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Abstract

The biosynthesis and export of bacterial cell-surface polysaccharides is known to occur through 

several distinct mechanisms. Recent advances in the biochemistry and structural biology of several 

proteins in synthase-dependent polysaccharide secretion systems have identified key conserved 

components of this pathway in Gram-negative bacteria. These components include an inner-

membrane-embedded polysaccharide synthase, a periplasmic tetratricopeptide repeat (TPR)-

containing scaffold protein, and an outer-membrane β-barrel porin. There is also increasing 

evidence that many synthase-dependent systems are post-translationally regulated by the bacterial 

second messenger bis-(3′-5′)-cyclic dimeric guanosine monophosphate (c-di-GMP). Here, we 

compare these core proteins in the context of the alginate, cellulose, and poly-β-D-N-

acetylglucosamine (PNAG) secretion systems.
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Role of exopolysaccharide production

The secretion of polysaccharides by bacteria is a physiological process that occurs under a 

multitude of different environmental circumstances. The role of these polysaccharides 

includes basic functions such as maintaining the structural integrity of the cell envelope and 

preventing cellular desiccation, as well as more complex functions such as facilitating 

interactions within bacterial communities, and between bacteria and eukaryotes. Bacterial 

polysaccharide production plays a direct role in human health, in part because of the ability 

of many pathogenic bacteria to form multicellular conglomerates called bio-films. The 

structural integrity of bacterial biofilms is highly dependent on a self-produced extracellular 
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Note added in proof
Since this paper first appeared online (30 October 2012), the structure of the BcsA/BcsB inner membrane cellulose synthase complex 
has been determined (PDB 4HG6 [97]), and evidence that PgaC and PgaD interact with each other, and c-di-GMP to form a functional 
PNAG synthase complex reported [98]. The conclusions of these two studies provide strong support for the mechanisms of cellulose 
and PNAG secretion proposed herein.
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matrix that may comprise exopolysaccharides, nucleic acids, and proteins [1–3]. The major 

components of the biofilm matrix differ, depending on the bacterial species and strain, the 

stage of biofilm development, and the environmental conditions. In Pseudomonas 
aeruginosa, a model organism that has been extensively used to study biofilm development, 

the exopolysaccharide component of the biofilm matrix predominates and protects the 

bacteria from host defense mechanisms and administered antibiotics [4–7]. 

Exopolysaccharides produced by bacteria also have industrial applications in the paper, 

food, and health industries, and thus an understanding of how these long polymers are 

secreted may lead to further efficiencies in commercial polysaccharide production.

Secretion of cell-surface polysaccharides in Gram-negative bacteria

Despite the enormous chemical diversity among the carbohydrate building blocks of 

bacterial exopolysaccharides, the molecular mechanism by which these biopolymers are 

assembled and exported from the cell can currently be categorized into three distinct 

mechanisms (Figure 1). These include the Wzx/Wzy- and ATP-binding cassette (ABC) 

transporter-dependent pathways, both of which use a lipid acceptor to initiate polysaccharide 

synthesis, and a synthase-dependent pathway, for which the requirement for a lipid acceptor 

molecule depends on the polysaccharide in question. In Wzx/Wzy-dependent secretion 

systems, such as Escherichia coli group 1 capsular polysaccharides (CPS) and 

lipopolysaccharide (LPS) O-antigen, the polysaccharide repeat unit is assembled on an 

undecaprenyl phosphate acceptor moiety by various inner-membrane-embedded or -

associated glycosyl transferases [8,9]. This synthesized precursor is then transported across 

the inner membrane by a flippase, Wzx [10–12], before being polymerized into a high-

molecular-weight polysaccharide by the periplasmic polymerase Wzy [13]. In comparison, 

the ABC transporter-dependent systems, such as E. coli group 2 CPS and LPS common 

antigen, assemble the entire polysaccharide chain on a lipid acceptor, the identity of which 

varies depending on the polysaccharide being synthesized, before transporting the polymer 

across the inner membrane via an ABC transporter [14–16]. Despite these mechanistic 

differences in their modes of polysaccharide assembly, both the Wzx/ Wzy- and ABC 

transporter-dependent secretion systems use similar protein families to facilitate 

exopolysaccharide export across the periplasm and through the outer membrane. This 

process involves proteins from the outer-membrane polysaccharide export (OPX) and 

polysaccharide copolymerase (PCP) protein families [17,18]. The X-ray crystal structures of 

E. coli Wza [19], an OPX protein, and several PCPs [20,21] have demonstrated that both of 

these proteins arrange into homo-oligomeric assemblies that interact with one another to 

form a protein channel through which the nascent polysaccharide chain is exported from the 

cell [22].

Synthase-dependent exopolysaccharide secretion can occur in the presence or absence of a 

lipid acceptor molecule, depending on the polysaccharide [23–25]. In these systems, it 

appears that a membrane-embedded glycosyl transferase is able to facilitate simultaneous 

polymer formation and translocation across the inner membrane [25]. In some of the better-

characterized Gram-negative synthase-dependent secretion systems such as P. aeruginosa 
alginate and Gluconacetobacter xylinus cellulose, polymerization is also regulated by an 

inner-membrane receptor, sometimes referred to as a co-polymerase, that binds the bacterial 
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second messenger bis-(3′-5′)-cyclic dimeric guanosine monophosphate (c-di-GMP) to 

activate polysaccharide production [26,27]. Once the polymer reaches the periplasm, a 

tetratricopeptide repeat (TPR)-containing scaffold protein is thought to protect it from 

degradation before it is exported across the outer membrane through a β-barrel porin [28–

30]. This export apparatus requires protein families that are clearly distinct from the OPX 

and PCP proteins used by the Wzx/Wzy- and ABC transporter-dependent pathways, and 

given the predictability of these protein domain families by sequence analysis programs such 

as SMART [31,32] and Phyre2 [33], they serve as identifiable hallmarks of synthase-

dependent exopolysaccharide secretion systems in Gram-negative bacteria. Here, we 

summarize the current understanding of synthase-dependent polysaccharide production in 

the context of the secreted exopolysaccharides alginate, cellulose, and poly-β-D-N-

acetylglucosamine (PNAG).

Synthase-dependent production of alginate

Alginate is a random linear polymer of 1,4-linked β-D-mannuronic acid and its C5 epimer 

α-L-guluronic acid [(β-D-ManUA-(1→4)-β-L-GulUA)n], which was originally identified in 

brown seaweeds and subsequently in several species of Gram-negative bacteria [34–36]. 

Interest in alginate biosynthesis has been driven by the observation that mucoid isolates of 

the opportunistic pathogen P. aeruginosa found in the lungs of cystic fibrosis (CF) patients 

secrete copious amounts of the polysaccharide [37]. Moreover, conversion of P. aeruginosa 
from a non-mucoid to a mucoid phenotype correlates with poor prognosis among these 

patients [38,39]. Current understanding of the mechanism of alginate biosynthesis and 

secretion has been gained from studies of the alginate-producing bacteria P. aeruginosa and 

Azotobacter vinelandii. In these organisms, alginate is first synthesized as a homopolymer of 

1,4-linked β-D-mannuronic acid before being epimerized at the polymer level to form the 

mature polysaccharide [40,41]. In addition, it has been found that the O2 and/or O3 

positions of β-D-mannuronic acid residues in bacterial alginates can be acetylated [42,43], 

which increases the water-binding capacity of the polymer and, during infection, protects P. 
aeruginosa from opsonic phagocytosis by the immune system of the host [44,45]. Moreover, 

O-acetylated alginate has been identified as an important structural component of biofilms 

produced by mucoid strains of P. aeruginosa [46].

The proteins responsible for the polymerization and export of alginate are encoded on the 

algD operon (Figure 2). Synthesis of poly-β-D-mannuronic acid from GDP-mannuronic acid 

occurs at the inner membrane and requires the integral inner membrane proteins Alg8 and 

Alg44 (Figures 3 and 4; Table 1). Alg8 is a putative alginate synthase because it contains 

five predicted trans-membrane domains and a large cytoplasmic synthase domain that shares 

homology with family 2 glycosyl transferases [47,48]. The polymerization reaction also 

requires the c-di-GMP-binding activity of the inner-membrane protein Alg44 [26]. Alg44 is 

a single-pass transmembrane protein that is predicted to have an N-terminal cytoplasmic c-

di-GMP-binding PilZ domain and C-terminal periplasmic region that may resemble a 

membrane fusion protein (MFP) domain [47]. It is thought that these two proteins act in 

concert to facilitate the polymerization and export of poly-β-D-mannuronic acid across the 

inner membrane by a mechanism that is regulated by c-di-GMP binding to Alg44. This 

hypothesis was derived, in part, from the observation that site-specific mutations that 
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compromise the c-di-GMP-binding ability of Alg44 abrogate alginate production in vivo 
[26]. The role of MFP domains as periplasmic adaptors that join inner-membrane transport 

proteins to outer-membrane export proteins in bacterial tripartite drug-efflux pumps suggests 

that the MFP domain of Alg44 may take part in periplasmic protein–protein interactions 

(Figure 3) [49]. At present, there are no experimental data confirming that Alg8 and Alg44 

are directly responsible for export of the newly synthesized polymer across the inner 

membrane or if the MFP domain of Alg44 couples alginate polymerization to its export.

Once in the periplasm, poly-β-D-mannuronic acid is epimerized by the polymer-level 

mannuronan C5 epimerase AlgG [40]. AlgG is thought to play dual roles in both C5 

epimerization and secretion of the nascent alginate polymer across the periplasm [50]. An 

algG deletion mutant produces degraded alginate fragments that are characteristic of 

digestion products of the periplasmic alginate lyase AlgL, suggesting that AlgG also plays a 

role in protecting the alginate polymer as it traverses the periplasm [50].

The algI, algJ, and algF gene products have all been implicated in the O-acetylation of 

mannuronic acid residues [51,52]. AlgI and AlgJ are integral inner-membrane proteins, 

whereas AlgF localizes to the periplasm. Topology modeling of AlgI suggests that it 

contains at least seven transmembrane helices, whereas except for a single trans-membrane 

helix at its N-terminus, the majority of AlgJ resides in the periplasm [53]. The current model 

of alginate O-acetylation involves export of an unknown cytoplasmic acetyl donor by AlgI 

across the inner membrane to the periplasm, where the acetate group is then transferred to 

alginate by the activities of AlgJ and AlgF [54]. AlgX is a periplasmic protein of unknown 

function; however, its high sequence similarity to AlgJ suggests that it may also play a role 

in alginate O-acetylation [55,56]. As with the algG deletion mutant, an algX deletion mutant 

produces AlgL-degraded alginate, suggesting that AlgX may also play a role in guiding the 

mature alginate polymer across the periplasm [55].

The TPR-containing outer-membrane lipoprotein AlgK is believed to guide the mature 

polymer towards the integral outer-membrane protein AlgE, which facilitates translocation 

of alginate across the outer membrane [29,30]. The proposed function of AlgK was derived, 

in part, from phenotypic studies demonstrating that in the absence of AlgK, alginate is 

degraded by AlgL [28,57,58]. The presence of TPRs in the structure of AlgK suggests that it 

may serve as a scaffold to which the other periplasmic Alg proteins interact to form a 

multiprotein complex (Figure 3) [29]. TPR-containing proteins often function as protein–

protein interaction modules and are involved in a variety of different cellular processes in all 

domains of life [59]. In Gram-negative bacteria, TPR domains facilitate protein–protein 

interactions within the outer-membrane β-barrel assembly machinery (BAM) complex, and 

between the chaperone and substrate for several translocator proteins exported by the type 

III secretion system (T3SS) apparatus [60,61].

The recent X-ray crystal structure of AlgE shows that it adopts an 18-stranded β-barrel with 

a highly electropositive interior (Figure 3) [30]. Given the strict conservation of many of the 

pore-forming residues, it has been suggested that AlgE forms a highly specific translocation 

pathway for the negatively charged alginate polymer. On the basis of subcellular 

fractionation experiments using an algK deletion mutant, it has also been proposed that 
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AlgE interacts directly with AlgK because a significant proportion of AlgE mislocalizes to 

the inner membrane in this mutant [29]. Lending further support to this hypothesis is the 

prediction that the outer-membrane proteins involved in cellulose and PNAG secretion 

(discussed in the following sections) each form large two-domain proteins with a 

periplasmic TPR-containing domain and a transmembrane β-barrel (Figure 4) [30].

At present, there is a lack of definitive evidence that the alginate biosynthesis and export 

proteins interact to form a trans-envelope complex, although initial studies showing that in 
vitro alginate polymerization requires both inner-and outer-membrane fractions suggest that 

this may be the case [48]. Preliminary evidence demonstrating direct interactions between 

AlgX, AlgK, and the regulatory protein MucD has also been reported recently [62]. 

Although an AlgK–AlgX interaction is logical given the involvement of the two proteins in 

the alginate secretion process, MucD is a homolog of E. coli HtrA/DegP and a negative 

regulator of alginate biosynthesis [63]. The proposed function of MucD is to degrade cell-

wall stress signals that activate transcription of the algD operon [64]. The proposed role of 

MucD is to function upstream of algX and algK translation, so the biological significance of 

the MucD–AlgX–AlgK complex observed in vitro is unclear at this point. Although the 

individual functions of the proteins involved in the polymerization, modification, and export 

of alginate have been elucidated, future research needs to address which of these proteins 

interact with one another to facilitate the overall synthesis and secretion process.

Synthase-dependent production of cellulose

Produced by higher plants, fungi, algae, and bacteria, the β-1,4-linked D-glucose 

homopolymer cellulose [(β-D-Glc-(1→4)-β-D-Glc)n] is one of the most abundant 

polysaccharides found in nature. Despite this, little is known about the molecular mechanism 

of its biosynthesis and export. In bacteria, cellulose biosynthesis was first described in G. 
xylinus (formerly Acetobacter xylinum) and has since been described in a variety of Gram-

negative bacteria including E. coli, Salmonella enterica, and Vibrio fischeri among others 

(Figure 2) [65–68].

Although the order of genes required for cellulose production exhibits more variability 

among bacteria compared to those involved in alginate production, the same core protein 

components involved in its biosynthesis and export appear to be conserved between the two 

polysaccharide secretion systems (Figures 2 and 4; Table 1). For example, the E. coli bcsA 
gene (acsA in G. xylinus) encodes the cellulose synthase protein. Similarly to the alginate 

synthase Alg8, BcsA is an inner-membrane protein with multiple transmembrane domains 

and a cytoplasmic family 2 glycosyl transferase domain [67,69]. BcsA is thought to both 

catalyze cellulose polymerization from UDP-glucose and facilitate translocation of the 

newly formed polymer across the inner membrane. In addition, BcsA contains a PilZ 

domain at its C terminus, whose c-di-GMP binding activity activates cellulose production 

[27]. Thus, unlike alginate secretion, in which Alg8 and Alg44 are responsible for the 

polymerization and c-di-GMP binding activities, respectively, in cellulose biosynthesis both 

of these functions are carried out by a single protein (Figures 2 and 4). The bcsB gene 

product localizes to the inner membrane and is required for both in vitro and in vivo 
cellulose production; however, its specific role in cellulose production is unclear at this point 
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[70]. It has been proposed that the bcsC gene encodes a large outer-membrane protein that 

contains an N-terminal TPR-containing domain that resides in the periplasm and a C-

terminal porin domain that facilitates cellulose export across the outer membrane [29]. Thus, 

it is thought that BcsC contains a domain architecture that resembles AlgK and AlgE from 

the alginate secretion system [30]. This putative function would also explain why BcsC is 

necessary for cellulose production in vivo but is dispensable for its production in vitro [70]. 

The bcsZ gene is located within the cellulose biosynthetic operon in some bacteria or 

elsewhere in the genome in others. bcsZ encodes a periplasmic enzyme with endo-β-1,4-

glucanase activity that may be required for degradation of accumulated cellulose in the 

periplasm and/or cleavage of nascent cellulose chains to allow micro-fibril formation to 

occur outside the cell [71]. BscQ, which is homologous to the E. coli cell division protein 

MinD, localizes to the cell pole and thus may be required for polar localization of the 

cellulose biosynthesis apparatus in E. coli, S. enterica, and Burkholderia cenocepacia [72]. 

However, it should be noted that the authors of this study were not able to detect polar 

localization of the other Bcs proteins even though cellulose itself was produced at the cell 

pole. The AcsD protein, which is unique to G. xylinus, arranges into a homo-octomeric 

assembly that is capable of binding cellulose [73]. It is thought that the AcsD multimer 

exists extracellularly and that its function is to twist the newly synthesized glucan polymers 

into higher-order cellulose fibrils [73,74]. This hypothesis would also help to explain why G. 
xylinus produces fibrillar cellulose whereas other bacteria that lack an AcsD homolog, such 

as E. coli, produce amorphous cellulose.

P. fluorescens SBW25 and Pseudomonas syringae patho-var tomato DC3000 produce an 

acetylated form of cellulose whose production requires the wss operon (Figure 2) [75,76]. 

This operon is predicted to encode not only proteins involved in the secretion of non-

acetylated cellulose (WssA/ BcsQ, WssB/BcsA, WssC/BcsB, WssD/BcsZ, and WssE/ 

BcsC) but also proteins that resemble those involved in the O-acetylation of alginate (WssG/

AlgF, WssH/AlgI, and WssI/AlgJ) (Figure 4 and Table 1). WssF is also involved in the O-

acetylation of cellulose; however, there does not appear to be a functionally similar protein 

involved in alginate O-acetylation [75]. In addition, the wss operon of P. fluorescens SBW25 

contains a second MinD homolog, WssJ; it is speculated that WssJ plays a role in cellular 

localization of the cellulose O-acetylation proteins, as opposed to the cellulose synthase 

proteins, whose localization is more likely to be regulated by WssA given its similarity to 

BcsQ [75]. However, characterization of the acetylated cellulose produced by these bacteria 

is still in its infancy and requires experimental confirmation of the proposed functions for 

each of the proteins.

Synthase-dependent production of PNAG

The genes responsible for synthesis of PNAG have recently been identified in a number of 

Gram-negative bacteria including E. coli, Yersinia pestis, Actinobacillus pleuropneumoniae, 

and Bordetella bronchiseptica, among others (Figure 2) [77–80]. PNAG is a β-1,6-linked N-

acetyl-D-glucosamine homopolymer [(β-D-GlcNAc-(1→6)-β-D-GlcNAc)n] that functions 

as an important component of the biofilm matrix produced by these organisms and thus 

contributes to their overall persistence during infection. Unlike alginate and cellulose, which 

are synthesized as non-acetylated polymers by their respective synthases and subsequently 
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O-acetylated in the periplasm, PNAG is assembled as a fully N-acetylated precursor starting 

from a UDP-N-acetylglucosamine precursor. The PgaC protein (Y. pestis HmsR and B. 
bronchiseptica BpsC), similar to Alg8, BcsA, and WssB, is predicted to contain multiple 

transmembrane domains and a large cytoplasmic domain that shares homology with family 2 

glycosyl transferases (Figure 4). Therefore, PgaC is a putative PNAG synthase that is 

thought to catalyze the polymerization of β-1,6-linked N-acetyl-D-glucosamine and 

facilitate its export across the inner membrane. The precise function of the predicted inner-

membrane protein PgaD/ HmsS/BpsD is unknown; however, it is thought to play a role in 

the polymerization process because, similar to PgaC, its deletion abrogates the production of 

PNAG [81]. Although it is not predicted to contain a PilZ domain, the possibility that PgaD 

binds c-di-GMP to post-translationally regulate PNAG production cannot be ruled out given 

the diversity of protein folds that are capable of binding to the dinucleotide [82]. Once in the 

periplasm, the PNAG polymer is partially de-N-acetylated by the carbohydrate esterase 

PgaB/HmsF/BpsB. A recent structure–function characterization of E. coli PgaB has shown 

that it harbors a de-N-acetylase domain with low catalytic efficiency [83]. These 

observations corroborate the relatively low amount (~22%) of de-N-acetylation observed in 
vivo and has led to speculation that the differing amounts of de-N-acetylation observed 

among PNAG-producing bacteria are probably related to the enzyme activity of their PgaB 

homolog. PgaA is a predicted outer-membrane protein that is proposed to have a similar 

domain arrangement as BcsC/AlgK and AlgE. In the absence of PgaB, PNAG accumulates 

in the periplasm of E. coli, leading to speculation that the putative export function of PgaA is 

specific for partially de-N-acetylated (mature) PNAG [81]. Aside from PgaB, the proteins 

involved inPNAG polymerization and export have not been functionally characterizedtodate. 

Structural and functional characterization of the PgaA, PgaC, and PgaD proteins will be 

required to fully understand the mechanism of PNAG secretion across the cell envelope.

Additional synthase-dependent polysaccharide secretion systems

Alginate, cellulose, and PNAG are the most studied synthase-dependent secretion systems in 

Gram-negative bacteria, but additional polysaccharides appear to use a similar mechanism of 

biosynthesis and export. Pasteurella multocida produces hyaluronan (HA), which comprises 

repeating units of D-glucuronic acid and N-acetyl-D-glucosamine [(1→4)-β-D-GlcUA-

(1→3)-β-D-GlcNAc-(1→4)] and requires hyaluronan synthase (HAS) for its production 

[84,85]. This synthase is the fusion of two glycosyl transferases, one with specificity 

towards β-D-N-acetylglucosamine and the other towards β-D-glucuronic acid. The details of 

HA export through the periplasm and across the outer membrane are unclear at this point so 

it is difficult to ascertain if the same protein components as for alginate, cellulose, and 

PNAG are utilized. There is also controversy as to whether HA assembly requires a lipid 

precursor. However, a recent study on a HAS from the Gram-positive bacterium 

Streptococcus equisimilis indicates that the polymerization and membrane translocation 

processes do not require a lipid-linked precursor in this bacterium [25].

The PEL polysaccharide, whose chemical structure has yet to be identified, is produced by 

some strains of P. aeruginosa and Ralstonia solanacearum [86]. Similar to alginate and 

cellulose, PEL is regulated post-translationally by c-di-GMP [87]. However, this regulation 

occurs via the degenerate GGDEF domain of PelD and not a PilZ domain as in alginate and 
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cellulose production [88]. Therefore, the mechanism by which PelD exerts its regulation 

may differ from the PilZ domains of Alg44 and BcsA. In addition, the putative PEL 

polymerase PelF is predicted to localize to the cytoplasm and is thus unlikely to facilitate 

polysaccharide translocation across the inner membrane as has been proposed for Alg8 and 

BcsA [89]. At present, characterization of the Pel proteins is still in its early stages and it 

remains to be determined if PEL polysaccharide assembly occurs on a lipid carrier.

Curdlan [β-D-Glc-(1→3)-β-D-Glc)n] production by Agro-bacterium tumefaciens requires 

the curdlan synthase protein CrdS, which probably uses a synthase-dependent pathway given 

its sequence similarity to cellulose synthases [90]. However, lack of experimental 

characterization of this system makes it difficult to determine its mechanism of biosynthesis 

and secretion.

Concluding remarks

Although this review highlights some interesting commonalities between the better-studied 

synthase-dependent exopolysaccharide secretion systems, it is clear that more research is 

required to tease out the molecular details of this process. One central question that has yet 

to be addressed is whether or not the synthase-dependent secretion systems highlighted here 

form a trans-envelope multiprotein complex as observed in the Wzx/Wzy- and ABC-

transporter-dependent systems [22]. Although this hypothesis seems feasible for alginate and 

cellulose secretion, for which there are a significant number of proteins in the periplasm that 

could facilitate the formation of such a complex, the apparent simplicity of the PNAG 

secretion system suggests that it may not have enough protein components to span the ~200-

Å periplasmic space unless a constriction occurs [91].

Post-translational regulation by c-di-GMP is another process that appears widespread among 

synthase-dependent polysaccharide systems. However, the mechanism by which c-di-GMP 

exerts its effect has not been addressed for any of these systems. Is binding of c-di-GMP to 

its receptor a switch that stimulates the catalytic activity of its associated synthase or does it 

also serve to couple exo-polysaccharide polymerization to export through alteration of 

protein–protein interactions by an as yet unidentified allosteric mechanism? Moreover, how 

does the synthase itself facilitate extrusion of the nascent polymer across the inner 

membrane? To date, the only synthase whose polysaccharide export activity has been 

definitively shown is the aforementioned bacterial HAS from S. equisimilis. To address 

these questions and many others (Box 1), in vitro reconstitution of these systems using 

purified components will be required. High-resolution crystal structures of these components 

will also be critical, because they will help in generating mechanistic hypotheses that can 

then be tested experimentally.

Box 1

Outstanding questions

• How is synthase-dependent exopolysaccharide polymerization initiated? If, as 

proposed, some synthase-dependent secretion systems do not require a lipid 

acceptor molecule, then what molecular entity serves as the nucleophile for 
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the first sugar–nucleotide precursor molecule? As has been shown for some 

UDP-glucosyl transferases [94], is water capable of functioning as a sugar–

nucleotide acceptor?

• By what mechanism does c-di-GMP post-translationally regulate 

exopolysaccharide polymerization? Does c-di-GMP binding to its target 

receptor alleviate inhibition of its associated synthase or does it allosterically 

activate synthase activity through conformational changes? Does c-di-GMP 

binding also serve to couple exopolysaccharide polymerization to export 

through protein–protein interactions?

• How does the exopolysaccharide cross the cytoplasmic inner membrane? Are 

the transmembrane domains of the synthase sufficient for inner membrane 

transport of the polymer [25] or are additional protein components required? 

As described above, what is the role of c-di-GMP binding in this process?

• In the alginate and acetylated cellulose systems, what is the chemical identity 

of the acetyl donor? Mechanistically, how is the acetate group transported 

across the inner membrane and transferred to the nascent polymers? 

Identification of this acetyl donor may also shed light on the mechanism of O-

acetylation in other polysaccharides such as bacterial (peptidoglycan) and 

plant (xyloglucan) cell-wall polymers [95,96].

• Do the inner and outer membrane components of synthase-dependent 

polysaccharide secretion systems interact with one another to form a trans-

envelope complex as observed for OPX and PCP proteins of the Wzx/Wzy-

dependent polysaccharide secretion systems?
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Figure 1. 
Mechanisms of polysaccharide secretion. Cartoon schematic of the Wzx/Wzy-, ABC-

transporter- and synthase-dependent pathways for exopolysaccharide biosynthesis and 

export. The key protein components for each pathway are indicated on the diagram. 

Glycosyl transferases (GTs) synthesize the lipid-linked polysaccharide repeat units from 

nucleotide diphosphates (NDPs) or nucleotide monophosphates (NMPs) in the Wzx/Wzy- 

and ABC-transporter-dependent systems. For Wzx/Wzy-dependent secretion, the 

polysaccharide repeat unit is assembled on an undecaprenyl phosphate carrier located in the 

inner leaflet of the inner membrane before being transported across the inner membrane by 

the flippase Wzx. In the periplasm, the repeat units are assembled into the mature 

polysaccharide by the polymerase Wzy before being exported through the periplasm and 

across the outer membrane by a translocation pathway formed by members of the PCP and 

OPX families of proteins. For ABC transporter-dependent secretion, the entire 

polysaccharide is assembled on a lipid carrier located in the inner leaflet of the inner 

membrane before being transported across the inner membrane by an ABC transporter. The 

polysaccharide is then exported through the periplasm and across the outer membrane by a 

translocation pathway formed by members of the PCP and OPX families of proteins. For 

synthase-dependent secretion, the polysaccharide is polymerized and exported across the 

inner membrane by an inner-membrane synthase protein. In some instances, the activity of 

the polysaccharide synthase is post-translationally regulated by an inner-membrane c-di-

GMP receptor. The polysaccharide is then exported across the outer membrane by a 

periplasmic TPR-containing protein and an integral outer-membrane β-barrel. 

Abbreviations: OPX, outer membrane polysaccharide export; PCP, polysaccharide 

copolymerase; TPR, tetratricopeptide repeat proteins; IM, inner membrane; PG, 
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peptidoglycan sacculus; OM, outer membrane; c-di-GMP, bis-(3′-5′)-cyclic dimeric 

guanosine monophosphate; ABC transporter, ATP-binding cassette transporter.
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Figure 2. 
Synthase-dependent exopolysaccharide loci in Gram-negative bacteria. Operons for which 

there is experimental confirmation of alginate, cellulose, and poly-β-D-N-acetylglucosamine 

(PNAG) production in Gram-negative bacteria. Each open reading frame is shown as an 

arrow (not drawn to scale) and named as labeled. The predicted or confirmed function of 

each open reading frame is indicated by its color as described by the legend in the figure. 

Open reading frames that have two colors represent two attributed functions. Abbreviations: 

P. aeruginosa, Pseudomonas aeruginosa; P. fluorescens. Pseudomonas fluorescens; P. putida, 

Pseudomonas putida; P. syringae, Pseudomonas syringae; A. vinelandii, Azotobacter 
vinelandii; E. coli, Escherichia coli; Y. pestis, Yersinia pestis; A. pleuropneumoniae, 

Actinobacillus pleuropneumoniae; B. bronchiseptica, Bordetella bronchiseptica; A. 
baumannii, Acinetobacter baumannii; B. multivorans, Burkholderia multivorans; S. enterica, 

Salmonella enterica; V. fischeri, Vibrio fischeri; B. cenocepacia, Burkholderia cenocepacia; 

G. xylinus, Gluconacetobacter xylinus.

Whitney and Howell Page 17

Trends Microbiol. Author manuscript; available in PMC 2014 July 28.

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript



Figure 3. 
Model of the polymerization and export of alginate. Structural representation of the inner- 

and outer-membrane components required for alginate secretion. AlgE, AlgK, Alg8, and 

Alg44 are displayed in cartoon representation in yellow, blue, green, and red, respectively. 

The AlgE (Pseudomonas aeruginosa) and AlgK (Pseudomonas fluorescens) models are 

derived from the recent crystal structures determined by Whitney et al. (PDB 3RBH) [30] 

and Keiski et al. (PDB 3E4B) [29]. The synthase domain of Alg8 was modeled using the 

first GT-A domain of the unpublished crystal structure of Escherichia coli chondroitin 

polymerase (PDB 2Z86). The cytoplasmic PilZ domain of Alg44 was modeled using the apo 

structure of P. aeruginosa PA4608 (PDB 1YWU) solved by the Northeast Structural 

Genomics Consortium [92] and the periplasmic MFP domain was modeled using E. coli 
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MacA (PDB 3FPP), the periplasmic component of a tripartite macrolide-specific efflux 

pump [93]. The Alg8 and Alg44 models were generated using the Protein Homology/

analogY Recognition Engine (Phyre2) server [33]. 1,4-Linked β-D-mannuronic acid was 

modeled in the diagram (shown as green sticks) to demonstrate the role of AlgK as a 

protective scaffold protein and of AlgE as the outer-membrane alginate export protein. GDP 

mannuronic acid (GDP-ManUA) is the activated sugar nucleotide precursor. The black 

squiggly line indicates the N-terminal lipid anchor of AlgK. IM, PG, and OM refer to the 

inner membrane, the peptidoglycan sacculus, and the outer membrane, respectively.
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Figure 4. 
Schematic representation of the alginate, cellulose, acetylated cellulose, and poly-β-D-N-

acetylglucosamine (PNAG) exopolysaccharide secretion systems. The components for each 

pathway are indicated on the diagram and color-coded according to similar predicted 

function as follows: green, synthase; red, c-di-GMP, bis-(3′-5′)-cyclic dimeric guanosine 

monophosphate; blue, tetratricopeptide repeat; yellow, β-barrel porin; orange, 

exopolysaccharide-modifying enzyme; purple, MinD homolog; and white, unknown 

function. The black squiggly line indicates the N-terminal lipid anchors of AlgK and PgaB. 

In each system, the polysaccharide indicated is polymerized and transported across the inner 

membrane by its respective synthase. For alginate, cellulose, and acetylated cellulose, this 

process also requires the c-di-GMP receptor indicated. Once in the periplasm, various 

polysaccharide-modifying enzymes act on each of the polysaccharides before they are 

exported across the outer membrane by a tetratricopeptide repeat (TPR)-containing protein 

and an integral outer-membrane β-barrel. Abbreviations: IM, inner membrane; PG, 

peptidoglycan sacculus; OM, outer membrane; GDP-ManUA, GDP mannuronic acid; UDP-

Glc, UDP glucose; UDP-GlcNAc, UDP N-acetylglucosamine.
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Table 1

Proteins involved in alginate, cellulose, and PNAG polymer biosynthesis and export

Protein Predicted or demonstrated function Subcellular localization PDB IDa Refs

Alginate

Alg8 Synthase Inner membrane N/A [41,42]

Alg44 c-Di-GMP receptor Inner membrane N/A [22,41]

AlgK TPR scaffold Outer membrane 3E4B [24,25]

AlgE β-Barrel porin Outer membrane 3RBH [26]

AlgG C5 mannuronan epimerase Periplasm N/A [35,36,43]

AlgX O-Acetylation? Periplasm Forthcoming [48,49]

AlgL Alginate lyase Periplasm Forthcoming [50,51]

AlgI O-Acetylation Inner membrane N/A [45–47]

AlgJ O-Acetylation Inner membrane N/A [45–47]

AlgF O-Acetylation Periplasm N/A [44,46]

Cellulose

BcsQ/WssA Polar localization of apparatus? Cytoplasm N/A [61]

BcsA/WssB Synthase/c-di-GMP receptor Inner membrane N/A [23,53]

BcsB/WssC Unknown Inner membrane N/A [59]

BcsZ/WssD Glycosyl hydrolase Periplasm 3QXF, 3QXQ [60]

BcsC/WssE TPR scaffold/β-barrel porin Outer membrane N/A [25,26,59]

WssF O-Acetylation? Periplasm N/A [56]

WssG O-Acetylation? Periplasm N/A [47,56]

WssH O-Acetylation? Inner membrane N/A [47,56]

WssI O-Acetylation? Inner membrane N/A [47,56]

WssJ Unknown Cytoplasm N/A [56]

AcsD Cellulose fiber formation Extracellular 3AJ1, 3A8E [62,63]

PNAG

PgaA TPR scaffold/β-barrel porin Outer membrane N/A [65,69]

PgaB De-N-acetylase Outer membrane 4F9D, 4F9J [65,69,71]

PgaC Synthase Inner membrane N/A [65,69]

PgaD c-Di-GMP binding? Inner membrane N/A [65,69]

a
N/A, structure not available in PDB.
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