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Abstract

Impulsivity and compulsivity represent useful conceptualizations that involve dissociable

cognitive functions, mediated by neuroanatomically and neurochemically distinct components of

cortico-subcortical circuitry. The constructs were historically viewed as diametrically opposed,

with impulsivity being associated with risk-seeking and compulsivity with harm-avoidance.

However, they are increasingly recognized to be linked by shared neuropsychological mechanisms

involving dysfunctional inhibition of thoughts and behaviors. In this paper, we selectively review

new developments in the investigation of the neurocognition of impulsivity and compulsivity in
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humans, in order to advance our understanding of the pathophysiology of impulsive, compulsive

and addictive disorders and indicate new directions for research.

Introduction

Impulsivity may be defined as ‘a predisposition toward rapid, unplanned reactions to

internal or external stimuli with diminished regard to the negative consequences of these

reactions to the impulsive individual or to others’1, 2. In contrast, compulsivity represents the

performance of repetitive and functionally impairing overt or covert behavior without

adaptive function, performed in a habitual or stereotyped fashion, either according to rigid

rules or as a means of avoiding perceived negative consequences3, 4, 5. Impulsivity and

compulsivity do not represent unitary phenomena; rather they represent useful

conceptualizations that involve dissociable cognitive functions, mediated by

neuroanatomically and neurochemically distinct components of cortico-subcortical circuitry.

These constructs were historically viewed as diametrically opposed, with impulsivity being

associated with risk-seeking and compulsivity with harm-avoidance. However, impulsivity

and compulsivity have in common the profound feeling of “lack of control”, and are

increasingly recognized to be linked by shared neuropsychological mechanisms involving

dysfunctional inhibition of thoughts and behaviors6.

Impulsive and compulsive mechanisms are implicated in many psychiatric disorders.

However, there exist certain disorders in which impulsive and/or compulsive behavior

seems, at least on phenotypic grounds, to be the essential and most damaging constituent.

These often highly heritable and disabling lifespan disorders include those characterized

mainly (but not exclusively) by compulsive acts, such as the newly created DSM-5

Obsessive-Compulsive and Related Disorders (OCRDs) cluster that comprises obsessive–

compulsive disorder (OCD; which is considered the archetypal compulsive disorder), body

dysmorphic disorder (BDD) and hoarding disorder. Trichotillomania and skin-picking

disorder, also classified with the OCRDs, are defined by body-focused repetitive behaviors

or grooming habits that can be considered as either impulsive or compulsive, depending on

the nature of the symptoms expressed in individuals, whereas attention deficit hyperactivity

disorder (ADHD) appears to be characterized primarily by motor impulsivity. Of great

interest, the pathological behavior associated with disorders of substance addiction (SA) and

‘behavioral addiction’, such as pathological gambling (or gambling disorder in DSM-57),

appears to change from reward-driven impulsive responding to habit-related compulsive

responding, over the course of time8, 9, 10.

Many of these disorders cluster together, either within the same individual (comorbidity) or

within families, implying the possibility of shared pathophysiological mechanisms11, 12.

Moreover, there is evidence of overlap in the treatment-response across some disorders. For

example, OCD and BDD typically respond to serotonin reuptake inhibitors (SRIs;

clomipramine and selective SRIs, SSRIs) and to SSRIs combined with antipsychotic

agents13, as do the compulsions associated with autistic disorders14. However, unlike OCD,

trichotillomania appears SSRI-unresponsive and data from single randomized controlled

trials suggest that monotherapy with olanzapine (an antipsychotic agent)15 and n-acetyl
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cysteine (an amino acid compound) can be effective16. Antipsychotics represent first-line

treatment for Tourette’s syndrome17. ADHD, on the other hand, responds to noradrenergic

reuptake inhibitors as well as dopaminergic agents (e.g. amphetamine), whereas substance-

use and gambling disorders may share a therapeutic response to opiate antagonists18.

Traditionally, compulsive disorders such as OCD and impulsive disorders such as ADHD or

addictions have been viewed at opposite ends of a single dimension; the repetitive

compulsive acts that characterize OCD are designed to reduce or avoid harm and contrast

with the reckless or reward-seeking behaviors that characterize impulsive disorders that

invoke or disregard risk. However, the investigation of ‘endophenotypes’ (intermediate

phenotypes) that are thought to lie closer than the expressed behavior to the genetic and

environmental origins of the disorders19,20, such as changes in cognitive performance, or

structural and functional brain imaging abnormalities, increasingly suggests that rather than

polar opposites, compulsivity and impulsivity may represent orthogonal factors that each

contribute in varying degrees toward the development of these disorders. A high level of

comorbidity exists between impulsive and compulsive disorders across different cultures,

and when these disorders occur together, they tend to be more severe21. Both impulsive and

compulsive pathology may be underpinned by a shared tendency towards behavioral

disinhibition, possibly resulting from failure in ‘top–down’ cortical control of fronto-striatal

brain circuits, or alternatively from over-activity within striatal neural circuitry.

The US National Institute of Mental Health Strategic Plan calls for the development, for

research purposes, of new ways of classifying psychopathology based on dimensions of

observable behavior and neurobiological measures (research domain criteria - RDoC; http://

www.nimh.nih.gov/research-funding/rdoc/index.shtml). Its aim is to define basic

dimensions of function to be studied across multiple units of analysis, from genes to neural

circuits to behaviors, cutting across disorders as traditionally defined. The intention is to

translate results from basic neurobiological and behavioral research to an improved

integrative understanding of psychopathology and the development of new and/or optimally

matched treatments for mental disorders. In line with this strategy, in this paper we

selectively review new developments in the investigation of the neurocognition of

impulsivity and compulsivity in humans, in order to advance our understanding of the

pathophysiology of impulsive and compulsive disorders. We focus on the following key

questions:

1. Can we define the neuropsychological and associated neuroanatomical and

neurochemical mechanisms that contribute toward impulsive and compulsive

responses in humans?

2. How do these mechanisms differentially contribute toward impulsive disorders

(e.g. ADHD), compulsive disorders (e.g. OCD), and addictive disorders (e.g.,

substance-use and gambling disorders)?

3. Can we link genes with the neuropsychological changes underpinning impulsive

and compulsive behaviors and disorders?

4. Does the presence of impulsivity or compulsivity have prognostic implications for

treatment-response?
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5. What are the next steps for research?

Theoretical models of impulsivity and compulsivity

Impulsivity and compulsivity are each multidimensional constructs. They involve disruption

within a wide range of neural processes, including attention, perception and coordination of

motor or cognitive responses. These processes are thought to be underpinned by separate but

intercommunicating ‘impulsive’ and ‘compulsive’ cortico-striatal neurocircuitry, each

circuit modulated by different neurotransmitters22, 18.

According to current neuroanatomical models, at least two striatal nodes (one impulsive and

one compulsive) drive these behaviors, while two corresponding prefrontal nodes restrain

them. Thus, the impulsive circuit may comprise a striatal component (ventral striatum/

nucleus accumbens) driving the impulsive behaviors, while a prefrontal component (anterior

cingulate/ventromedial prefrontal cortex, VMPFC) exerts inhibitory control. Similarly, in

the compulsive circuit, a striatal component (caudate nucleus/putamen) may drive

compulsive behaviors and a prefrontal component (orbitofrontal cortex, OFC) may exert

inhibitory control. Other important areas for cortical control include the lateral PFC,

especially on the right side and increasingly (but mainly in social cognition or hyperbolic

discounting choice procedures), the dorsolateral (DL)-PFC. Hyperactivity within the striatal

components or abnormalities (presumably hypoactivity) in the prefrontal components may

result in an increased automatic tendency for executing impulsive or compulsive behaviors,

depending on the sub-component affected. Current understanding suggests OCD

demonstrates over activation (hyper-activity) during resting state and symptom provocation

and even error monitoring. However, there are many studies involving cognitive function

which clearly indicate hypoactivation, i.e. reduced activity in areas such as the DLPFC, and

OFC during executive functions23, 24, 25, 26. In addition, overlap between these functional

systems is likely to exist, so that what starts out as a problem in the impulsive circuit may

end up as a problem in the compulsive circuit and vice versa, thereby contributing to an

‘impulsive–compulsive diathesis’ model27, 18, 28. In the same patient, deep brain stimulation

of the nucleus accumbens may reduce compulsivity at certain voltages and elicit impulsivity

at others29, suggesting that under different contingencies nodes within the same circuitry

may direct both forms of behavior. Other prevailing influences on cortico-striatal activity,

e.g. diminished striatal activation to rewards during engagement in reward-related behaviors,

may also contribute to seemingly impulsive or compulsive behaviors30.

Impulsivity: neurocognitive components and role in impulsive and

compulsive disorders

Data indicate that impulsivity may derive from several distinct neurocognitive mechanisms,

each with separate neuroanatomical and neurochemical bases. Debate currently exists

regarding the number and identity of domains into which impulsivity might fractionate, with

two or more domains typically identified 31. Proposed domains may include (i) a tendency

to pre-potent motor disinhibition (motor impulsivity), (ii) a tendency towards decision-

making deficits (decision-making impulsivity), (iii) difficulty in delaying gratification and

choosing immediate small rewards despite negative long-term consequences (choice
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impulsivity), and (iv) insufficient information sampling before making a choice (reflection

impulsivity). It should be noted that these represent working forms of impulsivity that are

defined not clinically but rather on the basis of a number of cognitive tests, described below.

Thus defined, different forms of impulsivity can co-occur within a given disorder, and may

even overlap in terms of what is being measured.

(i) Motor impulsivity

Motor impulsivity, also termed response or rapid-response impulsivity, refers to impairment

in the ability to stop motoric responses following changes in environmental circumstances.

This is typically operationalized in the laboratory using Go/No-Go (GNG) and Stop-Signal

Reaction Time (SSRT) tasks32, 33.

In GNG tasks, subjects perform motor responses to go cues but should refrain from

responding when a no-go cue is presented. On SSRT tasks, subjects make motor responses

to ‘Go’ cues (e.g. directional arrows), but attempt to suppress responses when a stop-signal

occurs some period of time after presentation of the go cue. The chief distinction is that

GNG involves stopping responses before they have been initiated while SSRT involves

termination at a later stage of the motor response. For the latter type of task, the period

between the ‘go’ and ‘stop’ signal is varied using a tracking algorithm over the course of the

task for each participant depending on performance: this enables calculation of the stop-

signal reaction time (SSRT), which is a measure of the internal time required to stop the

already triggered motor command.

Multiple tiers of evidence from functional magnetic resonance imaging (MRI) findings,

individuals with focal frontal lobe lesions and animal research have demonstrated that

response inhibition is sub-served by a neural network encompassing the right inferior frontal

gyrus (RIFG) and sub-cortical (including subthalamic) connections32,34. Pharmacological

manipulations in rats and in humans suggest that inhibitory control, as operationalized by

the SSRT, falls under the neuromodulatory influence of the noradrenaline/norepinephrine

system35, 36, 37. In contrast, serotonin appears not to be centrally involved in this particular

measure of impulsivity38, 35.

Impaired response inhibition has been reported across many impulsive-compulsive disorders

to different degrees. Motor impulsivity in the context of ADHD is perhaps the best-studied

construct. Meta-analysis indicated that people with ADHD, which may be considered the

archetypal impulsive disorder, manifest impaired response inhibition with a medium-large

effect size (Cohen’s D = 0.64–0.89)39, 40. This paradigm is useful in understanding

treatment mechanisms for the disorder. Medications with demonstrable efficacy in treating

the core impulsive symptoms of ADHD, such as methylphenidate (stimulant) and

atomoxetine (selective noradrenaline reuptake inhibitor, SNRI), have been shown to

improve response inhibition in ADHD patients following acute administration41, 42, 35.

In a study in healthy volunteers that combined pharmacological manipulation with

functional MRI (pharmaco-fMRI), it was found that single-dose atomoxetine augmented

right frontal brain activation during inhibitory control on the SSRT task, and that the extent

of augmentation correlated with greater drug plasma levels43. Using a flanker GNG task and
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a higher atomoxetine dose in pharmaco-fMRI, more failed inhibitions were observed in

healthy volunteers after medication (single-dose), along with drug-dependent increases in

error-signaling in bilateral inferior frontal cortices and the pre-supplementary motor area

(pre-SMA)44. More recent work has sought to explore the effects of methylphenidate and

atomoxetine on inhibitory control during pharmaco-fMRI in ADHD itself. Rubia and

colleagues found that both medications (single-doses) normalized left prefrontal cortex

under-activation (observed versus controls), while similar right-sided effects were more

pronounced for methylphenidate45. Collectively, these data suggest that people with ADHD

show motor impulsivity coupled with fronto-striatal dysfunction, both of which can be

normalized, to some degree, with ADHD medication. However, considerably more work is

needed to elucidate the precise mechanisms (e.g. specific receptor subtypes involved),

reasons for different responses across individuals, and brain effects with longer-term dosing.

Neurocognitive studies of response inhibition as measured by the SSRT and GNG tasks

have also been performed in predominantly ‘compulsive’ disorders such as OCD. Such

investigations have frequently reported abnormalities in motor inhibition in OCD46 and

possibly also in BDD47. Impaired response inhibition is shared by unaffected, first-degree

relatives of OCD subjects48. In addition, the degree of impairment is significantly associated

with reduced grey matter volume in the OFC and RIFG and increased grey matter volume in

cingulate, parietal and striatal regions49. Thus, structural variation in large-scale brain

systems related to motor inhibitory control may mediate a component of the genetic risk for

OCD and arguably represents a neurocognitive endophenotype of OCD-related response

inhibition difficulties. Relative to comparison subjects, patients with OCD and their siblings

additionally showed greater activation in the left pre-SMA during successful inhibition using

the SSRT task50, as well as a state-dependent deficit in recruiting RIFG and right inferior

parietal cortex, which may contribute to the inhibition deficit. Pre-SMA hyperactivity may

therefore constitute another neurocognitive endophenotype of OCD that is possibly related

to inefficient neural processing within the pre-SMA itself.

Impaired response inhibition on the SSRT task has been reported in other impulsive or

compulsive disorders, including trichotillomania3, repetitive skin picking51 and pathological

gambling52. However the neural basis of these deficits has yet to be clearly elicited in the

majority of disorders. The SSRT deficit appears particularly pronounced in trichotillomania,

with impairments similar to those seen in adults with ADHD when not taking their usual

stimulant medication. In contrast, individuals with OCD show significantly less stop-signal

impairment in direct comparison with those with trichotillomania3. It is, however, important

to note that heterogeneity in the expression of SSRT deficits exists in these disorders, and

some studies have not replicated the findings53. One possible explanation under active

consideration is the existence of distinct subtypes of these disorders, each with a different

neurocognitive profile54, 55. Understanding cognitive heterogeneity in these disorders, for

motor impulsivity, but also for all cognitive functions considered in this paper, could be

important in terms of enabling treatments tailored to the individual.
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(ii) Disadvantageous decision-making

Decision-making is typically quantified using gambling tasks such as the Cambridge

Gamble Task (CGT), and the extent to which this represents a distinct domain of impulsivity

has been debated (2013 meeting of the International Society for Research on Impulsivity56).

The CGT fractionates different components of decision-making. As operationalized by this

paradigm, impulsive decision-making is defined as (i) gambling an excessive proportion of

one’s points; (ii) disproportionately choosing the ‘risky’ decision option (the option less

likely to yield a win); or (iii) disproportionately ‘crashing out’ and losing all one’s points

(going bankrupt). The Iowa Gambling Task (IGT), another decision making task, has

yielded inconsistent results57, 58 that could be a result of its potential sensitivity to additional

cognitive processes such as reversal learning59. In comparison with the Iowa Gambling

Task, CGT quantifies decision-making under risk with explicit probabilities rather than

ambiguity, and also more specifically examines decision-making as opposed to other

confounding cognitive domains (since it minimizes demands for learning, working memory

and cognitive flexibility)59, 60. Decision-making on the CGT and related tasks is mediated

through orbitofrontal and related cortical circuitry under probable serotonergic

modulation61, and subcortical circuitry under joint dopaminergic, noradrenergic and

serotonergic control62, 63.

Although OCD has been conceptualized as ‘a disorder of decision-making’64, findings with

the CGT and related tests have generally indicated intact decision-making in patients with

OCD versus controls58, 65. This finding is perhaps surprising given that the OFC is heavily

implicated in the pathophysiology of the disorder. To some extent, an underlying decision-

making deficit could have been masked by SSRIs, which many participants were taking in

the above CGT studies, there being reason to expect that these medications affect decision-

making function. This issue is being explored further in medication-free OCD individuals.

CGT decision-making was found to be intact in trichotillomania65, while children with

ADHD showed impulsive decision-making on the aspects of tasks that were normalized by

methylphenidate treatment66.

Pathological gambling is another condition in which logically one would expect decision-

making impairments to manifest, since the core features are highly suggestive of underlying

difficulties in weighing options and taking appropriate risks based on the available

environmental information. Consistent with this proposition, studies have identified

disadvantageous decision-making not only in people with pathological gambling, but also in

‘at risk’ individuals currently not meeting clinical criteria60, 67. Pathological gambling

shows high co-morbid expression with substance-use disorders and has been proposed as a

useful model of ‘behavioral addiction’ to explore the neurobiology underlying ‘addiction’

without the potential confounding effects of repeated substance misuse on brain function.

Supporting this proposition, disadvantageous decision-making occurs both in pathological

gambling and in substance-use disorders (see below). Impaired CGT decision-making has

also been found in people at elevated risk of suicidality68, 37.

Drawing findings relating to disadvantageous decision-making together, the emerging

picture is of relatively spared decision-making in OCD and related grooming disorders (e.g.

trichotillomania), but of pronounced decision-making deficits in behavioral addiction (e.g.
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pathological gambling) and substance addictions; these decision-making tendencies may

predispose not only to these disorders but also to suicidality in some cases, with important

clinical implications.

(iii) Choice impulsivity

Choice impulsivity (or ‘impulsive choice’) refers to the excessive discounting of delayed

reinforcement69. While a measure of choice impulsivity is theoretically obtainable from

some decision-making tasks, more usually it is obtained in studies via a stand-alone

temporal discounting task, specifically designed for this purpose. Participants are trained to

select between small rewards that are given immediately and larger rewards that are given

after a relative delay. The temporal discounting function quantifies the effect of delay on

preference; the greater the discounting parameter, the greater the choice impulsivity70. In

rats undertaking a delay-discounting task (DDT), real-time increases in serotonin efflux

were observed in the medial prefrontal cortices while increases in 3,4-di-hydroxy-

phenylocetic acid (DOPAC, a dopamine metabolite) were observed in the OFC, suggesting a

double dissociation between serotonergic and dopaminergic modulation of impulsive

decision-making within distinct areas of frontal cortex71. Translational research indicates

that pro-dopamine/noradrenaline stimulant medications generally reduce choice impulsivity,

albeit not consistently72, 73. There is also evidence from rats that D1 dopamine receptor

antagonism increases choice impulsivity, as does alpha-2 adrenergic receptor agonism74,

whereas changes in serotonin neurotransmission exert a complex influence on choice

impulsivity, probably depending on the receptor type stimulated73, 75. Moreover, recent

studies in rats have also implicated glutamatergic76, 77, 78 (Floresco et al., 2008; Wischhof et

al., 2011; Cottone et al., 2013) and cannabinoid79, 80 (Wiskerke et al., 2011; Navarrete et al.,

2012) signaling in choice impulsivity81. It has been suggested that temporal discounting

involves three distinct sets of neural regions: those involved in valuation (substantia nigra,

ventral striatum, and VMPFC), cognitive control (anterior cingulate cortices and VMPFC,

and imagery/prospection (medial temporal lobe)82. White matter tract connections between

these implicated neural nodes are also likely to be important, since it has been shown that

reduced white matter integrity within fronto-striatal tracts is associated with higher choice

impulsivity in healthy volunteers83.

To the knowledge of the authors, delay discounting (choice impulsivity) has not yet been

studied in OCD, trichotillomania, or pathological skin picking. Exaggerated choice

impulsivity has been reported in several ADHD studies84, 85, 86, 87. Methylphenidate reduces

discounting of rewards in children with ADHD88, but intriguingly only for those rewards

that are experiential (real money) rather than hypothetical. Increased impulsive choice has

also consistently been observed in substance-addicted individuals, including those addicted

to opiates, alcohol, tobacco and psychostimulants89, 90, 91. These changes have been

observed when money, substances, health or freedom are used as rewards92, 93, 94, 95.

Interestingly, these increased discounting rates are absent or less prominent in former

addicts92, 94, suggesting that increased discounting is either a consequence of prolonged

substance abuse or a predictor of unsuccessful abstinence. There is evidence from animal

studies to support both explanations (see below).
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(iv) Reflection impulsivity

Reflection impulsivity refers to a reduced tendency towards collecting salient information

from the external environment before making a decision96. People who are ‘reflectively

impulsive’ tend to make choices rapidly rather than wait for more information germane to

that decision being made available as time progresses. Reflection impulsivity is typically

measured using information-sampling tasks such as the Cambridge Information Sampling

Task (IST)97. Research in rats found that reflection impulsivity was increased and reduced

respectively by 5-HT2 receptor antagonism and agonism98. In healthy human volunteers,

transient reduction of brain serotonin using the tryptophan depletion technique selectively

disinhibited the suppressive effects of small losses of information sampling behavior on the

IST, such that subjects collected more information despite their being a cost to this99. The

neural substrates mediating reflection impulsivity have yet to be delineated.

Elevated reflection impulsivity has been found in people with substance dependence, and

also in those who previously used illicit substances97, 100. People with problem gambling (a

clinical disorder not fulfilling full criteria for pathological gambling, or putative prodromal

form) showed increased reflection impulsivity compared to controls, as did alcohol-

dependent individuals60.

There is limited research using reflection impulsivity tasks in impulsive-compulsive

disorders otherwise. Reflection impulsivity did not differ significantly between children with

ADHD and healthy matched controls, nor was it affected by single-dose

methylphenidate101. Reflection impulsivity was also found to be intact in OCD and

trichotillomania65, and in pathological skin picking102.

Compulsivity: neurocognitive components and role in impulsive and

compulsive disorders

Compulsivity is, perhaps, less well-defined or well-investigated than impulsivity.

Compulsive behavior is likely to result from alteration within a wide range of neural

processes, including attention, perception, and coordination of motor or cognitive responses.

Convergent evidence from translational studies of mental disorders characterized by high

levels of behavioral compulsivity, such as OCD, implicates ‘behavioral disinhibition’,

resulting from failures in ‘top–down’ cortical control of fronto-striatal circuits, or

alternatively from overactivity within striatal habit circuitry, as key neurocognitive

mechanisms that underpin the repetitive performance of compulsive acts103. The diminished

ability or tendency to restrain prepotent motor responses, as exhibited in studies of OCD

patients using the SSRT task3 (see above), raises the intriguing possibility that behavioral

mechanisms that are usually considered to contribute toward ‘impulsive’ behavior

additionally contribute to disorders characterized by high levels of compulsivity and/or the

tendencies to perform compulsive acts.

To date, neurocognitive measures of compulsivity have typically assessed the repetitive

component of the construct with respect to the ability to flexibly: (i) adapt behavior after

negative feedback (e.g., probabilistic reversal learning tasks) or (ii) switch attention between

stimuli (e.g., intra-dimensional/extra-dimensional (ID/ED) set-shifting task). The diminished
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ability or willingness to disengage from repetitive acts or obsessive thoughts could be

described as a persistence of a behavioral or mental set, or a diminished ability or

willingness to shift sets. Perseveration of actions and thoughts could be conceptualized as

reflecting cognitive inflexibility and representing a key neurocognitive process in

compulsivity. Additionally, tasks that assess (iii) attentional bias or (iv) the formation of

automatic stimulus-response behaviors (i.e. habits) may contribute to compulsivity and so

warrant consideration.

(i) Contingency-related cognitive flexibility

Exerting flexibility in learning and unlearning behavior, based on (probabilistic)

contingencies (“probabilistic reversal-learning”), may be particularly relevant to the

development of compulsive tendencies. Contingency-related flexibility is dependent on

serotoninergic systems35, 104 and has been linked to OFC function. OFC function

contributes to the ability to use outcome expectancies in adapting future behavior105, 106, as

does thalamic and striatal function107, 108, 109. Perseverating on a behavior that was once

rewarded, but is later associated with negative consequences, may reflect a lack of flexibility

in learning and result in rigid, maladaptive, or compulsive behavior. As such, (probabilistic)

reversal-learning paradigms and tasks employing stimulus-response contingencies paired

with changes in reward and loss schedules are relevant to investigate in relation to

compulsivity.

Across species, reversal learning is impaired by lesions to the OFC but not the

DLPFC110, 111. Reduced activation of the OFC, lateral PFC and parietal cortex is observed

during reversal learning not only in patients with OCD but also in their unaffected, never-

treated relatives112, 113. Reversal-learning–related hypofunction, therefore, appears to be a

candidate endophenotype for compulsivity that exists in people at increased genetic risk of

OCD, even in the absence of chronic treatment or symptom confounders.

(ii) Task/attentional set-shifting

Task-shifting (also referred to as set-shifting or attention-switching) can be subdivided in

rule-shifting and perception-shifting: whereas rule-shifting requires a change of goal-related

information (a change of the task that should be performed), perception-shifting refers to

reorienting of attention to different characteristics of the same stimuli114. A “set” usually

refers to the characteristic that is relevant in a given trial (for example ‘color’ when the task

is to define the color of a stimulus, and the appropriate stimulus-response mapping). Set-

switching and task-switching are sometimes used interchangeably. Rule-switching is

associated with a greater engagement of the DLPFC, whereas perception-shifting is

associated with a greater recruitment of the parietal cortex115.

The ID/ED shift task examines different components of attentional flexibility including

reversal learning, set formation and inhibition and shifting of attention between stimulus

dimensions (ED-shifting)116. Studies have demonstrated that ED-shifting is impaired in

OCD but not in trichotillomania3, 117 and additionally in the unaffected first-degree relatives

of OCD subjects48, implicating this aspect of cognitive inflexibility as an additional

candidate endophenotype for OCD-related compulsivity. Moreover, ED-shift impairment
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has been identified in patients with obsessive-compulsive-spectrum disorders including

obsessive-compulsive personality disorder118, schizo-OCD119 and possibly BDD47.

(iii) Attentional bias/disengagement

Another concept that may contribute to compulsive symptoms within disorders such as OCD

and BDD involves attentional bias; i.e., the degree to which an individual attends or avoids

attending disorder-relevant stimuli. Attentional bias involves preferential attention towards

disorder-relevant stimuli, and is evident in anxiety, mood and addictive disorders120, 121.

Attentional disengagement refers to the ability to disengage and shift attention away from

disorder-relevant stimuli (e.g. from disorder-relevant stimuli, relative to non-disorder-

relevant stimuli).

Attentional disengagement difficulties may contribute to compulsive symptoms by inducing

rigidity in the presence of disorder-relevant stimuli. Several neurocognitive studies have

investigated the interfering effect of disorder-relevant material on task performance in OCD.

For example, the presentation of OCD-related stimuli versus non-OCD-related stimuli

results in increased difficulty in switching away from such stimuli in a stop-change

paradigm in individuals with OCD122. The evidence concerning attentional bias towards

OCD-related stimuli has been rather more varied and inconsistent123, 124, 125, 126, which has

been taken as evidence to distinguish OCD from other anxiety disorders. It remains possible

that a bias may only be present in patients with specific symptoms and not others127.

Patients with BDD may show a variety of disorder-relevant perceptual biases128 including a

tendency to poorly recognize fearful expressions on the Facial Expression of Emotion:

Stimuli and Test129, 130, implicating an influence of attentional bias on neurocognitive

processing in this disorder as well47. Brain imaging studies in OCD suggest exaggerated

symptom-specific frontal and subcortical activations to disorder-relevant stimuli in OCD

patients131, 132, which may reflect a sustained effort to suppress strong responses to OCD

triggers131.

(iv) Habit learning

Repetitive performance of behaviors without apparent adaptive function may be

characterized by not only a diminished ability to inhibit action, but also a lack of sensitivity

to goals. In OCD, for example, many patients are fully aware that compulsive responses may

have little to no relation to desirable outcomes, yet despite this knowledge, they continue to

perform them. According to associative learning theories of instrumental behavior133, 134,

actions can be supported by two systems: a goal-directed and a habitual system. When the

goal-directed system functions, actions are performed to obtain desired goals or to avoid

undesired events. After multiple repetitions, the habitual system begins to render behavior

automatic135, 136, 137, allowing simple acts to be conducted without much effort. An

imbalance between these systems is thought to contribute to OCD, whereby compulsivity is

hypothesized to arise from a shift from goal-directed action to habit, rendering behavior

insensitive to its outcome. In this way, habit formation may be a process that captures the

ego-dystonic aspect of compulsivity, while also appealing to the previously described

deficits in response inhibition observed in OCD.
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The hypothesis that habits may substantially contribute to OCD developed out of the

observation that the fronto-striatal circuits that are affected in OCD also mediate the

formation of normal habits in healthy individuals and rodents138. Since then, several studies

have tested this possibility and revealed a consistent pattern of dysfunction in OCD. The

first such study examined the formation of appetitive habits, observing that OCD patients

show impairment in goal-directed learning, leading them to respond excessively to stimuli

that are no longer associated with valuable outcomes139. A subsequent study replicated this

effect using a different paradigm, finding that economic decision-making that relies on

action-outcome simulation is impaired in OCD patients140. Another study tested whether

OCD patients form habits in avoidance more readily than healthy control subjects. The

authors found that this was the case and presented preliminary evidence supporting the

interesting possibility that rather than being driven by fear, the development of avoidance

habits might actually induce irrational harm-related beliefs (obsessions) in some patients

with OCD141.

Although a direct neuroimaging investigation of excessive habit formation in OCD is still

wanting, basic research in healthy individuals and experimental animals implicate the

fronto-striatal circuits in the balance between goal-directed action and habit142, 113. In a

diffusion tensor imaging study, habitual action toward no-longer-rewarding outcomes was

predicted by estimated white matter tract strength in the premotor cortex seeded from the

posterior putamen (as well as by gray matter density in the posterior putamen determined

with voxel-based morphometry). In contrast, flexible goal-directed action was predicted by

estimated tract strength in the ventromedial prefrontal cortex seeded from the caudate143.

While the role of dopamine in human action control remains poorly understood, reducing

dopamine function using acute dietary phenylalanine and tyrosine depletion has been shown

to shift the balance of responding toward habitual control in females144.

Interestingly, habit formation is also thought to play a major role in drug addiction, as

initially impulsive drug-seeking becomes compulsive with continued use8. An important

avenue for future research will be to delineate the behavioral and neurobiological overlap

between disruption in the habit system in disorders of appetitive compulsion such as drug

addiction and disorders where avoidance compulsions are characteristic of the psychiatric

phenotype, such as OCD.

How far do impulsive and compulsive mechanisms contribute to disorders

of (i) substance or (ii) behavioral addictions?

(i) Substance addiction

Substance addiction may be defined as a chronic relapsing disorder characterized by

diminished control over substance intake145. Almost by definition, the phenotype of

substance addiction contains elements of impulsive and compulsive behavior. That is, the

diminished ability or willingness to shift thoughts and behavior away from substance use

and control urges to consume the substance, and the preference for the immediate reward

(or, in some circumstances, reduction of distress) associated with substance intake over the,

arguably larger, but delayed benefits associated with a non-addicted lifestyle, indicate that
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compulsive and impulsive traits, respectively, are inherent components of

addiction146, 133, 147, 8, 148, 149, 150, 91, 9, 151, 152. Indeed, there is a wealth of evidence

showing impulse-control deficits and compulsive behaviors in humans with substance

addictions. This has been demonstrated using tasks for impulsive action, such as GNG and

SSRT tasks, impulsive choice in DDTs, and reflection impulsivity tasks, as well as self-

report measures of impulsivity. Moreover, tasks that assess cognitive flexibility, such as set-

shifting paradigms and probabilistic reversal-learning tasks, have also demonstrated

impairments in individuals with substance addictions146, 147, 149, 152. This begs the question

of whether impulsive and compulsive behaviors represent vulnerability factors for addiction

or are the consequence of prolonged excessive substance intake.

One way to address this issue is to perform prospective studies, or to compare addicted

individuals with their non-addicted siblings. Importantly, studies in animals have provided

evidence to indicate that there is a bi-directional relationship between impulsivity and

addiction. Thus, high impulsivity on the 5-choice serial reaction time task (5-CSRTT; a

rodent analogue of the continuous performance task) predicts the sensitivity to the

reinforcing properties of cocaine and nicotine, the progression to cocaine addiction-like

behavior, and the sensitivity to relapse after abstinence153, 154, 155, 156. Furthermore, high

levels of impulsive choice in a DDT are associated with increased alcohol and cocaine self-

administration, and higher persistence of nicotine- and cocaine-seeking157, 155, 158, 159, but

impulsivity on neither task predicted heroin self-administration160, 161. Conversely, several

studies have shown that a period of drug self-administration enhances impulsive behavior in

the 5-CSRTT or DDT162, 163, 164, 160, 165, 157, 154. Interestingly, the increases in impulsivity

in the DDT after heroin self-administration seem to be transient161, which is consistent with

studies in humans that show ameliorations in delay discounting in abstinent or former

addicts92, 94. The reduced impulsive choice in abstinent addicts could mean that increased

discounting is the result of prolonged substance abuse, or that lower discounting rates

represent a predictor for successful abstinence166. This latter suggestion is supported by the

findings in animal studies that increased impulsivity in the DDT predicts slower extinction

of self-administration and greater cue-induced reinstatement of extinguished

responding157, 155. Together, these studies provide evidence for the notion that impulse-

control deficits are a risk factor for addiction, although this seems to depend on the type of

impulsivity and substance used. In addition, substance abuse itself may enhance impulsivity,

especially impulsive choice.

Recent studies in humans have also shed light on the validity of impulsivity as a

vulnerability marker for addiction. Siblings of psychostimulant-addicted individuals were

found to display higher levels of impulsivity in the SSRT167, 168, and higher self-reported

impulsivity than controls (albeit lower than their addicted siblings)169, 168. These data

suggest that motor impulsivity is a vulnerability factor for psychostimulant addiction,

leading to the intriguing question as to what protects the impulsive, but non-addicted

individuals from substance-abuse problems. An important clue to this question is provided

by studies showing increased sensation-seeking characteristics in recreational

psychostimulant users as well as those with stimulant addiction, but not in their non-

addicted siblings169, 170. Together, these studies suggest that the combination of increased

impulsivity and increased sensation-seeking, but not just one of these two characteristics,
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confers a greatly enhanced risk for psychostimulant addiction. Prospective studies have also

provided evidence for impulsive behavior as a possible risk factor for addiction. Impulsive

choice in a DDT was found to predict smoking171, and lower SSRT performance predicted

alcohol and drug-related problems in adolescents172, although another study found SSRT

performance not to predict the progression to heavy alcohol drinking in college students (in

which performance on the Iowa Gambling Task did have predictive value173).

Regarding compulsivity, attentional set-shifting (in a rodent analogue of the Wisconsin Card

Sort Test) has been shown to be impaired in rats with a history of methamphetamine self-

administration174, and cocaine self-administration in rats and primates leads to reversal-

learning deficits175, 176. Importantly, compulsive aspects of addiction have been found to

occur in animals after prolonged substance self-administration177, 178. That is, after

prolonged cocaine and alcohol intake, rodents have been shown to display insensitivity to

punishment and persistent substance-seeking153, 179, 180, 181, 182, 183, 184, 185. Recent studies

have suggested that altered functioning in the prelimbic PFC, nucleus accumbens core and

dorsolateral striatum as well as reduced forebrain serotonin (in particular through 5-HT2C

receptors) as underlying mechanisms of compulsive substance-seeking in

rodents186, 187, 181, 188, 189, 190.

Whether compulsivity is cause or consequence of addictive behavior has not been

investigated in great detail. The animal studies cited above suggest that compulsivity results

from substance abuse, contributing to the development of addictive behavior, particularly in

vulnerable individuals, such as those with impulse-control deficits191, 192. However, reduced

cognitive flexibility has also been shown to predict addictive behavior to some degree in

prospective and sibling studies168, 172. In a resting-state fMRI study that directly compared

OCD and stimulant-dependent individuals, reduced functional connectivity between the

OFC and dorsal medial premotor cortex was observed in both patient groups, compared with

healthy controls, and the degree of ‘OFC disconnection’ correlated with ratings of clinical

compulsivity193, implicating functional OFC-disconnection as a possible endophenotype for

compulsivity across diagnostic categories.

In summary, there is evidence to support the idea that impulse-control deficits represent a

risk factor for substance addiction, and, conversely, that substance abuse induces or

exacerbates impulsivity. Prolonged excessive substance use may lead to compulsive

behavior, particularly in impulsive individuals153, 169, 191. Whether compulsive traits also

comprise a vulnerability factor for addiction remains to be thoroughly investigated.

Importantly, studies into the relationship between impulsive and compulsive behavior on the

one hand, and substance addiction on the other, need to consider the heterogeneities of the

impulsivity and compulsivity constructs as well as the substances abused. There is likely to

be specificity regarding the subtype of impulsivity/compulsivity that is related to addiction

to certain substances153, 147, 160, 161.

(ii) Behavioral addiction

Arguably the best-studied behavioral addiction is pathological gambling, a condition

recently reclassified as an addiction and renamed as “gambling disorder” in DSM-57, 194.

Several theoretical models have been proposed to explain addictions and addiction
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vulnerability (e.g. reward deficiency, impaired response inhibition and salience allocation,

allostasis, misdirected motivations195), and most of these have applicability to gambling and

substance-use disorders. Several studies have investigated reward processing in pathological

gambling and identified similarities with substance-use disorders. For example, using the

monetary incentive delay task, individuals with pathological gambling were found to

demonstrate relatively reduced ventral striatal activation in anticipation of monetary

rewards196, 197, a finding similar to that observed in people with alcohol dependence198. As

in alcohol dependence, an inverse relationship between ventral striatal activation during

reward anticipation and self-reported impulsivity was observed in both the pathological-

gambling and alcohol-dependent groups196, 199, suggesting that this feature of blunted

ventral striatal activation across behavioral- and substance-addiction groups relates similarly

to impulsivity. These findings resonate with those from neurocognitive assessments of

people with gambling and alcohol-use problems in which both groups demonstrated greater

impulsivity, but the alcohol-dependent group additionally showed impairments on executive

functioning thought to involve greater involvement of the DLPFC200.

Preliminary findings suggest that these patterns might extend to other behavioral addictions.

For example, binge-eating disorder, in part because of its association with poor impulse

control, has been proposed to represent the eating disorder with the most similarities with

addictions201. Obese individuals with binge-eating disorder, as compared to a body-mass-

index-matched group without binge-eating disorder, show relatively diminished activation

of the ventral striatum during reward anticipation202, a finding similar to those in alcohol

dependence and pathological gambling196, 197, 198. Furthermore, preliminary data suggest

that amongst individuals with binge-eating disorder, the degree of activation of the ventral

striatum relates importantly to clinically relevant measures like treatment outcome203. These

findings highlight the importance of identifying clinically relevant subgroups of people with

obesity and suggest the clinical relevance of impulsivity in this endeavor204, 205, 206. The

extent to which these findings might extend to other behavioral addictions warrants direct

examination.

Although dopamine function has been linked to reward processing in the striatum207,

differences have been observed in striatal dopamine function in behavioral and substance

addictions. For example, diminished D2-like dopamine receptor availability in the striatum

has been reported in stimulant dependence and obesity, providing support for a relationship

between the disorders208. However, several studies indicate a lack of differences in D2-like

dopamine receptor availability in the striatum between individuals with pathological

gambling and those without, although dopamine has been preliminarily associated with risk-

taking and mood-related impulsivity in pathological gambling209. Furthermore, amongst

individuals with Parkinson’s disease, those with pathological gambling showed differences

in ventral but not dorsal striatal availability of D2-like dopamine receptors, as well as

differences in ventral striatal displacement of [C11]raclopride during performance of a

decision-making (“gambling”) task, suggestive of greater dopamine release in the group

with pathological gambling209. These findings are similar to those in which individuals with

dopamine dysregulation syndrome (taking more dopamine replacement therapy medications

than prescribed, as if “addicted” to the medication) showed differences in ventral but not

dorsal striatal D2-like dopamine receptor availability following levodopa administration210.
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Thus, there seem to be both similarities and differences in the relationships between striatal

dopamine function and behavioral and drug addictions.

Advances in understanding the genetics of impulsive and compulsive

behaviors and disorders

Intensive efforts have been made to characterize the cerebral circuits underpinning cognitive

traits and define their genetic vulnerability, potentially leading to new effective treatments in

psychiatry211. The impulsivity trait is one of the most frequently studied traits in this regard.

Impulsivity is at least moderately heritable in children212 and in adults213, 214, with a strong

genetic continuity from mid to late adolescence212. A 45% heritability of self-rated

impulsivity in adults is compatible with the three twin studies performed on the

topic 215, 216, 217. Compulsivity has been infrequently studied; to date the ‘compulsive’

dimensions of OCD or obsessive-compulsive personality show little evidence of significant

heritability218.

No genome-wide association study (GWAS) has yet been performed on impulsivity.

Candidate genes, testing the “usual suspects” (i.e., mainly the genes coding for serotonin219

or dopamine220 receptors and/or transporters) have been analyzed. The DRD2 A1-allele was

associated with impulsive behaviors using a response inhibition test221 and a DDT222. The

A1 allele of the DRD2 gene may therefore relate to (1) heightened reinforcement sensitivity,

(2) greater need for practice to overcome inherent reinforcement-related learning deficits

(associated with fewer dopamine receptors in key brain reinforcement sites), or (3) reduced

inhibitory control223. Interestingly, some dopamine genes were associated with impulsivity

and one or more addictive disorders, including DRD4, DAT, MAOA and COMT224, showing

that a bridge between quantitative impulsivity and qualitative psychiatric disorders can be

proposed225. In a large study conducted in adolescents, allelic variation in rs36024, a single

nucleotide polymorphism involved in encoding the norepinephrine transporter (NET), was

significantly associated with extent of activation in the right frontal inhibitory network

during successful response inhibition226. These latter findings accord well with the

previously described pharmacological data, linking norepinephrine with response inhibition

and right frontal activation.

Some of these genes had independent replication(s), and some even led to positive meta-

analyses, but the effect size was limited (e.g. the Taq1 A1 allele of the DRD2 gene increased

the risk of impulsive traits or disorders by 30% only220). The genes involved might therefore

(1) have a role on specific characteristics of impulsivity, (2) may need to interact with

environmental factors that are present only in subgroups of subjects to be deleterious (gene-

by-environment interactions), (3) or may be numerous, each mutation having an important

impact but on a limited number of patients. Favoring this last hypothesis, two genes that

may have a particularly strong relationship with impulsivity (MAO-A and 5-HT2B genes)

share different characteristics227, 228. The genetic polymorphisms detected in these two

studies concern rare and severe mutations (stop codons), involve dopamine and/or serotonin

and were revealed in very small samples of patients with high impulsivity associated with

criminal offenses.
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Does the presence of impulsivity or compulsivity have prognostic

implications for treatment-response?

As indicated above, there is a growing body of literature indicating neurocognitive

impulsivity (assessed as poor response inhibition, steep temporal discounting and possibly

disadvantageous decision-making) in multiple neuropsychiatric disorders. Parallel to this,

the clinical implications of increased impulsivity for treatment-response or treatment drop-

out have been studied in prospective studies. In addictive disorders, there is evidence that

higher levels of impulsivity, specifically in the areas of reward-related and motor

impulsivity, but also attentional-bias 229, 230, 231, 232, results in earlier treatment drop-out, a

higher likelihood of relapse into addictive behaviors/disorders, and/or exacerbation of

substance-use-related problems (for examples of motor impulsivity and reward-related

impulsivity in substance-use disorders, see: 233, 234, 235, 173, 236; for examples in problem/

pathological gambling, see: 237, 238, 239, 240).

Interestingly, the treatment setting may affect the influence that impulsivity has on

treatment-outcome, as in a study comparing inpatient and outpatient treatment, impulsivity

only influenced treatment outcome in the outpatient treatment setting241. This suggests that

having a protective environment surrounding impulsive patients (i.e. in a residential

treatment setting) may restrict the negative influence of impulsivity on treatment outcome.

With regard to other disorders, such as OCD, there is mixed evidence with regard to the

prognostic role of neurocognitive functions for treatment response. A study of 138 OCD

patients indicated that most neurocognitive measures did not predict treatment response to

cognitive behavioral treatment with or without additional pharmacotherapy, although trends

were found for several measures relating to cognitive flexibility such as performance on an

alternation test and perseveration errors on the WCST242. A study of 63 pediatric OCD

indicates that on a broader level, diminished memory and executive functions may have a

negative effect on treatment response to cognitive behavioral therapy and/or sertraline in

children with OCD243. Of interest, in a study including tests on impulsivity (Stroop) and

mental flexibility (perseverations on a verbal learning test), lower perseveration was

associated with better response to CBT, but with worse response to fluoxetine, implying that

this form of mental flexibility may be a neurocognitive predictor of divergent outcome

directions for CBT versus fluoxetine. Given the small sample size (a total of 38 patients

across two treatment conditions), this finding needs to be replicated in further studies,

although a neuroimaging study (see below) from the same research group indicates that

responsivity to CBT versus fluoxetine is predicted by differential structural brain

characteristics as well244.

Neuroimaging data indicate that an important relationship exists between the neurocircuitry

underlying both reward impulsivity and attentional bias (cue reactivity) and treatment

outcome in substance-use disorders. One of the first such studies investigating

methamphetamine patients found that diminished frontal and cingulate cortex activity during

a decision-making task was associated with a higher rate of relapse245. In an fMRI Stroop

study, DLPFC activation was inversely associated with treatment retention and VMPFC,

striatal and cingulate activation was positively associated with cocaine abstinence in
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cocaine-dependent subjects18. An independent component analysis of the fMRI Stroop data

from the same cocaine-dependent subjects identified five functionally integrated activations

linked to Stroop performance, with the two circuits involving predominantly striatal and

ventral PFC regions associated with cocaine abstinence measures246. Preliminary findings in

individuals with pathological gambling also link activations of these brain regions (VMPFC,

ventral striatum) to treatment outcome247. Amongst treatment-seeking adolescent smokers

receiving behavioral therapies for smoking cessation, fMRI Stroop measures related to

within-treatment urine cotinine (nicotine metabolite) levels, with greater activation in the

inferior frontal gyrus, insula, thalamus and anterior cingulate associated with greater

reductions in cotinine levels during treatment248. A study in smokers indicated that both

behavioral responses (attentional bias to smoking-related words in a Stroop task) and

decreased functional MRI connectivity between the anterior insula and dorsal anterior

cingulate cortex was associated with relapse249. Neural responses in a gambling task

indicate that reward impulsivity also relates to escalation of cannabis use250.

In OCD, several small treatment studies are present that focus on the unraveling of the

neurophysiological mechanisms of treatment response. For instance, a study in 10 OCD

patients showed an increase in N-acetyl-aspartyl-glutamate in the pregenual ACC and a

decrease in glutamate plus glutamine (Glx) in the anterior middle cingulate cortex after

CBT251. Structurally, smaller gray matter putamen in OCD, normalized in response to

fluoxetine treatment, compared to CBT treatment252 and smaller lateral OFC was associated

with responsivity to fluoxetine, whereas larger right medial prefrontal cortex was associated

with better response to CBT244. Functionally, higher insular responses in high-conflict trials

in a Flanker task, diminished in response to CBT treatment in pediatric OCD patients253 and

in another fMRI study, increased caudate activity on a cognitive flexibility task254 was

present in treated OCD patients. PET studies showed increased glucose metabolism in the

caudate255, decreased thalamic glucose metabolism in combination with increased right

ACC metabolism256 to be associated with treatment response in OCD.

In addiction research, studies focusing on the neurophysiological mechanisms of treatment

response are in its infancy257 (Morgenstern, Naqvi, Debellis and Breiter, 2013). Currently,

only three neuroimaging studies258, 259, 260 (Vollstadt-Klein et al., 2011; Biol Psychiatry;

DeVito et al., 2012; Drug Alcohol Dependence; Martinez et al, 2011, Am J Psychiatry)

focused on the neurobiological mechanisms of treatment in addiction, and only one of these

studies included addictive behavior as an outcome measure260 (Martinez et al., 2011). In this

study, lower baseline DA transmission was associated with worse treatment outcome, but

the studied form of treatment – Contingency Management within a Community

Reinforcement Approach – did not change DA transmission in the responders260 (Martinez

et al., 2011). In the two other studies that investigated neurophysiological mechanisms of

action in substance dependence, one of the studies examined the effect of cue exposure

training (CET) on changes in functional brain activations to alcohol cues258 (Vollstadt-Klein

et al., 2011; Biol Psychiatry). CET was associated with diminished cue reactivity in

frontostriatal brain circuitry, but no clinical outcomes were reported. In the other study,

DeVito et al., investigated improvement on an (fMRI) Stroop task in 12 participants with an

SUD, comparing treatment-as-usual to computer-assisted CBT combined with treatment as

usual. The CBT combined treatment resulted in better Stroop performance and lower frontal,
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ACC, and thalamic brain activation patterns in combination with decreased STN activation

compared to the healthy controls. Clearly, the field of measuring neurophysiological

mechanisms of behavior change in addictive disorders is in need of larger studies that

include outcome measures relating to the relevant addictive disorder, in order to investigate

how impulsivity and compulsivity interact and which role they play in the treatment effects

of addiction.

In summary, there is evidence from neurocognitive and neuroimaging studies that specific

aspects of impulsivity may contribute importantly to relapse in addictive disorders. In

contrast, there are few studies investigating the role of compulsivity for the course of

neuropsychiatric disorders characterized by impulsive-compulsive characteristics, although

existing data support roles for both impulsivity and compulsivity in treatment outcome (e.g.,

see239, 240). For disorders more strongly associated with compulsivity, like OCD, the few

studies on the prognostic role of neurocognitive compulsivity in this disorder show mixed

results. Neuroimaging studies investigating the neurophysiological mechanisms of both

cognitive behavioral therapy and pharmacotherapy in OCD indicate that treatment effects

are associated with metabolic and functional changes in the fronto-striatal brain circuitry.

However, not all research results are consistently found across studies and most of these

studies were done in small (pilot) studies, which indicates the need for larger studies before

translation of neurophysiological treatment mechanisms into treatment allocation in OCD

can be made. Therefore, a clear need is present for studies on the prognostic value of

compulsivity in the addictive disorders, for studies on the prognostic value of both

impulsivity and compulsivity for neuropsychiatric disorders like OCD, and for large-scale

studies investigating the neurophysiological mechanisms of treatment response in addictive

disorders and in OCD.

Next steps for research

Despite significant progress in our understanding of the constructs of impulsivity and

compulsivity, their underlying psychobiology, and their contributions to various psychiatric

disorders, much remains to be learned. Here we highlight a number of questions that seem

particularly tractable using basic and clinical science methods.

First, there is a need to further clarify the operationalization of compulsivity and impulsivity.

We have noted that a range of neuropsychological mechanisms contribute to both impulsive

and compulsive responses. Nonetheless, as many of the relevant studies comprise work on

patients with putative impulsive and compulsive psychiatric disorders, it is difficult to draw

generalized conclusions about the relationship between trans-diagnostic behaviors and

underlying mechanisms. There is a literature on clinician-rated and self-reported impulsive

and compulsive symptomatology, some of which is based on dimensional self-reported

measures of behavioral tendencies, and some of which is based on categorical psychiatric

disorders. Further work is needed, in order to provide validated clinical measures that can be

used trans-diagnostically.

Second, while many of the advances in this area have relied on translational approaches,

much further application of both basic and clinical neuroscience methods is needed. At an
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imaging level, new tools are available for addressing the mechanisms of impulsivity and

compulsivity and for comparing and contrasting impulsive and compulsive disorders; these

include functional and structural connectivity methods, along with novel developments in

radioligands designed to quantify receptor binding for specific neurotransmitter receptors

and transporters261. At a molecular level, there is again a need to apply recently developed

methodologies to understand the precise basis of impulsivity and compulsivity, and to

determine relationships between mental disorders; these include genetic sequencing

methods, advances in epigenetics, and methods in proteomics and metabolomics. Much of

the focus in this area has been on monoamine neurotransmitters; this needs to extend to

include work on other neurotransmitter systems, molecules involved in neuroplasticity, and

other relevant molecular systems.

Third, much clinical work in this area has been focused on cross-sectional studies. There is a

real need for longitudinal work, ranging from work examining the prevalence and course of

impulsive and compulsive disorders in the community, to work examining the way in which

impulsive and compulsive symptoms evolve over time in the community. Such work may

well benefit from integration with basic and clinical neuroscience methods, so that we

understand, for example, changes in neurocircuitry and molecular signatures over time, and

their correlations with neuropsychological features and clinical symptoms over time. Work

focused on proximal mechanisms (e.g. understanding the precise genes and environments

that predispose to compulsive and impulsive responses) should be supplemented by work

that addresses distal/evolutionary mechanisms (and so provides insight into the possible

adaptive value of such responses).

The recent technological advances in imaging, genetics and other domains thus offer a

unique opportunity to investigate and better understand core components of disorders

characterized by impulsivity and compulsivity. The improved understanding has a

significant likelihood of being translated into improved and possibly personalized

approaches towards prevention, treatment and policy for a range of currently costly

psychiatric disorders.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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