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Abstract Biomarkers are important for early detection of can-
cer, prognosis, response prediction, and detection of residual or
relapsing disease. Special attention has been given to diagnostic
markers for prostate cancer since it is thought that early detection
and surgery might reduce prostate cancer-specific mortality. The
use of prostate-specific antigen, PSA (KLK3), has been debated
on the base of cohort studies that show that its use in preventive
screenings only marginally influences mortality from prostate
cancer. Many groups have identified alternative or additional
markers, among which PCA3, in order to detect early prostate
cancer through screening, to distinguish potentially lethal from
indolent prostate cancers, and to guide the treatment decision.
The large number of markers proposed has led us to the present
study in which we analyze these indicators for their diagnostic
and prognostic potential using publicly available genomic data.
We identified 380 markers from literature analysis on 20,000
articles on prostate cancer markers. The most interesting ones
appeared to be claudin 3 (CLDN3) and alpha-methysacyl-CoA
racemase highly expressed in prostate cancer and filamin C
(FLNC) and keratin 5 with highest expression in normal pros-
tate tissue. None of the markers proposed can compete with
PSA for tissue specificity. The indicators proposed generally
show a great variability of expression in normal and tumor
tissue or are expressed at similar levels in other tissues. Those
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proposed as prognostic markers distinguish cases with margin-
ally different risk of progression and appear to have a clinically
limited use. We used data sets sampling 152 prostate tissues,
data sets with 281 prostate cancers analyzed by microarray
analysis and a study of integrated genomics on 218 cases to
develop a multigene score. A multivariate model that combines
several indicators increases the discrimination power but does
not add impressively to the information obtained from Gleason
scoring. This analysis of 10 years of marker research suggests
that diagnostic and prognostic testing is more difficult in
prostate cancer than in other neoplasms and that we must
continue to search for better candidates.

Keywords Prostate cancer - Biomarkers - Multivariate
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1 Introduction

Prostate cancer is the most commonly diagnosed non-skin
cancer and the second leading cause of cancer death for males
in the USA. More than 240,000 men were diagnosed with the
disease and more than 33,000 died of it in 2011 [1]. If the
current prostate-specific antigen-based screening schemes
will be applied in the future, it can be estimated that 16.2 %
of American men alive today will be diagnosed with the
neoplasm and approximately 3 % will die of it. There is a
general epidemiological trend towards growing incidence
while mortality is stable. The increasing incidence is particu-
larly evident for the period between 1980 and 1995 in affluent
countries and at present in emerging countries [2]. This trend
is probably at least in part due to the introduction of prostate
cancer screening using prostate-specific antigen (PSA) as a
marker. Introduction of PSA [3] has led to a drastic increase in
the early detection of prostate cancer resulting in an increased
reported incidence, in part due to indolent cancers.
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PSA, a marker for prostate cells [4], is not specific for prostate
cancer. Currently, PSA is used both as a diagnostic marker for
early detection of prostate cancers and for follow-up after surgery
or during prostate cancer therapy. PSA is expressed almost
exclusively by the prostate; therefore, its expression is tightly
linked to the presence of prostatic cells. After the initial clearance
of residual PSA from the serum of patients who had their prostate
surgically removed, increasing PSA levels indicate the presence
of disseminated and eventually growing cells. During chemical
castration, growing PSA levels can indicate failure of the therapy.
While it is recognized an undisputable value as a follow-up
marker, there is a longstanding discussion on its use as a diag-
nostic marker. The U.S. Preventive Services Task Force has
reviewed the existing evidence for the benefit of PSA screening
and has issued a recommendation against PSA screening in men
over 65 years old in 2008 [5] that has been extended to younger
men as a draft in 2011 [6] confirmed in 2012 [7]. The recom-
mendation is based on two clinical trials that come to opposite
conclusions: the US Prostate, Lung, Colorectal, and Ovarian
cancer screening trial [8] showed an increased absolute risk of
prostate cancer-specific mortality of 0.2/1,000 men associated
with screening, whereas in the European Randomized Study of
Screening for Prostate Cancer (ERSPC) [9], screening was asso-
ciated with a decreased absolute risk of prostate cancer mortality
of 0.6/1,000 men. The two associations were not statistically
significant but, applying the statistical analyses planned a priori,
a significant reduction of mortality (0.7/1,000 men; 1,410 screen-
ings to prevent 1 death) was detected for the subgroup of men
aged 55 to 65 years only in ERSPC.

PSA velocity, the increase over time of PSA serum levels, has
been proposed as a more specific marker for cancer [ 10] but there
is contrasting evidence [11]. The increase of PSA levels in the
year before surgery identifies more aggressively growing cancers
[12]. Most of PSA is bound to serum proteins and a minor part is
free in the serum. The use of free PSA or the ratio between free
and serum protein-bound PSA as markers may reduce unneces-
sary biopsies for men with relatively low PSA levels between 4
and 10 ng/ml [13].

A more recent addition to the urologist's toolbox is the prostate
cancer antigen 3, PCA3, identified by Bussemaker and colleagues
in 1999 [14] under the name DD3 using digital display screening
for prostate cancer-specific RNAs (for a recent review see [15]).
PCA3 is a non-coding RNA of unknown function. It is analyzed
by RNA amplification methods from urine sediments after prostate
massage [16]. In contrast to PSA, PCA3 is specifically expressed
by prostate cancer cells [17]. The increased specificity is contrasted
by a reduced sensitivity and PCA3 is therefore applied in associ-
ation with PSA where it can reduce the number of unnecessary
biopsies after a negative biopsy in men with elevated PSA levels
[18, 19]. PCA3 may also have some prognostic potential inasmuch
as its expression correlates with the Gleason score [20, 21], yet it
has not been reported whether the combination of PCA3 and
Gleason can improve prognostic power.
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While the discussion on the appropriateness of PSA (and
PCAB3) screening is still open, it is widely held that improved
biomarkers, especially biomarkers that distinguish normal
prostate tissue from prostate cancer and markers associated
with aggressive disease, could greatly improve prostate cancer
screening results and deliver the benefit of early diagnosis and
appropriate treatment to many men.

Cancer biomarkers are invaluable for early detection of
cancer. An ideal marker would be expressed by tumor cells
but not by the normal counterpart or other tissues. Diagnostic
markers are applied to screening of healthy people, in partic-
ular of those with an elevated specific risk and must therefore
be measurable in the least invasive manner possible. Although
screening programs invariably lead to some degree of overdi-
agnosis, early detection has led to a reduction in cancer
mortality for breast cancer (mammography, echography)
[22], cervical cancer (Papanicolaou test, HPV screening)
[23], and colon cancer (occult fecal blood, colonoscopy) [24].

Prognostic biomarkers can help to distinguish relatively
benign cancers from aggressive ones and might orient treat-
ment decisions. These markers are useful post-detection
where they should be able to distinguish aggressive disease
so as to direct the surgical/therapeutic intervention that might
be unnecessary for non-aggressive cancers. Prognostic histo-
pathological analyses are standard for many cancers, and
prognostic gene expression signatures are being applied to
the treatment decision for breast cancer [25-27].

Predictive markers can detect drug sensitivity or resistance
guiding the treatment choice. These markers are useful after
diagnosis and most often are detected in tissue samples ob-
tained by biopsy or surgery. Examples of predictive markers
are epidermal growth factor receptor (EGFR) and k-RAS
mutations in non-small cell lung cancer that guide the use of
EGFR-specific tyrosine kinase inhibitors [28] or HER2 over-
expression or amplification that indicates the treatment with
anti-HER2 antibodies [29] or adjuvant anthracyclines [30].

Follow-up markers allow for the screening of residual or
relapsing disease and should be measured in a noninvasive way,
by the analysis of sera, plasma, or urine. Serum PSA, in particular
free PSA, is widely used as a follow-up marker after surgery and
during therapy given its specificity for prostate tissue [31]. In
addition, specific radiation response markers for prostate cancer
have been proposed [32, 33]. New markers are therefore mostly
needed for screening, for early diagnosis, and for prognosis.

PSA is almost exclusively produced by the prostate and
released into the serum. Yet, its use as a diagnostic marker is
limited by the fact that it is also expressed in healthy prostate
tissue and that circulating levels can be elevated in subjects with
prostatitis, inflammation, benign prostatic hyperplasia [34], and
after recent ejaculation [35]. In addition, the PSA screening trials
show that many diagnosed prostate cancers do not develop into a
life-threatening disease. Further, prostate cancer can develop
in individuals whose PSA levels remain low.
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Biomarker research today can rely on a large number of
publicly available data that allow for in-depth analyses of the
association between gene expression and clinical and histo-
pathological variables. Our aim in this study is to review the
state of the art and eventually to restrict the number of candi-
date markers to those with molecular characteristics and ex-
pression profiles compatible with a selective marker function.
We have analyzed the literature over the last 10 years identi-
fying a large number of markers that have been proposed as
diagnostic or prognostic markers for prostate cancer. We an-
alyzed these markers using several datasets for their ability to
discriminate healthy and neoplastic prostate tissue and for
their capability to predict the clinical behavior of the tumors.
Finally, we tried to develop prognostic signatures on the base
of the published markers. Our results show that the proposed
markers either taken alone or combined in a signature have a
limited diagnostic or prognostic power and that further studies
need to be done across an increasing range of potential marker
sources.

2 Methods
2.1 Identification of prostate cancer markers

PubMed was screened for scientific articles published from
2001 to 2011 with the terms “prostate” AND “marker*” or
“prostate” AND “biomarker*” in any field. The articles iden-
tified were manually analyzed for genes encoding the prostate
cancer biomarkers reported. For markers that were reported in
more than one paper, the paper publishing the marker for the
first time was used as a reference. No further filtering was
applied. All markers were considered without regard to the
nature of the originally proposed markers (protein or mRNA)
or the analysis method used. The official gene symbol and the
Ensembl accession number of the genes encoding the markers
were identified using the gene ID conversion tool of DAVID
Bioinformatics Resources 6.7 (http://david.abee.nciferf.gov/)
[36], and the resulting list was manually managed in order to
obtain the gene IDs for all markers. All markers considered are
listed in Supplementary Table 1.

2.2 Datasets used

General gene expression data have been obtained from the
GeneSapiens database. Briefly, GeneSapiens (http:/www.
genesapiens.org/) [37] is a collection of 9,873 Affymetrix
microarray gene expression profiling experiments. All
samples are reannotated and normalized with a custom
algorithm. The data are collected from various publicly
available sources, including Gene Expression Omnibus and
ArrayExpress and cover 175 different tissue types. Mean

expression of each gene was determined in prostate cancer
(n=349) and healthy prostate (n=147).

For the evaluation of the prognostic potential of markers,
we used gene expression data of prostate cancers of the
Swedish Watchful Waiting cohort with up to 30 years of
clinical follow-up data set sampling 281 prostate cancers
analyzed by microarray analysis of formaldehyde-fixed
formalin-embedded specimens (GSE16560) [38]. We used
the GSE21034 dataset [39] for external validation. This
dataset derives from a study of integrated genomics of 218
prostate cancers. The gene expression analysis was performed
using Affymetrix Exon 1.0 microarrays.

For additional analyses of marker expression in normal and
tumoral tissue, we used the GSE6919 dataset containing 152
human samples including prostate cancer tissues, prostate
tissues adjacent to tumor, and organ donor prostate tissues,
obtained from men of various ages [40, 41].

2.3 Statistical analyses

All biomarkers extracted from the literature for which a cor-
responding probe set was present on the two array platforms
used were used for all analyses irrespective of the scope for
which they have been designed (diagnostic or prognostic
markers). Thus, we should be able to detect eventual prog-
nostic power of diagnostic markers and vice versa as well as
the original application. For gene expression analyses in pros-
tate cancer versus normal prostate tissue, Student's ¢ test was
used.

Correlations with survival were performed using the
GSE16560 and GSE21034 datasets. All markers for which
probe sets were present were analyzed using the complete
dataset. The prognostic value of the signature was tested by
Kaplan—Meier survival analysis and Cox regression analysis.
As endpoints, we used survival (“indolent” = over 10 years
survival after diagnosis and “lethal” = death within 10 years
after diagnosis) for GSE16560 and distant metastasis for
GSE21034 since the latter contained only few disease-
specific deaths.

3 Results

The analysis of the literature has led to the identification of
over 20,000 articles on prostate markers published between
January 1, 2001 and June 1, 2011. Articles published in
journals not indexed in the Journal Citation Reports and
articles reporting on markers that are not measured as mRNA
or protein expression were omitted from further analyses. Two
hundred forty-four articles report for the first time at least one
new mRNA or protein marker for a total of 380 markers.
There is a trend towards slightly increasing numbers of articles
reporting prostate cancer markers over time (Fig. 1a). The
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studies have been published in journals with a wide range of
impact factors from 0.822 (Ca. J. Urol) to 18.97 (J. Clin.
Oncol.) (Fig. 1b). The complete bibliography containing the
list of references for all studies included in this analysis is
available as Supplementary Table 1.

We analyzed all markers together irrespective of the poten-
tial application (diagnostic, prognostic, or follow-up) of the
marker claimed in the original publication. We evaluated the
markers for their diagnostic potential using a set of microarray
data of the GeneSapiens database containing 147 normal
prostate and 329 prostate cancer tissues. Of the 287 markers
identified in the microarray data, 143 markers had significant-
ly different expression values when normal and cancer tissues
were compared (p<0.01). Figure 2 shows the ten markers with
highest (downregulated in cancer) and ten with the lowest
(overexpressed in cancer) expression ratio and, for compari-
son, kallikrein-related peptidase 3 (KLK3), the gene encoding
PSA. The lowest score, 0.46, is attained by filamin C (FLNC)
[42] and the highest score, 3.00, by claudin 3 (CLDN3) [43]
(KLK3/PSA=0.56). The data for all markers are reported in
Supplementary Table 2.

We investigated the expression of the markers in an inde-
pendent dataset (GSE6919) containing data from 152 human
prostate tissues including normal prostate tissue from healthy
donors, prostate cancers, peritumoral tissues, and prostate
metastases. Hierarchical clustering of the expression data for
the 380 markers reveals that almost all of the metastases and
many of the tumor tissues cluster together in a cluster distinct
from the clusters containing mainly peritumoral and normal
tissues, indicating that the combination of markers distin-
guishes to some extent healthy and tumor tissues. However,
the clusters formed are not strongly distinct as the distances in
the dendrogram are short (Fig. 3a). When the same analysis is
limited to the 20 markers from Fig. 2 whose expression is
most different in normal versus tumor tissues, the clusters
formed become slightly more robust and all the metastases
and the majority of tumors are in one cluster, yet the clusters
are still not very distinct (Fig. 3b).

Figure 4 reports the expression scatter plots of the two
markers with the strongest overexpression in cancer (alpha-
methylacyl-CoA racemase/AMACR [44] and CLDN3 [43])
and in normal (FLNC [42] and keratin 5/KRT5 [45]) tissue
and KLK3/PSA for comparison. The new markers do not
appear to be clearly superior to KLK3/PSA inasmuch as their
expression is not drastically different in normal and cancerous
tissues and their expression in normal and cancer tissues varies
widely not allowing for the classification of single patients
according to the expression levels, although the expression
differences are statistically significant.

The different significance level of the “new” markers as
compared to KLK3/PSA (p=1.2x 107" for FLNC, 1.67x10°
for CLDN3, 1.89x10 > for KLK3/PSA) could indicate that
these markers are more powerful for the discrimination of
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cancer and normal tissue. The potential as a diagnostic marker
depends, however, at least for serum markers, also on the
prostate-specific expression as compared to other tissues. We
therefore used the GeneSapiens set of microarray data to
monitor tissue-specific expression of the new markers as
compared to KLK3/PSA. Figure 5 reports the expression
patterns for the four best new markers and KLK3/PSA. This
analysis shows that despite the greater expression difference
in normal versus cancer tissues, the new markers are unlikely
to be superior to KLK3/PSA given their widespread expres-
sion in other normal and neoplastic tissues as well as in tissues
affected by other diseases. The prostate specificity of
KLK3/PSA is unmet.

We next asked whether the markers identified have any
prognostic potential. We used the GSE16560 dataset of 281
prostate cancers. The samples are derived from FFPE material
from transurethral resection of prostate at the time of the initial
diagnosis. Patients who died of the disease within 10 years
(n=140) and patients who survived at least 10 years (n=141)
were selected for the analysis allowing for a clear-cut distinc-
tion. For 280 of the 380 proposed markers, a corresponding
probeset could be identified on the arrays used for this study.
Hierarchical clustering of the gene expression data of these
markers did not show strong associations of gene expression
values with status (lethal or indolent) or Gleason score
(Fig. 6).

In order to identify the prognostic potential of single
markers, we performed Cox regression analyses using the
same dataset. Figure 7 shows Kaplan—Meier survival curves
for two markers, BIRC5/survivin [46] and NKX3-1 [47, 48],
among those with the lowest logrank test p value (p=0). Low-
risk and high-risk cases show a significantly different survival,
yet it is unlikely that differences as observed here could guide
treatment decisions or follow-up screenings. The collection of
Kaplan—Meier curves for all markers analyzed is available as
Supplementary Fig. 1.

Multigene signatures have been shown to have a consider-
able prognostic power for several cancers [49]. We therefore
asked whether a multivariate score of the markers that are
significantly differentially expressed between low- and high-
risk cases has a clinically relevant prognostic power. The
multivariate model was calculated in a backward manner in
order to leave as many genes in the model as possible. The
genes selected for the model are the ATP-binding cassette
(ABC) transporter with unknown substrate and function
(ABCAY) [50], the engrailed homeobox gene 2 (EN2) [51],
the 17-beta-hydroxysteroid dehydrogenase type 3 that con-
verts androstenedione to testosterone (HSD17B3) [52], the
NK3 homeobox 1, a negative regulator of epithelial cell
growth in prostate tissue, (NKX3-1) [47], the signal transduc-
er and activator of transcription 6 that mediates the anti-
apoptotic effects of interleukin 4 (STAT6) [53], the E2F tran-
scription factor 1 that is involved in the control of cell cycle



Cancer Metastasis Rev (2014) 33:657-671

661

Fig. 1 Publications on prostate a
cancer biomarkers 2001-2011. a
Publications per year. b
Distribution of publications
according to impact factor
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progression (E2F1) [54], the folate hydrolase (prostate-
specific membrane antigen) 1, a glutamate carboxypeptidase
(FOLHL1) [47], the proteasome (prosome, macropain) subunit,
alpha type, 7 that plays a role in the cellular stress response by
regulating hypoxia-inducible factor 1 alpha (PSMA7) [55],
and the topoisomerase (DNA) II alpha (TOP2A) [54]. Table 1
shows the results of the multivariate analysis. A score indicat-
ing the strength of correlation between the expression of the
given gene and survival (column B) is calculated for each
gene. The global multigene score (MGS) is obtained by the
sum of the expression values multiplied by the score assigned.
The median value of the score is then used to classify the
samples in low and high risk. Kaplan—-Meier survival curves
for the commonly used Gleason scoring system (Fig. 8a), the
presence or absence of the fusions involving the V-Ets eryth-
roblastosis virus E26 oncogene homolog (ERG; Fig. 8b), and
the multigene score are plotted (Fig. 8c). All three prognostic
measures yield risk classes with significantly different risk of
death from prostate cancer (logrank test p=0). The discrimi-
nation of high- and low-risk groups using the multigene score

Fig. 2 Expression of prostate
cancer biomarkers in healthy and 2
tumoral prostate tissues. The
ratios of expression in healthy and
tumoral prostate tissues of the 20
prostate cancer biomarkers that
are most significantly
differentially expressed are
reported. KLK3 (PSA) has been
added for comparison
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o
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log2ratio

(Fig. 8c) is clearly superior to that observed for single genes
(see Fig. 7 and Supplementary Fig. 1). The survival differ-
ences of the low- and high-risk groups are evident from the
very beginning of follow-up. After 5 years, approximately
86 % of the low-risk cases and 56 % of the high-risk cases
are alive, and after 10 years, these figures become 73 and
24 %, respectively. This analysis shows that the combined
score can distinguish prostate cancer patients with a signifi-
cantly different risk of death of prostate cancer, similar to what
is obtained by Gleason scoring (Fig. 8a). ERG fusions found
in 46 cases (226 cases without fusion, for 9 cases the fusion
status is unknown) also confer a bad prognosis, yet the ab-
sence of a fusion is not a good indicator of an indolent
evolution of the cancer (Fig. 8b).

The Gleason scoring system [56] is commonly used for
prostate cancer prognosis. The combination of new molecular
markers with the Gleason score must be assessed. We there-
fore calculated Kaplan—Meier survival curves for cases with a
Gleason score below 7 or equal to 7 (=3+4) and cases with
Gleason>7 or equal to 7 (=4+3). The application of the

Expressionin normal prostate vs. prostate carcinoma

o

HH

-15 -

H
—
—a—

FLNC
KRTS
CAV1
EFS
RND3
SNCG

SERPINF 1
CaND2
DKK1
SERPINAS
KLK3
GUCY1A3
FASN
HPN
TFF3
ERG
FOLH1
SIM2
AGR2
AMACR
CLDN3

@ Springer



662

Cancer Metastasis Rev (2014) 33:657-671

Fig. 3 Hierarchical clustering marker gene expression in human prostate
tissues from dataset GSE6919 using Euclidean distance measures and
average linkage. The state of the tissue is indicated by a color code in the
bar above the dendrogram (green = prostate tissues from healthy donors,

combined marker score to the former cases shows an im-
proved distinction of low- and high-risk cases (Fig. 8d) and
cases with low Gleason score and low-risk multigene score
show a clear difference in survival from the very beginning of
follow-up as compared to cases where both scores indicate

@ Springer

TFF3

yellow= peritumoral tissue, orange = tumor tissue, red = metastases). For
markers represented by more than one probe set on the array, all probe
sets were included in the analysis. a All prostate cancer biomarkers. b The
20 best markers from Fig. 2

high risk. Cases with low and high Gleason score are further
divided by the application of the MGS. This creates two
intermediate groups (Gleason low, MGS high; Gleason high,
MGS low) with similar Kaplan—Meier curves (Fig. 8d). Com-
bination of the MGS with ERG fusion status shows that MGS
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Fig. 4 Expression scatter plots of
the four best prostate cancer 124
biomarkers (claudin 3 (CLDN3),
alpha-methylacyl-CoA racemase
(AMACR), keratin 5 (KRT5),
filamin C (FLNC)) in comparison
to KLK3 (PSA). Expression data
for healthy, peritumoral, tumoral,
and metastatic prostate tissues are
shown for the four most
differentially expressed markers
in comparison to KLK3 (PSA)
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low-risk cases without fusion have a good prognosis and cases
with MGS high risk or the ERG fusion, or both, have a bad
prognosis (Fig. 8e). Cases can be classified considering at
high risk those cases that receive an indication of high risk
by either the Gleason score or the MGS thus considering the
intermediate cases as high risk. In this way, an additional 40 of
162 cases with Gleason 6 or 7 (=3+4) would be correctly
identified as high-risk cases at the expense of 20 indolent
cases that would be considered at high risk (Table 2). If instead
Gleason 7 would be considered high risk with no regard of the
status of the major and minor components of the tumor,
additional 39 would be correctly identified as high risk yet
40 actually indolent cases would be classified at high risk. The
combination of the MGS with Gleason can therefore be ex-
pected to slightly improve the assessment of cases with
Gleason score of 6 or 7 (see also Table 2).

Peritumoral Tumor

3

Metastasis Normal Peritumoral Tumor Metastasis

KLK3/PSA

Normal Peritumoral Tumor Metastasis

Calculation of multigene scores often leads to over-fitting
yielding scores that strongly depend on the specific dataset on
which they have been calculated. To avoid over-fitting, the
dataset must be randomly divided into a training set on which
the score is calculated and a test set to which the score is
applied [57]. When we applied this strategy to the selected
prostate biomarkers, the resulting risk classes show a signifi-
cantly different risk (logrank test p=0) in the training set. The
same score yields a similar distinction when applied to the test
set that also is statistically significant (logrank test p=0.005)
(Supplementary Fig. 2).

We further validated the MGS on an external dataset
(GSE21034). The application of the MGS to this
dataset also yielded risk classes with significantly dif-
ferent risks (p=0.002; Fig. 8f). This dataset is based on
a completely different array type (exon arrays) and
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Fig. 5 Relative expression of prostate cancer biomarkers in various tissues a claudin 3 (CLDN3), b alpha-methylacyl-CoA racemase (AMACR), ¢
filamin C (FLNC), d keratin 5 (KRT5), e KLK3/PSA. Note that only KLK3/PSA is highly specific for prostate tissues

probe design. Thus, the application of the score calcu-
lated on the data derived from a different platform can
lead to an underestimation of the discrimination power

of the classifier.
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Finally, we asked whether the many biomarkers identified

are functionally interrelated or independent. For this purpose,
we performed a correlation analysis using more than 10,000
microarray gene expression data sets. Figure 9 shows the
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Fig. 6 Hierarchical clustering of
281 prostate cancer tissues. Gene
expression values of the genes -
encoding potential prostate cancer -
biomarkers in 281 prostate
cancers from dataset GSE16560
were clustered using Euclidean
distance measure and average
linkage. Cancer status (indolent = z
white, lethal = black) and Gleason | B
score (5 = green, 6 = yellow, 7 = :
orange, 8 = pink, 9 = red) are g
indicated in the bars above the
dendrogram

correlation heat map. There is generally a considerable corre-
lation (7>0.5) of any marker with several others. In order to
understand whether correlated markers belong to groups of
genes that exert similar functions or participate in similar
biological processes, we analyzed the enrichment of gene
ontology terms using the Database for Annotation, Visualiza-
tion and Integrated Discovery [58] for the four predominant,
yet arbitrarily selected clusters of the correlation map. Cluster
1 (Fig. 9) shows enrichment of several angiogenesis-related
gene ontology (GO) annotations; most of which contain the
angiogenic factors VEGFA and VEGFC as well as HGF.
Cluster 2 shows an enrichment of extracellular matrix-
related GO terms dominated by several matrix metalloprotein-
ases (MMP2, MMP9, and MMP13). Cluster 3 shows GO
terms related to peptidase activity containing several kalli-
kreins and in cluster 4 epithelial-mesenchymal transition-
related GO categories predominate (see Supplementary Ta-
ble 3 for complete data). These four biological processes are
clearly related to cancer development and progression.

BIRC5
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Interestingly, cell growth and proliferation are not among the
most enriched GO terms despite the important role of cell
proliferation in cancer prognosis.

4 Discussion

The identification of prostate cancer biomarkers is a very
active field of research. The mean impact factor of the journals
in which the prostate cancer biomarkers analyzed here were
published is 5.41 (range 0—18.97) reflecting the relatively high
attention that the scientific community is giving to this re-
search. The markers that show some value in this meta-
analysis are published in journals with a mean impact factor
of 4.63 (range 0-8.234) and 5.72 (range 4.411-7.338) for
potential diagnostic and prognostic markers, respectively.
Hence, there is no evidence of valid markers being published
in journals with an impact factor higher than the mean.
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Fig. 7 Kaplan—Meier survival analysis of prostate cancer biomarkers. Kaplan-Meier curves for the two markers with the most significant prognostic

potential based on data from dataset GSE16560 are shown
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Table 1 Description of the mul-
tivariate model of prognostic

Cox multivariate model of prognostic markers for prostate cancer

prostate cancer biomarkers

B SE Wald df  Sig. Exp(B) 95.0 % CI for Exp(B)
Lower Upper

ABCAS5 -0.29815  0.121503  6.021354 1 0.014134  0.742191  0.584914  0.941757
EN2 —0.27537  0.128319  4.605327 1 0.031873  0.759288  0.590447  0.97641
HSD17B3  —0.22517  0.08482 7.047193 1 0.007939  0.798383  0.676102  0.942779
NKX3-1 —0.84309 0259302  10.57136 1 0.001149  0.43038 0258901  0.715436
STAT6 —0.31482  0.104022  9.159404 1 0.002474  0.729922  0.595296  0.894994
E2F1 0.232565  0.099174 5499088 1 0.019026 1261832  1.038925  1.532565
FOLH1 0.384885  0.142412 7304128 1 0.00688 1.469446  1.111558  1.942562
PSMA7 0.789574  0.381355 4286744 1 0.038411 2202458  1.043033  4.650688
TOP2A 0.181014  0.070785  6.539388 1 0.010551  1.198432  1.043184  1.376784

The interest in prostate cancer biomarkers derives from the
high incidence of this disease and the considerable variability
in aggressiveness that ranges from almost benign to life
threatening. Yet, even more emphasis in the field stems from
the debate on the value of PSA screening that has culminated
in the recent recommendation against screening issued by
U.S. Preventive Services Task Force [7]. The balance to be
found between benefits (saved lives) and costs (unnecessary
surgery) could be greatly influenced by better markers. More
effective biomarkers would improve the discrimination

b

between healthy and tumor tissue and, perhaps even more
importantly, allow for improved prognostication that could
identify indolent cancers and limit surgery/intervention to
patients who are at risk to die from the disease.

We have extracted 380 markers from the literature of
10 years and we analyzed these markers using publicly avail-
able datasets for prostate cancer. This approach has clear
limits: (a) only gene expression data are used, (b) not all the
data have been raised in controlled studies aimed at the
identification of prostate cancer biomarkers, and (c) not all
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Fig. 8 Multivariate models for prostate cancer prognosis. Prognostic
prostate cancer biomarkers were combined in a prognostic multigene
model using multivariate Cox regression analysis and dataset
GSE16560 (see also Table 1). a Kaplan-Meier survival analysis applying
Gleason score (low risk=<7 or 7 (=3+4), high risk=>7 or 7(=4+3)). b
Kaplan—Meier survival analysis for cases with and without

@ Springer

rearrangements of the gene ERG. ¢ Kaplan—Meier survival analysis for
the multigene score; cases are assigned according to the median of the
score. d Combination of Gleason score with the multigene score (assign-
ment of cases as above). e Combination of ERG fusion status and
multigene score. f Application of the model to the external dataset
GSE21034. The scores calculated on GSE16560 were directly applied
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Table 2 Multigene score classification in relation to Gleason score

Multigene score classification in relation to Gleason score

Total (281) Indolent (116) Lethal (165)

Gleason score  MGS low  MGS high  MGSlow  MGS high
6(83) 47 10 14 12
7=3+4 (79) 30 10 11 28
7=4+3 (38) 7 3 9 19

8(27) 7 1 5 14

9 (49) 0 1 10 38

10 (5) 0 0 0 5

Lethal cases with low Gleason score that are correctly classified as “high
risk” using the MGS are indicated in bold, and indolent cases with low
Gleason score that are incorrectly classified as “high risk” by MGS are
indicated in italics

markers are represented in the dataset used (in particular, the
non-coding RNA marker PCA3/DD3 [14] that is widely used
in combination with PSA was not present in the dataset
analyzed). Our study can therefore not exclude that some of
the markers might perform much better if analyzed at the
protein level since mRNA expression and protein expression
are separated by several levels of regulation or that the
markers not represented in the dataset used might perform
better than those present. The aim of our study is to verify
whether the efforts of 10 years of research can be condensed in
a multigene prognostic classifier. In addition, this study raises
concern on markers that are widely expressed and whose

PCa biomarkers correlation map

:T'I’f-‘,»v?‘-i .‘ /

i

0 6000

-05 05

Fig. 9 Correlation map of prostate cancer biomarkers. The expression
correlation of the prostate cancer biomarkers is calculated and plotted as a
heat map. Strong correlations are indicated by a color code (blue, <—0.5;
red, >0.5). Arbitrarily selected clusters containing markers with high cor-
relation are indicated by black squares (1-4): Cluster 1 — enrichment of
angiogenesis-related genes; Cluster 2 — enrichment of extracellular matrix-
and matrix metalloproteinases; Cluster 3 — enhanced peptidase activity and
kallikreins; Cluster 4 — enrichment for epithelial-mesenchymal transition

expression levels, even when protein expression is analyzed,
are likely to be influenced by expression in other tissues.
Finally, this study indicates how in silico analyses should be
integrated in early phases of biomarker development in order
to avoid unnecessary laboratory work.

The evaluation of the markers for a potential application in
the diagnosis of prostate cancer did not yield evidence of any
new marker that might substitute or complement PSA. Several
markers show a more differential expression between normal
and neoplastic prostate tissue than PSA yet, in contrast to the
latter, they are expressed by several other normal and neoplas-
tic tissues as well. The wide variability of expression of these
markers with overlapping ranges for normal and tumor tissue
makes the diagnostic assessment of the single patient difficult.
It can therefore not be expected that any of these markers can
resolve the problems associated with PSA-based early diag-
nosis of prostate cancer.

The validation of these mRNAs as prognostic markers
yields a series of candidates that can discriminate cases with
higher and lower risk, yet none of them appears to be clinically
relevant. In addition to statistical significance, the marker
sought should discriminate risk classes that deserve different
therapeutic approaches. Minor yet statistically significant dif-
ferences are irrelevant for the treatment decision. The combi-
nation of those markers that contribute independently to the
risk assessment in a multivariate model appears to yield a
discrimination of high- and low-risk cases that could be help-
ful in the clinics. But if the model is combined with the
Gleason score, most of its potential disappears since there
are few cases where Gleason score and the multigene model
are strongly discordant (i.e., Gleason 6 and multigene high
risk). The addition of the MGS mainly affects classification of
Gleason score 7 cases.

Chen and coworkers recently reported on a seven-gene
prognostic classifier for prostate cancer that they developed
applying a preselection of samples mainly composed of tumor
cells [59]. Similar to what we observe here, the seven-gene
signature adds little to Gleason classification. The preselection
procedure excludes many samples since prostate cancers typ-
ically contain a large stromal component. This also reduces
the clinical applicability. Concordance of gene expression
signatures with the prognostic Gleason score that we observe
here has been observed by several groups [59, 60]. A nine-
gene signature has been developed for the analysis of mRNAs
isolated from whole blood cells [61]. This signature distin-
guishes rapidly progressing cancers among already castration-
resistant prostate cancers and can therefore not be considered a
general prognostic signature. Most of the patients in this
cohort died during the follow-up of 36 months [61].

The question arises of why multigene signatures should
work for breast cancer [62] but, at least so far, not or much less
so for prostate cancer [38]? Several aspects of prostate cancer
biology could contribute to an answer:
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1. The main discriminator of high- and low-risk breast can-
cers is proliferation, and in fact, the simple assessment of
the proliferative potential of breast cancers using KI-67 or
aurora kinase A as markers performs almost as well as
current multigene signatures [63]. Most prostate cancers
have a particularly slow progression, and proliferation
might be less prognostic in prostate cancer than in breast
cancer.

2. Multifocal presentation and focal heterogeneity of pros-
tate cancer may lead to sampling errors for prognostic
assessment much more frequently in prostate cancer as
compared to breast cancer.

3. Breast cancers derive from two different cell populations,
luminal or basal cells, and the cell type they derive from
determines most of the metastatic risk [64]. Perhaps pros-
tate cancers derive from a more homogenous cell popu-
lation, giving rise to a more homogeneous progression
scheme.

4. The introduction of PSA screening has led to the identi-
fication of many low-risk cases that would not have been
detected without screening. The numeric imbalance be-
tween low- and high-risk cases can make the identifica-
tion of the latter more difficult (yet, this is not the case for
the dataset on which we validated the prognostic power
here).

5. Prostate cancer therapy is relatively successful leading to
extended survival even of cases with largely
dedifferentiated cells (high Gleason score). Death from
prostate cancer is due to resistance to therapy (i.e.,
androgen-independent growth) that depends on acquired
molecular alterations not present at the time of first
diagnosis.

6. Gene expression profiles are dominated by transcription
events that determine cell morphology. The influence of
cell morphology on tumor progression might already be
optimally assessed by the Gleason scoring system.

7. Tumor progression and metastasis are intrinsically sto-
chastic. In the absence of other determinants, prostate
cancer progression follows probability.

8. Important determinants of prostate cancer progression are
not or not reliably reflected by gene expression. Identifi-
cation of new mutations might allow for the identification
of high-risk classes in analogy to the effect of ERG fusion
genes [65, 66].

The identification of prostate cancer markers remains a
challenge to be pursued by adding new technological ap-
proaches. Array comparative genome hybridization has re-
vealed structural and numerical genomic alterations that cor-
relate with outcome independently of Gleason scoring [39],
and next generation sequencing (exome sequencing) has re-
vealed a series of new mutations in prostate cancer whose
prognostic value has yet to be determined [39, 65, 66].

@ Springer

Further, expression of new potential markers such as
microRNAs and other non-coding RNAs may provide new
avenues of investigation [67] as well as use of novel ap-
proaches for metabolic markers [68].
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