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Abstract: Fragile X syndrome (FXS), due to mutations of the FMR1 gene, is the most common known
inherited cause of developmental disability as well as the most common single-gene risk factor for
autism. Our goal was to examine variation in brain structure in FXS with topological data analysis
(TDA), and to assess how such variation is associated with measures of IQ and autism-related behav-
iors. To this end, we analyzed imaging and behavioral data from young boys (n 5 52; aged 1.57–4.15
years) diagnosed with FXS. Application of topological methods to structural MRI data revealed two
large subgroups within the study population. Comparison of these subgroups showed significant
between-subgroup neuroanatomical differences similar to those previously reported to distinguish chil-
dren with FXS from typically developing controls (e.g., enlarged caudate). In addition to neuroanat-
omy, the groups showed significant differences in IQ and autism severity scores. These results suggest
that despite arising from a single gene mutation, FXS may encompass two biologically, and clinically
separable phenotypes. In addition, these findings underscore the potential of TDA as a powerful tool
in the search for biological phenotypes of neuropsychiatric disorders. Hum Brain Mapp 35:4904–4915,
2014. VC 2014 Wiley Periodicals, Inc.
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INTRODUCTION

Because of similarities between the behavioral profiles of
children with the single gene disorder fragile X syndrome
(FXS) and the criteria used to define autism spectrum disor-
ders (ASD), it had been hoped that FXS might serve as a use-
ful genetically-defined model for studying ASD. A recent
study by our group [Hoeft et al., 2011]; however, showed
that the gray and white matter profiles of young children
with FXS are significantly different from those of children
with idiopathic autism (iAUT; i.e., who do not have FXS).
These differences were of sufficient magnitude that the two
populations could be discriminated with a high degree of
accuracy (90%) through the use of machine learning
approaches. This finding also supports the hypothesis that
there is a high level of neurobiological heterogeneity among
individuals meeting diagnostic criteria for iASD [Abrahams
and Geschwind, 2008]. In the study presented here, we con-
centrate exclusively on children with FXS in order to explore
the degree to which neurobiological heterogeneity may be
present within the FXS population itself. To date, there has
been little work suggesting the existence of separable neuro-
biological phenotypes within FXS, the notable exception
being a study by Jacquemont et al. [2011] that suggests
methylation status may constitute a biomarker for predict-
ing response to AFQ056, a subtype-selective mGluR5 inhibi-
tor. Our motivation to search for neuro-phenotypic
subgroups within FXS derived from previous studies sug-
gesting the existence of behavioral subgroups based on
whether individuals met criteria for autism [Brock and Hat-
ton, 2010; Wolff et al., 2012]. Thus, we sought to explore the
neuro-phenotypic “landscape” of FXS to attempt to deter-
mine whether there may be previously undiscovered biolog-
ical underpinnings to this behavioral observation. In this
sense, our work may be seen as part of current efforts to
understand the biological basis of neuropsychiatric pathol-
ogy (e.g., the RDoC approach articulated by NIMH: http://
www.nimh.nih.gov/research-priorities/rdoc/index. shtml.)

To investigate putative phenotypic subgroups within
FXS as captured by MRI data, we employed topological
data analysis (TDA) [Carlsson, 2009], a recently-developed
approach that is specifically designed to identify structural
characteristics of high-dimensional datasets. One of the
strengths of TDA is its ability to reduce such high-
dimensional data to human-readable representations that
capture essential features, similar to the manner in which
a topographical map is able to capture the essential fea-
tures of a landscape. An example of this approach can be
found in Nicolau et al. [2011], where a TDA-based
approach was successful in elucidating a previously
unidentified subgroup of breast cancers that exhibit 100%
survival and no metastases. To our knowledge, our study
represents the first application of TDA to appear in the lit-
erature on neuroimaging.

Here, we use TDA to explore the landscape of brain
imaging phenotypes of very young boys with FXS. In con-
trast to the focus of Hoeft et al. [2011], which used brain

images to discriminate between iAUT and FXS, the specific
goal of this project was to identify previously unobserved,
yet neurobiologically salient subgroups within FXS that
exhibit separable neuroanatomical phenotypes. The output
of TDA, taking the form of subgroups of children who
share similar brain structure patterns, can then be used to
identify brain regions that characterize subgroup differen-
ces at the anatomical level as well as possible differences
in behavioral profiles. Our primary hypothesis was that
application of TDA would uncover brain-imaging pheno-
types that were not just anatomically separable, but also
different from a clinical viewpoint.

MATERIALS AND METHODS

Participants and Data Collection

The data utilized in our study were collected from
infant and toddler boys who participated in a study of
brain development in FXS [Hoeft et al., 2011]. Participants
in this study included boys with FXS, idiopathic autism
(iAUT), and developmental delays (DD) as well as typi-
cally developing (TD) children, all of whom were recruited
by collaborating research teams at the Stanford University
School of Medicine and the University of North Carolina,
Chapel Hill; the current study focuses only on the subset
of children from this earlier study that were diagnosed
with FXS. The study protocols were approved by the
human subjects committees at both institutions and con-
sent from parents was obtained. Children with FXS
(n 5 52; mean [SD] age, 2.90 [0.63] years) were recruited
through registry databases maintained by the Stanford
University School of Medicine and the University of North
Carolina, Chapel Hill, through postings to the National
Fragile X Foundation Web site and quarterly newsletter,
and through mailings to other regional FXS organizations.
All participants had the “full mutation” form of the FMR1
gene known to cause FXS [Hoeft et al., 2008]. Participants
completed the Autism Diagnostic Observation Schedule–
Generic (ADOS) [Gotham et al., 2009; Lord et al., 2000]
and their parents were given the Autism Diagnostic Inter-
view (ADI)–Revised [Lord et al., 1994]. The Mullen Scales
of Early Learning was administered to measure child IQ.
There were no significant differences between sites in any
of the cognitive variables for the participants with FXS (all
P’s> 0.05). [see Table I for a summary of demographic
information, including the participant’s level of Fragile X
Mental Retardation Protein (FMRP)]. Anatomical MRI scan
acquisition parameters consisted of a coronal T1-weighted
sequence (inversion recovery preparation pulse 5 300 ms;
repetition time (TR) 5 12 ms; echo-time (TE) 5 5 ms; flip
angle 5 20�; slice thickness 5 1.5 mm; number of
excitations 5 1; field-of-view (FOV) 5 20 cm; matrix 5 256
3 192) (Phantoms were used to ensure matching calibra-
tion of MRI scanners at both sites).
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Voxel-Based Morphometry Preprocessing

Standard voxel-based morphometry (VBM) preprocess-
ing of MRI data was carried out using the Statistical Para-
metric Mapping 5 (SPM5) statistical package (http://
www.fil.ion.ucl.ac.uk/spm) and VBM5.1 (http://dbm.
neuro.uni-jena.de/vbm). Images were bias-field corrected
and segmented to GM, WM, and CSF. A Hidden Markov
Random Field (HMRF; prior probability weight 0.3) was
applied in order to incorporate spatial constraints arising
from neighboring voxels. The images were normalized
with a 12-parameter affine transformation with a spatial
frequency cut-off of 25 in all three (x, y, z) directions and
resampled to 1 3 1 3 1 mm3 voxels. Linear and nonlinear
Jacobian modulation were applied. Customized GM, WM,
and CSF templates created using all participants in our
previous study [Hoeft et al., 2011] (FXS, n 5 52; iAUT,
n 5 63; DD, n 5 19; and TD, n 5 31) were used for VBM
preprocessing. For each participant, segmentation and nor-
malization accuracy were manually inspected.

Multivariate Pattern Analysis of Magnetic

Resonance Images Using Topological Data

Analysis

TDA is one of a general class of approaches to analyzing
high-dimensional data known in the literature as multivari-
ate pattern analysis (MVPA). Multivariate approaches are
designed to detect effects that may be discernable within
the relationships (patterns) among variables, but which
may elude detection when variables are examined in isola-
tion. One type of multivariate approach that has already
been used extensively in brain imaging studies is the use
of support vector machines (SVMs) [Bray et al., 2009]. TDA
follows the initial steps taken in SVM analyses to prepare
image data for analysis by building a data matrix from
smoothed and vectorized individual images, but thereafter
differs from SVM analyses in two critical ways (see below
for a brief discussion of vectorization). One difference is
that SVMs are used to compare conditions that are known

a priori, such as disorder versus control or stimulus versus
rest, and are thus said to be supervised approaches to
MVPA. In contrast, TDA is unsupervised since, rather than
compare predefined groups, it is used to identify coherent,
but possibly heretofore unknown groups within the study
population. Other examples of unsupervised approaches
to MVPA include independent component analysis [Cal-
houn et al., 2012] and clustering via correlation matrices
[Fair et al., 2012]. A second critical difference, and a key
benefit of using TDA not found in other MVPA
approaches, is that TDA can produce a compressed and
easily readable visual representation of the data, called a
Reeb graph, which preserves the underlying geometric
structure of the data, and thus facilitates identification of
its salient features [Carlsson, 2009]. As can be seen below
in Figure 1, these features can encode not only information
about clusters that may exist within the data, but also
information about spectra (i.e., variation in the data due to
continuously varying underlying parameters). To allow
the reader to gain insight into the process of Reeb graph
construction, we give a brief overview of the TDA pipeline
as applied to a toy example from Lum and colleagues
[Lum et al., 2013], and provide more a detailed description
of our use of TDA in the following subsection.

Overview of TDA

As with SVMs, the starting point for TDA is a data
matrix whose m rows and n columns correspond to the
variables of the study and their observed values; in the
typical TDA data matrix, each column corresponds to a
variable (e.g., voxel), and each row corresponds to an
observation (e.g., subject). In geometric terms, we may
interpret the n values in a row as giving the coordinates of
a point in n-dimensional space, and can thus interpret the
m rows as m points (collectively called a point cloud) in
space. In this way, we may also interpret the point cloud
in Figure 1A in the shape of a hand as being a visual rep-
resentation of a data matrix with thousands of rows and

TABLE I. Demographic information from Hoeft et al. [2011]

FXS iAUT DD TD

Site, SU:UNC
Particpants, no. 28:24 17:46 11:8 11:20

Age, yrs.
Mean(SD) 2.90 (0.63) 2.77 (0.41) 2.96 (0.50) 2.55 (0.60)

MSEL composite standardized score
Mean (SD) 54.94 (9.14) 54.10 (9.41) 55.47 (7.53) 109.55 (17.24)

FMRP (%)
Mean (SD)a 5.83 (3.94) NA NA NA

SU, Stanford University; UNC, University of North Carolina; MSEL, Mullen Scales of Early Learning; FMRP, fragile X mental retarda-
tion protein.
aFXS n 5 50 for FMRP %.
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three columns, where the columns correspond to the x, y,
and z coordinates of the points in the point cloud.

The first stage of TDA is to assign numerical values to
each point in the point cloud, a process we refer to as selec-
tion of filter values; in Figure 1B, these values are represented
by a color in the red-blue spectrum. The next stage of TDA
is to separate the point cloud into overlapping regions by
separating the filter values into overlapping bins. For exam-
ple, in Figure 1B we could view the filter values as indicat-
ing the distance from the tip of the middle finger as
measured by a horizontal ruler, in which case we could
then view the regions shown in Figure 1C as defined by the
bins [0–1.5 in], [1–2.5 in], [2–3.5], [3–4.5], [4–5.5], [5–6.5]. The

last stage of TDA is to represent each region from the previ-
ous stage by a dot, called a node, and then for each pair of
regions that intersect, to connect the corresponding nodes
by a line segment. Figure 1D shows the resulting Reeb
graph, where the size and color of each node represent the
number and “average” color of the points in the corre-
sponding region. Note how the Reeb graph captures the
underlying geometric structure of the hand, providing a
schematic representation whose structural features corre-
spond to real physical features, such as fingers, which also
illustrates TDA’s ability to highlight spectra and clusters
within data, as described earlier. Note also that this con-
struction does not involve multiple comparisons, and thus
no correction for multiple comparisons is warranted.

Unlike the case of the hand, where our familiarity with
its shape allows us to validate the Reeb graph of the corre-
sponding point cloud, the “shape” of the point cloud cor-
responding to MRI data for our study population of
young boys with FXS is not known to us a priori. To
address this issue, we use TDA to identify subgroups
purely on the basis of the MRI data, but then apply stand-
ard statistical tests to compare clinical data for these sub-
groups to provide confirmation they are clinically, as well
as anatomically distinct.

Details of Reeb Graph Construction

As described earlier, we can interpret a subject’s numer-
ical data as the coordinates of a point in a high-
dimensional space S, referred to as subject space, and can
thus recast the study population as a point cloud in sub-
ject space. In our case, we used the combined gray and
white matter voxel data to create the subject space S, and
then used the Iris software package to construct a Reeb
graph of the data, so that we could explore the geometry
of the resulting point cloud to identify its topological (i.e.,
shape) features [Lum et al., 2013] for an overview of Iris.
These features would then correspond to anatomically
defined subgroups of the study population, whose clinical
profiles could then be compared and subjected to further
analysis. In this subsection, we give a detailed description
of the process used to construct a Reeb graph (Fig. 2 for a
flowchart that summarizes this process).

As noted above, Reeb graph construction begins, as do
SVMs, with a data matrix. Since SVMs have already been
used extensively in brain imaging studies, we followed the
same approach to data matrix construction; namely, we
combined the VBM-preprocessed imaging data for the all
subjects into a single matrix, with the data for each subject
entered as a row of the data matrix. Specifically, we placed
in each column the voxel intensity at a particular spatial
location across all subjects. TThe process of converting a
multidimensional object, like a 3D image, into an ordered
list, like a row in a matrix, is known as vectorization, and is
a common requirement of MVPA approaches [Pereira
et al., 2009]. In principle, vectorization results in a loss of

Figure 1.

TDA pipeline. Visual depiction of TDA pipeline from point cloud

to Reeb graph, reprinted from [Lum et al., 2013] in accordance

with the Creative Commons license under which it was pub-

lished (CC BY-NC-ND 3.0). [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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information about the spatial relationships between voxels,
but in practice this loss does not appear to hamper the
success of MVPA approaches in general, as evidenced by
their use in numerous studies [Bray et al., 2009] for an
extensive review of the use of MVPA in neuroimaging.

Before the preprocessed data were vectorized, the inten-
sities for each subject’s gray matter 1 3 1 3 1 mm3 voxel
images were binned and averaged to produce correspond-
ing gray 4 3 4 3 4 mm3 voxel images, and the same was
done for each subject’s 1 mm white matter images. This

Figure 2.

Reeb graph construction. Flowchart depicting the process used to construct a Reeb graph from

raw MRI data. Note that the last four steps correspond to parts B, C, and D of Figure 1, with

the last two steps corresponding to part D. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]
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step was undertaken to both reduce noise in the 1 mm
images by smoothing and for ease of computation. The
voxels in each of these new 4 mm 3D images were then
linearly ordered, so that each subject’s gray and white
matter images were converted into gray and white matter
intensity vectors, which were then concatenated to pro-
duce a single, combined gray and white matter intensity
vector. These combined intensity vectors were then used
as rows to build a data matrix M of dimension (# subjects)
3 (# gray voxels 1 # white voxels).

Once the data matrix M is obtained, construction of a Reeb
graph proceeds in several steps: (1) column selection, (2)
metric selection, (3) filter selection, and finally (4) selection of
values of the filter parameter called gain and resolution. The
first step, column selection, is used to define the subject
space S; this is done by selecting a subset of columns of M,
whose size then determines the dimension of S. In our case,
the columns of M correspond to voxels, and we chose to
define S by selecting those voxels whose variance was at
least 0.03. (In modulated and segmented images such as
those utilized here [Hoeft et al., 2011], voxels intensities cor-
respond to proportions of volume and thus range in value
from 0 to 1). The next step, metric selection, is used to define
distances within the subject space S, and thus provide a mea-
sure of similarity between subjects. Euclidean distance, a
generalization of the usual distance between points P1 5 (x1,
y1) and P2 5 (x2, y2) in the coordinate plane is only one of
many choices for a metric on S.

dðP1;P2Þ5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx22x1Þ21ðy22y1Þ2

q

Because we had no a priori basis for giving more weight
in the analysis to a particular subset of the high-variance
voxels, we chose to standardize the voxel data before
applying the Euclidean metric. The process of standardiza-
tion, where data for each variable is first demeaned and
then scaled to have variance 1, is a common statistical step
taken in this context in order to give each variable equal
weight in the subsequent analysis. In Iris, this is achieved
by selecting the metric referred to as the variance-
normalized Euclidean metric.

The third step, filter selection, is in many ways the most
critical choice made in the construction of a Reeb graph
since it is the filters that transform the similarity informa-
tion determined in the previous two steps into a visual
representation that is easily grasped by the human eye,
namely, a 2D rendering of a 3D graph (Fig. 3, below). Fil-
ters provide an alternative notion of similarity among sub-
jects that is distinct from the one defined by the metric
chosen for the subject space S, and together these two
notions of similarity guide the construction of the vertices
of the Reeb graph, in two stages. In the first stage, the fil-
ters are used to sort the subjects into bins based on simi-
larity, where bin size is controlled by the resolution
parameter from step 4. To capture the structure of variabil-
ity among the subjects, we chose the first two principal
component scores (PC1 and PC2) of the variance-

normalized data as our filters, so that two subjects were
judged to be similar (i.e., shared the same bin) if both their
PC1 and PC2 scores were sufficiently similar. In the sec-
ond stage, the metric selected in step 2 is used to further
cluster the subjects within each bin, so that two subjects
within the same bin are merged into the same cluster if
the distance between them is sufficiently small; each clus-
ter obtained in this way is then viewed as a vertex of the
Reeb graph. Finally, the edges of the graph are constructed
as follows: Although bin size is governed by the resolution
parameter, bins are allowed to overlap (i.e., share subjects)
to an extent governed by the gain parameter, and this
overlap may lead clusters from different bins to share sub-
jects. Any two clusters (i.e., vertices) that share a subject
are then joined by an edge. We may think of the resulting
graph as a view of the data through a microscope, where
gain and resolution play roles analogous to level of light
and level of magnification. A group of edge-connected ver-
tices of the resulting Reeb graph may then serve as a can-
didate subgroup within the data (Fig. 3). In our case, a
choice of parameter values that clearly decomposed the
data into subgroups consisted of a gain of 4 for both PC1
and PC2, a resolution of 45 for PC1, and a resolution of 30
for PC2.

Analysis of Behavioral Data

Once subgroups were identified with TDA based on
neuroimaging data, we used standard t-tests to compare
subgroup differences on behavioral measures.

Figure 3.

TDA results. An Iris rendering of a Reeb graph of the FXS data,

with labels and ellipses added to indicate the subgroups LH and

LL. Note that the size of each node corresponds to the number

of subjects that were clustered to form that node, and that an

edge between two nodes indicates that the corresponding clus-

ters have a subject in common. The light blue node between the

subgroups LH and LL is not included in either ellipse because it

contains two subjects, one from each subgroup; nevertheless,

the edges connected to this node indicate that each of the these

subjects is also contained in a neighboring node within the

appropriate subgroup. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]
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Univariate Analyses of Magnetic Resonance

Images

Between subgroup contrasts using gray and white matter

images were performed with FSL’s randomize tool (http://

fsl.fmrib.ox.ac.uk/fsl/fslwiki/Randomise) with 5000 per-

mutations and threshold-free cluster enhancement [Smith

and Nichols, 2009] to correct for multiple comparisons.

Images corresponding to P< 0.005 (corrected) were retained.

RESULTS

Multivariate Pattern Analysis

The parameter selections described above decomposed
the data into two large subgroups and two smaller sub-
groups, as well as a single disconnected node containing
just one subject (Fig. 3). In addition to classification by
size, these subgroups could also be classified by PC1;
indeed, size (small or large) and average value of PC1

Figure 4.

2D and 3D gray matter differences. Top: Red color indicates

voxels where gray matter volume is significantly enlarged in the

LH subgroup relative to LL (P< 0.005, corrected). Bottom: ante-

rior, superior, and lateral views of 3D rendering of all such vox-

els, color-coded by region: noninsular cortex (red), caudate

(magenta), putamen (purple), insular cortex (peach), thalamus

(cyan), hippocampus (blue), amygdala (green), cerebellum (yel-

low), and brain stem (lavender). The full MNI 152 cortex (pink)

is included as a reference. In lower right view, cortical and ante-

rior structures were removed to expose posterior structures,

so that in addition to the superior surface of the cerebellum, a

separate region of the cerebellar vermis is visible. [Color figure

can be viewed in the online issue, which is available at wileyonli-

nelibrary.com.]
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(low or high) together clearly distinguished the four sub-
groups from one another. Accordingly, we will refer to the
subgroups based on these Size and PC1 characteristics,
respectively, as large-low (LL, n 5 19, mean [SD] age, 2.88
[0.67] years), large-high (LH, n 5 18, mean [SD] age, 3.13
[0.41] years), small-low (SL, n 5 4, mean [SD] age, 1.76
[0.20] years), and small-high (SH, n 5 10, mean [SD] age,
2.91 [0.55] years). Because of the limited sample size of the
smaller subgroups (n 5 4 and 10), and because SL and SH
differ significantly in age from each other, our subsequent
analyses focused on comparing the two larger subgroups
(LL and LH).

Univariate VBM Results

Voxel-wise comparison of the grey and white matter
images for the LL and LH subgroups showed widespread
significant and directionally uniform differences, with the
LH subgroup consistently showing enlarged volumes rela-
tive to LL. Gray matter differences were bilaterally sym-
metric, encompassing regions of the cortex and of multiple
subcortical structures as well as of the cerebellum. Aside
from extensive midline cortical differences, differences
were also found in the insular cortex, the inferior orbito-
frontal cortex, the posterior region of the temporal lobe,
and the inferior parietal lobule. Subcortical gray matter
differences were found in the caudate, putamen, thalamus,
hippocampus, and amygdala; cerebellar gray matter differ-
ences were observed in the superior surface of the cerebel-

lum and the cerebellar vermis. White matter differences
were also bilaterally symmetric, encompassing a large
region of subcortical white matter as well as regions of
cerebellar and brainstem white matter. The 2D gray matter
images in the top portion of Figure 4 show those voxels
that are significantly enlarged in LH relative to LL
(P< 0.005) on a multiplanar image selected at a mid-
sagittal location; the collection of all such voxels across the
whole brain are rendered as 3D images in the bottom por-
tion of Figure 4, in Figure 5, and in Supporting Informa-
tion Video 1. The corresponding white matter images
appear in Figure 6 and in Supporting Information Video 2.
All 3D images were produced with the 3D Viewer plug-in
[Schmid et al., 2010], as implemented in the Fiji distribu-
tion [Schindelin et al., 2012] of the ImageJ image-
processing software suite [Schneider et al., 2012].

Behavioral Results

Comparison of key behavioral measures for the LL and
LH subgroups showed significant differences across all of
the standardized measures comprising the Mullen Scales
of Early Learning (MSEL–Table II; higher scores indicate
higher cognitive function), as well as across all ADOS and
ADI measures (Tables III and IV; lower scores indicate less
severe symptoms) except those for play (ADOS,
P 5 0.0829) and repetitive or stereotyped behavior (ADOS,
P 5 0.0883; ADI, P 5 0.368). All significant differences
(P< 0.05) were coupled with effect sizes greater than 0.5
(Cohen’s d), with large effect sizes for the MSEL Compos-
ite (0.95), Receptive Language (0.82), Visual Reception
(0.82) standardized scores. These differences uniformly
place the LH subgroup on the more severe (or lower func-
tioning) end of the spectrum on every measure. Behavioral
comparisons of LL and LH with SH, the larger of the two
subgroups excluded from our analysis, can be found in
Supporting Information Tables I–VI).

DISCUSSION

Although one might naturally expect variation within
FXS at the “macro” level of behavior, our study suggests
that FXS may lack homogeneity at the neurobiological level
as well despite its single-gene origin. Indeed, our results
suggest that the LH and LL subgroups may correspond to
separable phenotypes within FXS that have significantly dif-
ferent neuroanatomical and behavioral profiles. These sub-
groups accounted for a large proportion of 1- to 3-year-old
boys with FXS in our sample (71%). It is interesting to note
that the neuroanatomical and behavioral differences
between LH and LL are analogs to differences previously
noted to distinguish young children with FXS from
typically-developing children. Specifically, in addition to
the LH subgroup scoring lower on measures of IQ and
higher on measures of autism-related behaviors, the regions
of the brain that are enlarged in LH relative to LL (e.g., the

Figure 5.

3D gray matter differences: oblique view. Oblique anterior-

superior-lateral view of 3D rendering of all voxels where gray

matter volume is significantly enlarged in the LH subgroup rela-

tive to LL (P< 0.005, corrected), color-coded by region: nonin-

sular cortex (red), caudate (magenta), putamen (purple), insular

cortex (peach), thalamus (cyan), hippocampus (blue), amygdala

(green), and cerebellum (yellow). The full MNI 152 cortex (pink)

is included as a reference. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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Figure 6.

2D and 3D white matter differences. Top: Red color indicates

voxels where white matter volume is significantly enlarged in

the LH subgroup relative to LL (P< 0.005, corrected). Bottom:

Anterior, superior, lateral, and oblique views of 3D rendering of

all such voxels, color-coded by region: subcortical white matter

(magenta), cerebellar white matter (lime green), and brain stem

white matter (dark green). The full MNI 152 cortex (pink) is

included as a reference. In lower right, an oblique superior-

posterior view was used to highlight the separation between the

subcortical and cerebellar/brain stem regions. [Color figure can

be viewed in the online issue, which is available at wileyonlineli-

brary.com.]

TABLE II. Mullen scales of early learning

Standardized subscale LL mean(SD) LH mean (SD) Difference P-value Cohen’s d

Composite 58.68 (11.29) 50.67 (3.43) 8.02 0.004 0.95
Receptive Language 27.89 (10.65) 20.94 (2.04) 6.95 0.006 0.89
Visual Reception 28.89 (10.32) 22.11 (5.18) 6.78 0.008 0.82
Expressive Language 26.21 (8.84) 21.72 (3.61) 4.49 0.026 0.65
Fine Motor 23.37 (4.34) 20.50 (2.12) 2.87 0.043 0.58
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caudate, putamen, and thalamus) are consistent with the
regions reported to be enlarged in FXS relative to typically-
developing controls [Hazlett et al., 2012; Hoeft et al., 2008],
with the notable exceptions of the amygdala and cerebellar
vermis, which appear enlarged in LH relative to LL but
reduced in FXS relative to typically-developing controls. It
is also potentially noteworthy that the LH subgroup shows
enlarged volume of the middle cerebellar peduncles (MCP),
white matter tracts that connect the cerebellum to the pons
(Fig. 7). These same MCP tracts are also the location in

which T2 hyperintensities occur in patients with fragile X
tremor/ataxia syndrome (FXTAS), often referred as the
“MCP sign” in males with the “premutation” form of the
FMR1 gene mutation [Brunberg et al., 2002]. The signifi-
cance of this finding in the LH subgroup and its possible
association with neuroimaging findings in FXTAS is a
potential area for future investigation.

As to a plausible explanation for the differences between
LL and LH, one could speculate about the existence of a sec-
ond genetic factor that, through its interaction with FMR1,
leads to a bifurcation in the developmental trajectories of

TABLE III. Autism diagnostic observation schedule-generic

Subscale LL mean (SD) LH mean (SD) Difference P-value Cohen’s d

Social 5.00 (3.99) 7.83 (3.71) 22.83 0.016 20.73
Communication/Social 8.47 (6.02) 12.39 (4.96) 23.92 0.019 20.71
Communication 3.47 (2.20) 4.56 (1.65) 21.08 0.049 20.55
Stereotyped Behavior 1.53 (1.80) 2.28 (1.41) 20.75 0.083 20.46
Play 2.63 (1.34) 3.22 (1.26) 20.59 0.088 20.45

TABLE IV. Autism diagnostic interview–revised

Subscale LL mean (SD) LH mean (SD) Difference P-value Cohen’s d

Social 7.56 (4.88) 10.71 (5.46) 23.15 0.041 20.61
Communication (nonverbal) 7.81 (4.39) 10.19 (3.17) 22.38 0.045 20.62
Abnormal development 3.89 (1.02) 4.41 (0.80) 20.52 0.050 20.57
Communication (verbal) 3.67 (3.79) 10.00 (2.83) 26.33 0.064 21.88
Repetitive and stereotyped behavior 3.06 (1.80) 3.24 (1.30) 20.18 0.368 20.11

Figure 7.

MCP sign and white matter differences. Left: Red color indicates

voxels where white matter volume is significantly enlarged in

the subgroup LH relative to LL (P< 0.005, corrected), and blue

ellipses indicate region spatially analogs to the “MCP sign” in

FXTAS. Right: Oblique posterior 3D view with the coronal slice

of the left image placed in its correct orientation. Note that

opacity of the slice dims the brightness of white matter anterior

to the slice, so that the boundary between anterior and poste-

rior white matter coincides with the regions shown in red in

the left image. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]

Figure 8.

Unlabelled PCA scatter plot. Scatter plot of PC2 versus PC1

values for each subject, obtained from applying PCA to data

matrix used in TDA (Compare with Supporting Information Fig.

1, in which the subgroups are color-coded).
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children with FXS. For example, a similar bifurcation has
been suggested in 22q.11.2 deletion syndrome, where func-
tional polymorphisms of the COMT gene may contribute to
reduced prefrontal cortical gray matter and increased risk
for developing psychosis [Gothelf et al., 2005]. Further evi-
dence for gene interaction comes from studies of Fmr1
knockout mice, which show that differences in genetic back-
ground are associated to significant differences in social
approach. Research designed to test this hypothesis could
be carried out focusing on genotypic variations in signaling
pathways known to interact with the FMR1 protein [Ascano
et al., 2012]. Given that the data analyzed here are from the
first time point in a longitudinal study of young boys with
FXS [Hoeft et al., 2010], we also plan to perform TDA with
data collected at 3–6 years of age in the same sample, as
well as with data from an independent sample of adults
with FXS. These future studies will also attempt to explore
approaches that allow recovery of 3D structural information
that is lost as a consequence of MRI image vectorization.

As noted in [Nicolau et al., 2011], the power of TDA for
revealing the structure of high-dimensional data lies in its
origins within the field of topology, the area of mathematics
that is specifically concerned with characterizing the shape
of high-dimensional geometric structures. The tools of
topology allow TDA to drastically reduce the dimension of
high-dimensional datasets while at the same time shed light
on critical aspects of their structure, accomplishing both
without sacrificing subtle but important information that
can easily be lost through standard approaches such as PCA
and linkage-based clustering. The advantage of using TDA
over PCA alone can be easily seen in Figure 8, where the
scatter plot of the same values of PC1 and PC2 used in our
TDA to identify the subgroups LH and LL has no obvious
structure. (Note that SVMs require a priori labels, and so
would not be appropriate in the current context).

LIMITATIONS

Questions concerning inference and validation—natural
questions that arise inevitably in connection to any novel
analytical approach—are the subject of active ongoing
research in TDA. Furthermore, the most direct means of
validating our results, namely replication, is not one that
is available to us at this time. As mentioned earlier, we do
plan to extend our analysis to include data from the same
children at later ages, which would provide confirmation
of our findings as they apply specifically to our study pop-
ulation; however, replicating our finding in an independ-
ent population of children with FXS within the same age
as our cohort is clearly a necessary future step in validat-
ing our approach.

CONCLUSIONS

As more attention is brought to bear on the limitations
of behaviorally-defined taxonomies of psychiatric disor-

ders [Cross-Disorder Group of the Psychiatric Genomics
Consortium, 2013], the case for replacing these taxonomies
with new approaches based on high-dimensional, multi-
modal data becomes more compelling. By integrating
behavioral data with imaging and genetic data, our ability
to cut the landscape of neuropsychiatric disorders along
its natural joints will likely be enhanced, thus improving
our ability to identify the boundaries between disorders
with greater neurobiological validity more accurately.
TDA is one method that can contribute to this new
approach to brain disorders.
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