent anti-inflammatory activity with excellent gastric protection (Fig. 7). It is approved for

veterinary use only (in canines) [157]. Oral administration in humans revealed that tepoxalin

inhibits whole blood COX, LOX, and platelet function [158] and its further development has

been stopped due to its hepatotoxicity [159].

Thiophene Derivatives: RWJ 63556 (Fig. 8), was developed as 5-LOX inhibitor [160] that

was subsequently found to inhibit COX-2 selectively over COX-1 [161]. This compound

displayed significant anti-inflammatory activity in carrageenan-induced inflammation in

canines [160] and inhibited the development of neurogenic edema induced by saphenous

nerve stimulation [162]. L-652,343 was demonstrated to inhibit COX and 5-LOX in vitro

and was efficacious in acute and chronic inflammation models in vivo [163, 164]. However,

L-652,343 failed to show inhibition of 5-LOX in vivo in human skin [165] or LTB4

production ex vivo using stimulated human whole blood [166].

Pyridone Derivatives: Chowdhury et al. developed a COX-2/5-LOX dual inhibitor such as

1 in (Fig. 9) by replacing the tolyl group in celecoxib with the N-difluoromethyl-1,2-

dihydropyrid-2-one moiety, which exhibited good anti-inflammatory activity (ED50 = 27.7

mg/kg p.o.) and compared favorably with reference drugs such as celecoxib (ED50 = 10.8

mg/kg p.o.) and ibuprofen (ED50 = 67.4 mg/kg p.o.) [167]. The same strategy has also been

applied to NSAIDs [168, 169].

4.1.3. Non-Redox, Non-Chelators—Due to the non-selective action of redox and

chelating inhibitors which cause undesirable side effects, there was an effort to design a new

class of small molecule inhibitors without these actions. Therefore the following compounds

are discovered or developed as new class of COX/LOX dual inhibitors.

DHDMBFs: 7-tert-Butyl-2,3-dihydro-3,3-dimethylbenzofurans (DHDMBF) was originally

found as a metabolite of tebufelone. Interestingly, this compound lacks the anti-oxidant

phenolic moiety, but selectively inhibits both 5-LOX and COX-2 enzymes and displays anti-

inflammatory activity equivalent to tebufelone in the rat carrageenan paw edema assay

[147]. Among DHMBF derivatives, PGV-20229 is of particular interest because it showed

excellent gastric safety and was active in a rat arthritis model with an ED50 of 6.6 mg/kg

[147]. The acute ulcerogenic dose (UD50) was much higher, with no GI lesions observed at

oral doses up to 1000 mg/kg. In addition, in a refed rat antral damage model, the UD50 for

PGV-20229 was greater than naproxen and nabumetone and no GI damage was seen in 13-

day studies in dogs and rats at oral doses up to 200 mg/kg/day. It has been demonstrated that

a large variety of substituents (R) are compatible at the 5 position in DHDMBF (see the
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general structure in Fig. 10) retaining the anti-inflammatory and analgesic activities [152,

153].

Structural Modification of NSAIDs: In the attempt to find potent COX/LOX dual

inhibitors, structural modifications have been performed on conventional NSAIDs (Fig. 11).

Tenidap, a COX/5-LOX inhibitor and cytokine modulator, is more effective in the clinical

treatment of rheumatic arthritis than diclofenac [170]. However, this compound has been

withdrawn from the market due to liver and kidney toxicity attributed to its reactive

oxidative metabolites with a thiophene moiety [171–173]. To avoid these toxic side effects,

a series of analogues including compound 2 have been developed replacing the thiophene

ring in tenidap. These compounds showed comparable or stronger anti-inflammatory and

analgesic activities, and better gastric tolerance in vivo than tenidap [174].

Structural Modification of Coxibs: The combination of a COX-2 pharmacophore and a 5-

LOX pharmacophore led to potent selective COX-2/5-LOX inhibitors (Fig. 12). For

example, compound 3 is a combination of the pyrazole-based tricyclic moiety found in

celecoxib (Pfizer) and the 4-(3-fluoro-5-oxy)phenyl-4-methoxy tetrahydropyran from the 5-

LOX inhibitor ZD-2138 (Zeneca) [175]. This dual inhibitor reduced ARA-induced ear

edema by i.v. and oral administration. Several others in this class of COX-2/5-LOX dual

inhibitors have also developed using similar approach such as compounds 4 (possessing a p-

SO2Me COX-2 pharmacophore) [176] and 5 (possessing a 3,4-diaryl-2(5H)furanone COX-2

pharmacophore as in Vioxx®) [177].

Pyrrolizine-Based Dual Inhibitors: Licofelone [178, 179] (ML 3000, 2-(6-(4-

chlorophenyl)-2,2-dimethyl-7-phenyl-2,3-dihydro-1H-pyrrazolin-5-yl] acetic acid) has

shown anti-inflammatory, analgesic and anti-asthmatic effects in several animal models

(Fig. 13) [180]. Licofelone is one of the most promising COX/5-LOX inhibitors for human

therapy and successfully finished phase III clinical trial for the treatment of osteoarthritis

(OA) [181]. Notably, it possesses superior GI protective effect by decreasing gastrotoxic

LTs through 5-LOX inhibition [182]. In addition, it exhibits protective anti-thrombotic

activity due to its inhibition of COX-1 [183]. This is an excellent example demonstrating

that simultaneous inhibition of COX-1, COX-2, and 5-LOX can circumvent the side effects

associated with the individual inhibition of these enzymes. Recent study [184] showed that

licofelone might suppress PGE2 formation by inhibiting mPGES-1 [185], and not through

COX-2 inhibition.

4.2. COX/sEH DUAL INHIBITORS

Recent work evaluating the co-inhibition of COX-2 and sEH has led to the development of

COX-2/sEH dual inhibitors (Fig. 14) [186]. The potencies of these compounds were

evaluated using recombinant enzymes assays in vitro and the efficacy of the most promising

candidate was evaluated using a LPS induced rat pain model in vivo. The COX-2/sEH dual

inhibitor by s.c. injection exhibited anti-allodynic activity that is more efficacious than the

same dose of either a celecoxib or a sEH inhibitor (t-AUCB) alone, or the coadministration

of sEH inhibitor with celecoxib. This work demonstrated that the use of a dual inhibitor as a

DML was more efficacious than combination therapy in a rat pain model. Use of
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COX-2/sEH dual inhibitors could be an alternative approach for treating inflammation and

pain compared to well-studied COX/5-LOX dual inhibitors.

4.3. LOX/sEH Dual Inhibitors

5-LOX/sEH dual inhibitors have been recently discovered by dual-target virtual screening

using an in silico approach [187]. Among the eighty compounds selected by the virtual

screening, thirty six compounds have been tested with in vitro enzyme assays. One

compound has inhibited both 5-LOX and sEH enzymes at a marginal concentration (Fig.

15). Although no biology is associated with 5-LOX/sEH dual inhibitors, further

development is warranted based on elevation of LOX products 5-HETE and 15-HETE with

long-term sEH inhibition [134].

4.4. Dual Inhibitors Targeting Enzymes Downstream in the COX or LOX Pathways

In addition to targeting 5-LOX and COX enzymes, a number of alternative multitarget

approaches which focus on enzymes downstream of LOX and COX pathways have also

been reported. The limitations of NSAIDs or coxibs use are derived from on-target side-

effects such as GI injury, renal irritation, cardiovascular events, and off-target side effects

such as an increase of LT formation. Therefore a new approach has been developed that

targets enzymes downstream in the COX or LOX pathway to minimize potential on-target

side-effects.

5-LOX and mPGES-1 Dual Inhibitors: mPGES-1 is one of the most attractive targets for

this new approach. As described in section 2.1, unlike other PGE2 synthases, mPGES-1 is

inducible by various inflammatory stimuli and is primarily coupled to COX-2 expression

[46, 47]. This synthase is a PGE2-forming enzyme downstream of COX in the pathway

which has the potential to selectively affect PGE2 and not other prostaglandins or TXA2

synthesis. Recent evidence demonstrated that mPGES-1 knockout mice did not display

impaired cardiovascular function [188]. In addition, licofelone (section 4.1.3.), the most

promising COX/5-LOX dual inhibitor, is likely suppressing the formation of PGE2 by

inhibiting mPGES-1 and not through COX-2 inhibition [184]. Based on these findings

several arylpyrrolizines derivatives have been developed as 5-LOX and mPGES-1 dual

inhibitors such as 6 (Fig. 16) [189]. In addition, pirinixic acid 7 [190] and 2-

mercaptohexanoic acid 8 [191] derivatives have been reported as 5-LOX/mPGES-1 dual

inhibitors. In comparison with indomethacin (5 mg/kg), YS121 (1.5 mg/kg) was as efficient

in reducing exudates formation and leukocyte infiltration with reduced pleural levels of

PGE2 and LTB4 in the carrageenan-induced rat pleurisy model [192]. Recently virtual

screening using a comparative model of the human 5-LOX led to the discovery of new 5-

LOX/mPGES-1 dual inhibitors 9 and 10 possessing novel scaffolds [193].

In addition to targeting mPGES-1, downstream enzymes in the LOX or COX pathways such

as LTA4H and TXA2 synthase are also being investigated as new approaches for developing

dual inhibitors acting in the ARA cascade.

COX-2 and LTA4H Dual Inhibitors: Recently Chen et al. reported dual inhibitors that

target COX and the downstream leukotriene metabolizing enzyme, LTA4H, an epoxide

Hwang et al. Page 11

Curr Med Chem. Author manuscript; available in PMC 2014 July 28.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



hydrolase that catalyzes the conversion of LTA4 into LTB4 (Fig. 17) [194]. These dual

inhibitors were developed by combining a COX-2 selective inhibitor nimesulide with an

LTA4H inhibitor, 1-(2-(4-phenoxy phenoxy) ethyl)pyrrolidine, however no in vivo efficacy

was reported [195].

5-LOX and TXA2 Synthase Dual Inhibitors: Hibi et al. reported dual inhibitors such as

E3040 targeting both 5-LOX and TXA2 synthase (Fig. 17). E3040 inhibited the production

of LTB4 and TXB2, but not PGE2, and was efficacious at a dose of 100 mg/kg p.o. in the

induced chronic colitis model compared to sulfasalazine (500 mg/kg) [196]. E6700, having

better absorption compared to E3040, was under clinical trial for asthma treatment [197].

4.5. Dual Inhibitors Targeting Enzymes Downstream in the CYP Pathway and Enzymes
Outside ARA Cascade

Extensive research on the benefits of therapeutic application of EETs has triggered

development of dual inhibitors that include sEH inhibition. This approach is not limited to

the enzymes in the arachidonic cascade. Examples here outline the future direction of

valuable dual inhibitors for inflammation and pain.

sEH/11β-HSD1 Dual Inhibitors: GlaxoSmithKline (GSK) reported dual inhibitors for sEH

and 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) enzymes. 11β-HSD1 converts

the inactive glucocorticoids (e.g. cortisone) to the active glucocorticoids (e.g. cortisol) (Fig.

18) [198]. Cortisone injections have been a proven solution for short-term relief of pain

associated with swelling from inflammation of a joint, tendon, or bursa. However, their use

is restricted due to adverse side effects. Thus, inhibition of sEH in concert with 11β-HSD1 is

predicted to yield favorable results for the treatment of diseases mediated by the sEH or 11β-

HSD1 [199].

Sorafenib: In a recent study which examined the structural similarities of the FDA-

approved anti-cancer drug sorafenib (Nexavar ®) and sEH inhibitors, Liu et al. observed that

sorafenib possesses potent in vitro and in vivo sEH inhibitory activity (IC50 = 12 nM) in

addition to multi-kinase inhibition (Fig. 18) [200]. Therefore, it has been suggested that sEH

inhibition might ameliorate the toxicity of sorafenib during treatment through demonstrated

anti-inflammatory and antihypertensive effects. However, the contribution of sEH inhibition

on the efficacy of sorafenib has yet to be fully described.

5. CONCLUSION

Inflammation and pain are extremely complex biological processes that involve a great

number of lipid mediators providing a theoretically wide range of possible targets for

pharmacological treatment. Of the current available drugs that inhibit a single branch of the

ARA cascade, inhibition of the COX pathway with NSAIDs is by far the most commonly

used approach in the treatment of inflammation and inflammatory pain. This drug class, as

well as the second generation coxibs, is not without serious GI and cardiovascular risks

which stem from an imbalance in homeostatic eicosanoid metabolite levels. In addition, it is

clear that inhibiting a single pathway can affect the metabolite output of the other pathways

Hwang et al. Page 12

Curr Med Chem. Author manuscript; available in PMC 2014 July 28.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



and crosstalk. This has led to a significant improvement in our understanding of the on-

target adverse effect risks of COX inhibition [201]. However these serious side-effects from

inhibiting either of the COX enzymes remain and the risks are not dogmatically separated as

were previously thought [202]. While attempts to mitigate side-effects based on this

historical dogma drove the exploration of dual COX/LOX inhibition, little success has come

from this approach in the past decades. Several of these compounds, especially COX/5-LOX

inhibitors, have been extensively studied and exhibited significant increases in efficacy both

in vitro and in vivo without the undesired on-target side-effects associated with single

pathway inhibition. However the off-target toxicity and adverse events limited many of

these early dual inhibitors. Many of these initial dual inhibitors or multitarget drugs were not

rationally designed; rather were subsequently found to have activity towards unintended

targets. For example, compounds possessing anti-oxidant or iron-chelating properties

originally developed as 5-LOX inhibitors, also possessed COX inhibitory activity due to

their non-selective inhibition which eventually resulted in off-target adverse effects.

Therefore the need persists for safer and effective multitarget agents by rational design.

Recent advances such as the recent X-ray crystal structure of human 5-LOX [203] and

computer-aided drug design (CADD), will allow medicinal chemists to rationally design

new therapies through virtual screening using molecular docking, ligand-based and

structure-based approaches. In addition, emerging roles of CYP metabolites in

inflammation, pain, and other diseases will expand the scope of multitarget agents in ARA

cascade. Dual inhibitors that target sEH and COX enzymes are an example of such a novel

approach that holds great promise for treating pain and inflammation. This approach was

fundamentally different from the previously developed COX/LOX dual inhibitors since the

object was not to reduce undesirable metabolites, but to increase the lifetime of the CYP

pathway metabolites (e.g., EETs) through sEH inhibition. The beneficial effects of the

stabilized EETs allow dose-sparing of COX inhibitors, thereby potentially attenuating GI or

pro-thrombic side-effects. Although sEH inhibitors share some of the same indications as

coxibs, the synergy observed in lowering prostaglandins with combination therapy [132] and

in antihyperalgesia with the dual inhibitor [186] merits inhibiting both target enzymes.

Another promising approach is the development of dual inhibitors targeting enzymes down-

stream of the COX or LOX enzymes to prevent unavoidable on-target side-effects. While

these new approaches are novel, recent results from use of these multitarget agents or dual

inhibitors indicate they are a viable alternative pharmacological strategy for treatment of

inflammation and pain.
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20-HETE 20-Hydroxyeicosatetraenoic Acid

5-LOX 5-Lipoxygenase

ALA α-Linolenic Acid

ARA Arachidonic Acid

ATP Adenosine Triphosphate

BAL Bronchoalveolar Lavage

BLT1 & BLT2 Two Leukotriene B4 Receptors

CADD Computer-Aided Drug Design

COX Cyclooxygenase

COX-2 Cyclooxygenase-2

cPGES Cytosolic Prostaglandin E2 Synthase

CYP450 Cytochrome P450

CysLT1 / CysLT2 Cysteinyl Leukotrienes Receptors

Cys-LTs Cysteinyl-Leukotrienes

DHA Docosahexaenoic Acid

DHDMBF 7-tert-Butyl-2,3-dihydro-3,3-dimethylbenzofurans

DHETs Dihydroxyeicosatrienoic Acids

DMLs Designed Multiple Ligands

EC Endothelial Cells

EDHFs Endothelium-Derived Hyperpolarizing Factors

EETs Epoxyeicosatrienoic Acids

EPA Eicosapentaenoic Acid

EpFAs Epoxy-Fatty Acids

GI Gastrointestinal

HETEs Hydroxyeicosatetraenoic Acids

HPETEs Hydroperoxyeicosatetraenoic Acids

ICAM-1 Intracellular Adhesion Molecule-1

LA Linoleic Acid

LOX Lipoxygenase

LPS Lipopolysaccharide

LTA4H Leukotriene A4 Hydrolase

LTs Leukotrienes
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mPGES-1 Microsomal Prostaglandin E2 Synthase-1

mPGES-2 Membrane Prostaglandin E2 Synthase-2

NSAIDs Non-Steroidal Anti-Inflammatory Drugs

OA Osteoarthritis

PGE2 Prostaglandin E2

PGG2 Prostaglandin G2

PGH2 Prostaglandin H2

PGI2 Prostaglandin I2 (Prostacyclin)

PLA2 Phospholipase A2

POX Peroxidase

SAR Structure-Activity Relationship

sEH Soluble Epoxide Hydrolase

t-AUCB trans-4-[4-(3-Adamantan-1-ylureido)-cyclohexyloxy]-benzoic acid

TXA2 synthase Thromboxane A2 Synthase

VCAM-1 Vascular Cell-Adhesion Molecule-1
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Fig. 1.
ARA cascade.
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Fig. 2.
Prostaglandins, PGI2 and TXA2 from the COX pathway.
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Fig. 3.
LTs derived from the LOX pathway.

Hwang et al. Page 29

Curr Med Chem. Author manuscript; available in PMC 2014 July 28.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 4.
Epoxyeicosatrienoic acids and 20-HETE from the CYP450 pathways.
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Fig. 5.
Structures of redox inhibitors.
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Fig. 6.
Structures of pyrazoline derivatives.
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Fig. 7.
Structure of tepoxalin.
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Fig. 8.
Structures of thiophene based dual inhibitors.
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Fig. 9.
Structure of pyridone based dual inhibitor.
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Fig. 10.
Structures of DHDMBFs.
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Fig. 11.
Structures of NSAID based COX/5-LOX dual inhibitors.
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Fig. 12.
Structures of coxib based COX-2/5-LOX dual inhibitors.
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Fig. 13.
Structure of pyrrolizine based COX/5-LOX dual inhibitor.
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Fig. 14.
Structure of COX-2/sEH dual inhibitor.

Hwang et al. Page 40

Curr Med Chem. Author manuscript; available in PMC 2014 July 28.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 15.
Structure of 5-LOX/sEH dual inhibitor.
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Fig. 16.
Structures of 5-LOX/mPGES-1 dual inhibitors.
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Fig. 17.
Structure of COX-2/LTA4H and 5-LOX/TXA2 synthase dual inhibitors.
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Fig. 18.
Structures of 11β-HSD1/sEH dual inhibitors and sorafenib.
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