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Effects of APOE e4, age, and HIV on glial
metabolites and cognitive deficits

ABSTRACT

Objective: We aimed to evaluate the combined effects of HIV and APOE e4 allele(s) on glial
metabolite levels, and on known cognitive deficits associated with either condition, across the
ages.

Methods: One hundred seventy-seven participants, primarily of white and mixed race (97 sero-
negative subjects: aged 44.7 6 1.3 years, 85 [87.6%] men, 28 [28.9%] APOE e41; 80 HIV1
subjects: aged 47.3 6 1.1 years, 73 [91.3%] men, 23 [28.8%] APOE e41), were assessed
cross-sectionally for metabolite concentrations using proton magnetic resonance spectroscopy
in 4 brain regions and for neuropsychological performance.

Results: Frontal white matter myo-inositol was elevated in subjects with HIV across the age span
but showed age-dependent increase in seronegative subjects, especially in APOE e41 carriers. In
contrast, only seronegative APOE e41 subjects showed elevated myo-inositol in parietal cortex.
All APOE e41 subjects had lower total creatine in basal ganglia. While all HIV subjects showed
greater cognitive deficits, HIV1 APOE e41 subjects had the poorest executive function, fluency
memory, and attention/working memory. Higher myo-inositol levels were associated with poorer
fine motor function across all subjects, slower speed of information processing in APOE e41
subjects, and worse fluency in HIV1 APOE e41 subjects.

Conclusions: In frontal white matter of subjects with HIV, the persistent elevation and lack of nor-
mal age-dependent increase in myo-inositol suggest that persistent glial activation attenuated
the typical antagonistic pleiotropic effects ofAPOE e4 on neuroinflammation. APOE e4 negatively
affects energy metabolism in brain regions rich in dopaminergic synapses. The combined effects
of HIV infection and APOE e4 may lead to greater cognitive deficits, especially in those with
greater neuroinflammation. APOE e4 allele(s) may be a useful genetic marker to identify white
and mixed-race HIV subjects at risk for cognitive decline. Neurology® 2014;82:2213–2222

GLOSSARY
Ab 5 b-amyloid; AD 5 Alzheimer disease; ARV 5 antiretroviral; cART 5 combination antiretroviral therapy; DSM-IV 5
Diagnostic and Statistical Manual of Mental Disorders, 4th edition; HAND 5 HIV-associated neurocognitive disorders;
IL 5 interleukin; MI 5 myo-inositol; MP-RAGE 5 magnetization-prepared rapid-acquisition gradient echo; MRS 5 magnetic
resonance spectroscopy; SN 5 seronegative; tCr 5 total creatine; TE 5 echo time; TR 5 repetition time.

Combination antiretroviral therapy (cART) prolongs the life expectancy of HIV-infected indi-
viduals. However, the prevalence of HIV-associated neurocognitive disorders (HAND) contin-
ues to increase,1 in part because of the greater prevalence of HAND in older individuals (.50
years), who will comprise the majority of the infected population in the United States by 2015.
HAND may result from the direct neurotoxic effects of HIV viral proteins and the host’s
neuroinflammatory responses. Some antiretrovirals (ARVs), many frequently abused substances
(e.g., stimulants and cannabis), comorbid factors associated with aging (e.g., hypertension,
diabetes), and certain genotypes may further exacerbate HAND. For example, the APOE e4
allele, the strongest genetic risk factor for Alzheimer disease (AD) in older individuals,2 was
associated with accelerated progression of HIV disease,3 and increased risk of HAND in some,4–8

but not all, studies.9,10 These conflicting findings may be partly attributable to antagonistic
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pleiotropy, because the APOE e4 allele(s)5,11

has a negative effect on cognition only in older
individuals.

Because HAND is often difficult to assess in
the clinical setting,12 understanding how APOE
e4 allele(s) affects brain injury in patients with
HIV may be useful for prognostication or early
identification of individuals at risk for HAND.
Therefore, we aimed to evaluate whether APOE
e4 allele(s) exacerbates brain metabolite or cog-
nitive abnormalities in HIV1 subjects and
whether age further interacts with these varia-
bles. We hypothesized that HIV1 subjects
with APOE e4 would have greater cognitive
deficits and glial metabolite abnormalities on
proton magnetic resonance spectroscopy
(MRS) than subjects without e41 and that
such abnormalities would be present even in
the younger subjects.

METHODS Standard protocol approvals, registrations,
and patient consents. The protocol was approved by the insti-
tutional review boards at the University of Hawaii and at the

Queen’s Medical Center. Three hundred ninety subjects from

the local community were recruited between December 2004

and August 2012 and provided oral and written consents before

the assessments.

Research participants. Three hundred thirty-eight participants
fulfilled the study criteria and 177 with complete and acceptable

datasets were included in this study (97 seronegative [SN]

subjects: aged 44.7 6 1.3 years, 85 [87.6%] men, 28 [28.9%]

APOE e41; and 80 HIV1 subjects: aged 47.3 6 1.1 years, 73

[91.3%] men, 23 [28.8%] APOE e41) (table 1). All subjects

were 18 years or older and able to provide informed consent.

All were tested to ensure HIV serostatus. HIV1 subjects were

either not taking ARVs or stable on ARVs for.6 months (ARV-

stable) and had a nadir CD4 cell count ,500/mm3. Exclusion

criteria for all subjects included the following: (1) chronic medical

or neuropsychiatric illnesses that might confound the outcome

variables; (2) significant abnormalities on laboratory measures that

might indicate a severe metabolic disorder or organ failure; (3)

history of head trauma with loss of consciousness .30 minutes;

(4) history of drug dependence according toDSM-IV criteria, except

for tobacco; (5) positive urine toxicology for common drugs of

abuse, except for D9-tetrahydrocannabinol, because many were

using medicinal marijuana; and (6) any contraindications for MRI.

Neuropsychological tests. Each participant performed a bat-

tery of neuropsychological tests sensitive for detecting cognitive

deficits in patients with HIV infection. The tests evaluated 7 cog-

nitive domains (see table 2). In addition, depressive symptoms

were assessed using the Center for Epidemiological Studies–

Depression Scale. Twenty-nine (36.3%) of the HIV1 subjects

were diagnosed with HAND according to the Updated Research

Nosology,13 including clinical assessments with self-report,

neurologic evaluations, Functional Activities Questionnaire, and

Karnofsky score. Eleven had asymptomatic neurocognitive

impairment, 17 minor neurocognitive disorder, and one had

HIV-associated dementia; the remaining 51 HIV subjects had

normal cognition. Conversely, only 15 (15.5%) SN controls

had cognitive deficits comparable to HAND.

APOE e genotyping. Genomic DNA was isolated from the

human blood sample by using the DNeasy Blood and Tissue

kit (Qiagen, Valencia, CA) according to the manufacturer’s instruc-

tions. Genomic DNA concentration and purity were assessed with

the Nanodrop 1000 (Thermo Scientific, West Palm Beach, FL).

APOE e genotypes were determined by PCR-based RFLP

(restriction fragment length polymorphism). First, a 218–base pair

fragment of the APOE gene was amplified using these primers:

forward sequence (TCCAAGGAGCTGCAGGCGGCGCA) and

reverse sequence (GCCCCGGCCTGGTACACTGCCA);

afterward, the PCR fragment was digested with restriction

enzymes AflIII (5,000 U/mL) and HaeII (20,000 U/mL), 103

buffer 3, and 103 bovine serum albumin (New England

BioLabs, Ipswich, MA) for 12 hours at 37°C. Digest products

were resolved on 4% agarose gel. APOE e genotype was

confirmed for each subject using the Illumina BeadXpress

scanner (iGenix, Bainbridge Island, WA).

MRI and MRS. All magnetic resonance studies were performed

on a 3T MR scanner (Tim Trio; Siemens Medical Solutions,

Erlangen, Germany) with an 8- or 12-channel head coil. The

MRI protocol included a 3-plane localizer (repetition time

[TR]/echo time [TE] 5 20/5 milliseconds, 1-average), a sagittal

3-dimensional magnetization-prepared rapid-acquisition gradient

echo (MP-RAGE) (TR/TE/inversion time 5 2,200/4.91/1,000

milliseconds; 1-average; 208 3 256 3 160 matrix), and an axial

fluid-attenuated inversion recovery sequence (TR/TE 5 10,000/

85 milliseconds; 1-average; 205 3 320 3 28 matrix). These

structural images were evaluated for possible brain lesions and

used to prescribe the MRS voxels and for gray–white matter

segmentation. Proton MRS was acquired from 4 approximately

8-mL brain regions: basal ganglia, parietal gray matter, frontal

white matter, and anterior cingulate gray matter (figure 1). A

PRESS (point resolved spectroscopy) acquisition sequence was

used (64 averages, TR/TE 5 3,000/30 milliseconds, bandwidth

1,200 Hz, 4 dummy scans, 8-step phase cycling), and the T2 decay

of the water signal was measured at 10 different echo times.

MRS data were processed using a customized spectral analysis

package of LCModel to determine concentrations of major me-

tabolites, including the glial metabolites total creatine (tCr) and

myo-inositol (MI). The metabolite concentrations were corrected

for the variable percentages of CSF, gray matter, and white matter

in each voxel, although no group differences were found for these

variables. The water T2-decay data were used to calculate the %

CSF in each voxel.14 The proportion of gray and white matter in

each voxel was determined by segmenting the high-resolution

MP-RAGE scans using FMRIB’s Automated Segmentation Tool

(FAST, version 4.1) for cortical voxels and FMRIB’s Integrated

Registration and Segmentation Tool (FIRST, version 1.2) for

subcortical structures. Each spectrum was visually inspected and

met the following criteria from the LCModel fit: (1) full width at

half maximum ,0.10 ppm (,0.12 ppm for basal ganglia), (2)

signal-to-noise ratio .7, and (3) Cramér-Rao bounds for each

metabolite #25%.

Statistical methods. Statistical analyses were performed using

SAS 9.2 (SAS Institute Inc., Cary, NC). Two-way analysis of

variance and multiple contingency tables were used to compare

clinical variables between HIV1 and SN subjects, with and

without APOE e4 allele(s). Two-way analyses of covariance,

including age, education, or scanner software version as covariate,

were used to test the independent and interactive effects of HIV

status and APOE e4 status (at least one APOE e41 allele) on brain
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Table 1 Clinical characteristics of the research participants

SN control, APOE e42
(n 5 69)

SN control, APOE e41
(n 5 28)

HIV, APOE e42
(n 5 57)

HIV, APOE e41
(n 5 23)

Two-way ANOVA or x2, effect size, h2 (p value)

HIV effect APOE e41 effect
HIV 3 APOE e41
interaction

Age, y 44.5 6 1.5 45.3 6 2.5 47.4 6 1.1 47.0 6 2.9 0.008 (0.24) 0.00 (0.93) 0.0006 (0.75)

Education, y 14.9 6 0.3 14.8 6 0.4 15.0 6 0.3 14.6 6 0.5 0.0003 (0.83) 0.0025 (0.51) 0.0007 (0.74)

Sex, male, n (%) 62 (90) 23 (82) 53 (93) 20 (87) 0.12 (0.48)a

Race, n (%) 0.18 (0.27)a

American Indian 2 (3) 0 (0) 1 (2) 0 (0)

Asian 13 (19) 2 (7) 6 (11) 5 (22)

Black 2 (3) 0 (0) 4 (7) 1 (4)

Native Hawaiian 1 (1) 4 (14) 2 (4) 0 (0)

White 40 (58) 18 (64) 34 (60) 12 (52)

Mixed 11 (16) 4 (14) 10 (18) 5 (22)

Ethnicity, Hispanic/non-Hispanic, n (%) 5 (7)/64 (93) 3 (11)/25 (89) 10 (18)/47 (82) 2 (9)/21 (91) 0.14 (0.32)a

% On antiretroviral medications 93 91 0.03 (0.80)a

Nadir CD4, #/mm3 189 6 19.7 162 6 36.3 20.18 (0.36)b

CD4, #/mm3 483 6 29.1 375 6 41.6 20.53 (0.06)b

Log viral load, copies/mL 2.2 6 0.2 2.7 6 0.3 0.36 (0.08)b

% With undetectable virus, <75 copies 61 52 0.08 (0.45)a

Karnofsky score (0–100) 93.1 6 1.1 90.4 6 2.0 20.30 (0.22)b

HIV dementia scale (0–16) 14.5 6 0.3 13.8 6 0.5 20.31 (0.21)b

Duration HIV diagnosis, mo 225 6 11.8 203 6 18.4 20.24 (0.30)b

CES-D Scale score 6.6 6 0.7 7.7 6 1.2 12.6 6 1.2 11.1 6 1.7 0.08 (0.0002c) 0.0001 (0.88) 0.006 (0.30)

Abbreviations: ANOVA 5 analysis of variance; CES-D 5 Center for Epidemiological Studies–Depression; SN 5 seronegative.
Data are mean 6 SEM or n (%) unless otherwise indicated.
aChi-square test effect size (u or Cramér V) (p value).
b t Test effect size (Cohen d) (p value).
c Significant value.
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metabolites and cognitive function. Relationships among age,

cognitive performance, and brain metabolites that showed group

differences were explored using linear regression. Because

Bonferroni correction tends to be overly conservative and we

focused our analyses based on prior knowledge of altered glial

metabolites (i.e., MI and tCr) in 3 brain regions (frontal white

matter, parietal cortex, and basal ganglia) and abnormal cognitive

domains in HIV patients, p values ,0.01 were considered

statistically significant and p values ,0.05 were considered trends

for significance.

RESULTS Our analysis focused on the effects of HIV
and APOE e4 status, their combined or interactive ef-
fects, and age-dependent changes on the glial metabolites
(MI and tCr levels) and cognitive performance.
Furthermore, we evaluated the relationships between
MI levels that showed these effects in the 3 brain
regions and cognitive performance.

Clinical characteristics. The SN and HIV subject
groups were similar in age, sex proportion, years of edu-
cation, and proportion of APOE e4 carriers (table 1).
The 2 subject groups also had similar distributions of
race and ethnicity, with predominantly white (52%–

64% per group) or mixed-race (14%–22%)
individuals and few blacks (0%–7%). Five subjects
were APOE e4 homozygous, and all were HIV-
positive (3 had HAND and 2 had no cognitive
deficits). The 2 HIV1 groups (APOE e42 vs APOE
e41) were not different in their CD4 counts, nadir CD4
count, log viral load, Karnofsky score, HIV dementia
scale, or duration of HIV diagnosis. However, both
HIV groups had more depressive symptoms on the
Center for Epidemiological Studies–Depression Scale
than the 2 SN groups, but they were not clinically
depressed. Ten percent of the subjects (11 HIV, 6 SN)
had nonsignificant incidental findings on MRI (data not
shown).

Effects of HIV, APOE e4, and age on brain metabolites.

HIV1 subjects had higher frontal white matter MI
than SN subjects, regardless of their APOE e41 sta-
tus (110%, p 5 0.004) (figure 1). However, indi-
viduals with APOE e41, both SN and HIV subjects,
had slightly lower basal ganglia tCr (24%, p5 0.05).
In the parietal cortex, the effect of APOE e41 differed
between SN controls (higher MI) and HIV subjects
(nonsignificantly lower MI); interaction p value 5

0.02. These findings remained unchanged after cova-
rying for the percentage gray matter in each voxel.

Furthermore, age-dependent changes in the fron-
tal white matter MI were different across the 4 subject
groups (interaction p 5 0.04, figure 1C, right). Both
SN groups showed higher frontal white matter MI
with older age. However, the slope is much steeper for
those with e41 than e42 (age 3 e41 status inter-
action p 5 0.006), demonstrating an antagonistic
pleiotropy effect only in APOE e41 SN subjects.
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In contrast, HIV subjects had elevated MI levels across
the age span, and regardless of the APOE e41 status
(age 3 APOE e41 status interaction p 5 0.44). The
glial metabolites in other brain regions did not show
significant group 3 age interactions.

Effects of HIV, APOE e4, and age on cognition. As
expected, HIV subjects, regardless of APOE e41 sta-
tus, performed significantly poorer than SN subjects
on the majority of the cognitive domains, although
the effect sizes were small in this cohort (table 2,
figure 2). However, only HIV but not SN subjects
with APOE e41 tended to perform worse than

APOE e42 subjects on executive function, as exem-
plified by the Trail B task (table 2; figure 2, top
graphs). Similar trends were observed for the fluency
and memory domains, and the corresponding tests
that contributed to the poorest performance in the
HIV e41 subjects (table 2; figure 2, middle graphs).
Because APOE e41 subjects additionally tended to
perform worse than APOE e42 subjects on the atten-
tion/working memory domain (p 5 0.04), this led to
an additive effect with HIV status. Consequently,
HIV1 APOE e41 subjects showed the poorest atten-
tion/working memory performance (p, 0.0001), espe-
cially in the letter-number sequencing task (figure 2,

Figure 1 MRS and neurometabolite levels

(A) T1-weighted structural MRI showing the 4 voxel locations. The ACC and PGM voxels were angled parallel to the skull line
to minimize fat contamination from the skull. The frontal WM voxel is shown on a coronal image and the basal ganglia voxel
on an axial image. (B) Representative magnetic resonance spectrum from the frontal WM of an HIV1 subject, with marked
elevation of MI and minimally lower than normal NAA; the color lines are from fitting of the LCModel. (C) Compared with SN
controls, subjects with HIV had higher frontal WMMI, with or withoutAPOE e4 allele(s) (bar graphs), and the HIV1APOE e42
subjects had the least age-dependent increase in the frontal MI level. (D) Regardless of HIV status, subjects with APOE e4
had lower basal ganglia tCr levels, which persisted across the age span (see figure e-1). However, in the parietal cortex, only
SN subjects but not HIV subjects with the APOE e4 allele(s) showed higher MI levels. These group differences also persisted
across the age span (figure e-1). ACC 5 anterior cingulate cortex; GM 5 gray matter; MI 5 myo-inositol; MRS 5 magnetic
resonance spectroscopy; NAA 5 N-acetylaspartate; PGM 5 parietal gray matter; SN 5 seronegative; tCr 5 total creatine;
WM 5 white matter.
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bottom graphs). Furthermore, HIV1 APOE e41
subjects had persistently lower performance on
these tests across the age span, except for Trail
Making Test B, in which slower performance was
found primarily in the oldest HIV1 APOE e41
subjects (figure e-1 on the Neurology® Web site at
Neurology.org).

Relationships between cognitive function and brain

metabolite abnormalities. Subjects with higher frontal
white matter MI had lower motor z scores, especially
in the nondominant hand (figure 3). However, only
APOE e41 subjects showed an association between
higher parietal gray matter MI and poorer performance
on the fluency domain (interaction p 5 0.009),

Figure 2 Cognitive performance

(A) On 2-way analysis of variance, subjects with HIV (red outlined and solid bars) performed more poorly than SN controls
(black outlined and solid bars) on 4 cognitive domains: executive function, fluency, memory, and attention/working memory.
On post hoc analyses, while no group difference was found in SN subjects with or without the APOE e4 allele, HIV subjects
with the APOE e4 allele(s) (red solid bars) consistently performed more poorly on these tasks than SN subjects without the
APOE e4 allele (black outline bars). (B) Selected corresponding neuropsychological tests that contributed to the findings in
the cognitive domains. Age and education were included as covariates for the 2-way analysis of covariance. AVLT 5 Audi-
tory Verbal Learning Test; SN 5 seronegative.
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especially those also HIV1, and slower speed of infor-
mation processing scores (interaction p 5 0.009).

DISCUSSION This is the first study to evaluate the
independent and combined effects of APOE e4
genotype and HIV infection on brain metabolite
abnormalities, including age-dependent changes, of
our primarily (.90%) cART-treated HIV subjects.
We also delineated the combined effects of HIV and
APOE e4 on cognitive performance and validated
our hypothesis that HIV1 APOE e4 carriers
have the poorest cognitive performance throughout
the lifespan. Lastly, the relationship between
neuroinflammation (elevated MI) and cognitive
performance across the subject groups is evaluated.

First, our primarily cART-treated HIV subjects
showed persistent glial activation (with elevated MI)
in the frontal white matter across the age span. This

finding is consistent with that reported in prior
MRS studies of patients with HIV,15 in postmortem
brains of patients with HIV,16 and in Simian immu-
nodeficiency virus–infected macaques.17 Persistent glial
activation is also reflected by elevated CSF chemokines
and cytokines (e.g., inducible protein-10, interleukin
[IL]-8, and monocyte chemoattractant protein-1),18,19

which are released by astrocytes and microglia, espe-
cially in HIV patients with higher ratios of MI/tCr.19

However, APOE e4 had little additional influence on
the elevated frontal white matter MI across the lifespan
of the HIV subjects. This contrasts with the antago-
nistic pleiotropy effect of APOE e41 in SN subjects:
lower MI at younger age but higher MI at older age
compared with APOE e42 SN subjects. Furthermore,
independent of HIV serostatus, subjects with APOE
e4 showed tendencies for lower levels of tCr in the
basal ganglia but higher concentrations of MI in the

Figure 3 Correlations between MI levels and cognitive performance

Higher levels of the glial marker MI in the frontal WMwere associated with slower fine motor tasks, whereas higher MI levels
in the parietal cortex were associated with poorer performance on fluency and speed of information processing domains,
especially in subjects with APOE e4 allele(s). FAS 5 Fluency and Verbal Fluency; GM 5 gray matter; MI 5 myo-inositol;
SN 5 seronegative; WM 5 white matter.
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parietal cortex across the age span. Collectively, these
findings indicate that e41 allele(s) and HIV infection
have independent and brain region–specific influence
on energy metabolism and glial activation.

The elevated MI in younger HIV subjects also
suggests premature brain aging, because MI increases
with normal aging.20 Prematurely lower brain gluta-
mate levels (possibly due to reduced reuptake and
recycling of glutamate by activated astrocytes)21 and
prematurely reduced cognitive reserve were also re-
ported in younger subjects with HAND.22 However,
in the parietal gray matter, elevated MI is found only
in SN, but not HIV1, APOE e41 subjects. Elevated
parietal MI is found in patients with AD,23 and likely
reflects greater microglial activation, especially in e41
individuals.24 Likewise, ApoE4 mice displayed greater
and more prolonged increases of cytokines (IL-1b,
IL-6, tumor necrosis factor-a) than ApoE2- and
ApoE3-expressing mice.25 The lack of an e41-medi-
ated inflammatory response in the parietal cortex of
e41 HIV subjects may reflect microglial dystrophy
due to the premature aging. In addition, the lower
basal ganglia tCr in all e41 subjects is similar to that
found in basal ganglia of ARV-naive HIV patients
with severe dementia26 and in occipital cortex of
APOE e41 elderly without dementia.27 Lower or
depleted tCr in these conditions might result from
the increased metabolic demands with chronic glial
activation, especially in the basal ganglia, which have
dense dopaminergic synapses.

Second, APOE e41 subjects had poorer attention
and working memory than APOE e42 subjects, inde-
pendent of HIV status. However, among the 4 groups,
HIV1 APOE e41 subjects performed poorest on
executive function, attention/working memory, flu-
ency, and memory. APOE e41 negatively affects cog-
nition in AD28 and in other brain injuries, such as
traumatic brain injury,29 and younger individuals with
MS.30 However, the effects of APOE e4 allele on
HAND were inconsistent among studies.4–10 Several
studies found that HIV1 APOE e4 carriers had
increased risk of HAND,5–8 while others found
increased risk only in older individuals ($50 years)4

or no increased risk of HAND.9,10 These conflicting
findings may in part be attributable to the antagonistic
pleiotropy effect of the APOE e4 allele(s),11 which neg-
atively affects older individuals but may enhance cog-
nitive function in younger individuals. Hence, the
negative effects of APOE e4 are evident only at older
ages, as seen in most patients with AD. However, in
some HIV-positive individuals, the negative effect of
APOE e4 may emerge earlier because younger HIV1
APOE e4 carriers already showed brain atrophy and
cognitive deficits.5 In the current study, APOE e41
exacerbated the cognitive deficits in our HIV subjects
across all ages, except for the performance on Trail B,

which was slower only in older e41 HIV1 subjects.
The poorer performance on some of the cognitive tasks
in older HIV APOE e41 patients likely resulted from
the lower cognitive reserve in the aging HIV-infected
brain, especially those with HAND.22 This finding is
also consistent with the more widespread deficits in
brain structural connectivity (on diffusion tensor imag-
ing scans) in HIV1 APOE e4 subjects.31

These discrepancies in the effects of APOE e4 on
HANDmay also be partly attributable to racial differ-
ences among cohorts. A large longitudinal study
found that only white but not black individuals with
APOE e41 showed faster decline in semantic and
working memory.32 Because the HIV subjects in
the current study were primarily white, they might
be more susceptible to the influence of APOE e41
allele(s) on attention/working memory.

The neuropathologic substrates for APOE e4–
mediated cognitive deficits in HIV patients are not well
understood. However, APOE e41 HIV1 subjects
showed greater atrophy in subcortical gray matter
structures and white matter.5 In addition, in postmor-
tem HIV-infected brains, both APOE e4 and older age
increased the likelihood of cerebral b-amyloid (Ab)
plaque deposition (as diffuse plaques and mild to mod-
erate amyloid angiopathy, but sparse phospho-tau neu-
rofibrillary tangles), and only APOE e4 carriers with
the Ab plaques had greater probability of HAND.33

Furthermore, CSF ApoE protein was elevated only in
HIV1 APOE e41 subjects, and the levels correlated
with the severity of cognitive deficits,8 suggesting that
the aberrant ApoE e4 protein could not clear the Ab
and contributed to HAND. Therefore, both AD and
HAND subjects with APOE e4 may share similar
mechanisms for excess accumulation of Ab, which
would elicit neuroinflammation and release of inflam-
matory molecules.34 Again, racial ancestry may also
have an important role in how APOE e4 might be
expressed since brain samples from individuals with
greater genetically determined African ancestry had
fewer neuritic plaques.35

Lastly, neuroinflammation (higher MI) in the fron-
tal white matter was associated with slower fine motor
speed across all subjects, especially in the HIV1 APOE
e41 subjects. Elevated glial marker MI has been asso-
ciated with poorer cognitive performance in both
ARV-naive26 and ARV-stable patients with HIV.15

Similarly, greater neuroinflammation (higher MI) in
the parietal cortex was associated with poorer perfor-
mance on verbal fluency, particularly in HIV1 APOE
e41 subjects. These findings suggest that the neuro-
inflammatory responses resulting from HIV infection
and APOE e4 allele(s) may lead to synergistic or addi-
tive effects on cognitive deficits. Conversely, the antag-
onistic pleiotropic effect of APOE e4 on MI in SN
subjects suggests a protective or anti-inflammatory
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effect, with lower MI and better cognitive perfor-
mance, in the younger SN APOE e41 subjects.

We had a moderately large sample size and a rela-
tively higher proportion of APOE e4 subjects (28.9%
of the SN group and 28.8% of the HIV group) com-
pared with prior reported frequencies across different
ethnic groups (12%–20%).36 However, the small
number of APOE e41 subjects led to only trends
for HIV 3 APOE e4 interactions for many tests
and was insufficient to evaluate a gene-dose effect
(1 copy or 2 copies of APOE e4), the possible anti-
inflammatory effects of e2 and e3 alleles, or a possible
racial ancestry effect. Future studies with a larger sam-
ple size of APOE e4 individuals are needed to validate
our findings on the influence of APOE e4 in HIV-
associated brain injury and HAND. Although we
excluded many common potential confounds (e.g.,
hepatitis C, drug dependence), some individuals still
might have abused drugs, which might contribute to
even more neuroinflammation with further elevation
of MI37 and Alzheimer-like pathology (i.e., increased
hyperphosphorylated tau).38

cART prolongs the lives of patients with HIV and
is the cornerstone for HIV prevention. However, sta-
bly cART-treated patients with HIV continue to show
persistent glial activation (elevatedMI) that might con-
tribute to their cognitive deficits. In younger subjects
with HIV, the persistent glial activation attenuated
the protective antagonistic pleiotropic effects of APOE
e4. HIV1 APOE e4 subjects also had greater cognitive
deficits, which may further increase the risk of HAND
with older age. APOE e4 allele(s) may be a useful
genetic marker to identify white and mixed-race sub-
jects with HIV at risk of cognitive decline.
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