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Understanding why spectra that are physically the same appear
different in different contexts (color contrast), whereas spectra
that are physically different appear similar (color constancy)
presents a major challenge in vision research. Here, we show that
the responses of biologically inspired neural networks evolved on
the basis of accumulated experience with spectral stimuli auto-
matically generate contrast and constancy. The results imply that
these phenomena are signatures of a strategy that biological
vision uses to circumvent the inverse optics problem as it pertains
to light spectra, and that double-opponent neurons in early-level
vision evolve to serve this purpose. This strategy provides a way
of understanding the peculiar relationship between the objective
world and subjective color experience, as well as rationalizing the
relevant visual circuitry without invoking feature detection or
image representation.
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The spectral properties of retinal images conflate illumination,
surface reflectance, atmospheric transmittance, and a host

of other factors. Nonetheless, biological visual systems routinely
generate lightness and color percepts that lead to successful
behavior in the real world. Thus, a major question in vision re-
search is how the visual system contends with the fact that the
physical parameters of the world are not available in retinal
stimuli (the “inverse optics problem”).
A clue to the possible answer is the phenomenology of light-

ness and color perception. As shown in Fig. 1, the same con-
textual information can make regions of an image returning
identical spectra to the eye appear different (lightness/color
contrast) and regions returning different spectra look similar
(lightness/color constancy). Based on psychophysics and analyses
of natural images, we have argued that such perceptual effects
are signatures of the strategy vision uses to circumvent the in-
verse problem (1–4). By depending on the frequency of occur-
rence of biologically determined stimulus patterns, perceptions
of lightness and color track reproductive success rather than the
physical qualities of objects and conditions in the world, abro-
gating the need for information about the physical world as such.
Here, we show that simulated evolution driven by the frequency
of occurrence of spectral stimulus patterns gives rise to the key
receptive field characteristic in biological color vision and to
responses whose perceptual counterparts are color contrast
and constancy.

Methods
Network. The network and evolutionary paradigm are shown in Fig. 2. The
input to the network was the output of 37 single-opponent neurons that
responded to equiluminant spectral patterns along the blue-yellow color
axis of natural images. Although the choice of blue-yellow input rather than
red-green was arbitrary, the color gamut of dichromats is based primarily on
this axis (5). The input thus simulates the information provided to cortical
neurons by single-opponent blue-yellow bipolar neurons, retinal ganglion
cells, and lateral geniculate neurons. These input values to the network were
nonlinearly transformed by evolvable synapses that converged on a single
integrating neuron that summed the transformed values and conveyed the

result to an output synapse, where the summed value was again nonlinearly
transformed. All synapses were modeled as evolvable sigmoids expressed as:

Post =
A

1+ e−B*Pre+C

where Post is the magnitude of the postsynaptic conductance change and
Pre is the presynaptic membrane potential. The three free parameters were
A, whose sign determines whether the synapse is excitatory or inhibitory,
and B and C, which control the range of input values a given synapse could
respond to (further details are provided in ref. 6). We limited the magni-
tude (absolute value) of the Pre and Post values to be positively correlated
by constraining B and C such that they were positive. The free parameters
were set to random numbers close to zero and were evolved so that the
network output values matched accumulated visual experience (see
Network Responses).

Single-Opponent Responses to Natural Spectral Patterns. Three hundred and
eight high-resolution natural red–green–blue (RGB) images from The Uni-
versity of Texas at Austin “set 1” database (7) served as a proxy for human
spectral experience. The camera calibration data were used to convert the
RGB pixel values into long–medium–short (LMS) cone activation values, de-
fined as 2° cone fundamentals based on quantal Commission internationale
de l’éclairage 10° color matching functions adjusted to 2° (8). To simulate the
information provided by LMS cones to single-opponent neurons, the blue-
yellow and red-green components were separately extracted from the images
using principal components analysis to convert the log base 10 LMS cone ac-
tivation values into lαβ color values (9–12) (Fig. 3). The “l” component corre-
sponded to light intensity, α corresponded to spectral variation along the blue-
yellow axis, and β corresponded to variation along the red-green axis (details
are provided in SI Methods). The opponent values along these axes, which
ranged from negative to positive, were remapped to range from 0 to 1. These
remapped values thus simulated the responses of single-opponent neurons to
natural spectra. In the relevant figures, these responses are shown as spectral
stimulus patterns, with single-opponent responses dominated by LM wave-
lengths depicted in shades of yellow and responses dominated by S wave-
lengths depicted in shades of blue.

Frequency of Occurrence of Single-Opponent Responses. The patterns extrac-
ted from the database were the single-opponent responses to blue-yellow (α)
values (scaled from 0 to 1) that occurred most frequently in 1.5 million
samples. Because relatively few patterns at this resolution were identical, we
approximated the frequency of occurrence of central target values in dif-
ferent surrounds by averaging the original patterns into nine regions (eight
regions around the central grid square) and binning the results into 16
groups (Fig. S1). The inputs presented to the networks were 23 possible
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central target values embedded in one of 200 different surrounds (Fig. S2).
The 200 surrounds were chosen (without replacement) from 3,000 patterns
that repeated at least 20 times in 1.5 million samples analyzed (details are
provided in SI Methods).

Network Responses. The reproductive rate assigned to the networks in each
generation was determined by how well their output responses matched the
relevant cumulative probability functions (Fig. S2C). These responses, ranked
as percentiles, indicate, for a given target value, how often values in the
context occurred more frequently than the value of interest and how often
they occurred less frequently in cumulative experience. This response strat-
egy has been shown to resolve ambiguity of luminance patterns, predicting
human lightness perception without invoking feature extraction (13).

Simulated Evolution. Ten simulations of evolution were run over 4,000 gen-
erations using populations of 200 networks. The network responses of the 37
single-opponent input neurons to 4,600 spectral stimulus patterns defined
each network’s lifetime (i.e., 23 possible central target values in 200 differ-
ent spectral surrounds; see above). Mating selection and reproduction rates
were determined by roulette wheel assignment and random diversification
(6). All simulations were carried out in MATLAB (MathWorks) using the
Genetic Algorithm in the Global Optimization Toolbox.

Assessing the Receptive Field Properties of the Evolved Neurons. The organi-
zation of fully evolved receptive fields in each simulation was determined by
a method similar to classification image analysis (14).

Results
Evolved Responses. Because the criterion of evolutionary success
was approximating the cumulative probability distribution func-
tion of the central target in a given pattern, the best-performing
networks in each simulation should have evolved these output
responses from the integrating neuron after many generations, as
they did (Fig. 4).

Evolved Receptive Field Characteristics. Fig. 5A shows the preferred
input pattern determined by averaging more than 2,000 random
single-opponent neural responses that caused the best-perform-
ing network in each of the 10 simulations of evolution to give
a relatively strong response (>0.75). Values greater than 0.5
(yellow) indicate a preference for relatively long wavelengths,
and values less than 0.5 (blue) indicate a preference for relatively
short wavelengths. Fig. 5B shows the same results as radial

averages (i.e., as a function of pixel distance). Fig. 5 C and D
shows the receptive field map corresponding to the best
networks’ nonpreferred input pattern, determined by averag-
ing random single-opponent neural responses that led to weak
responses (<0.25). The networks responded weakly to patterns
that stimulate short-wavelength cones in the central region and
longer wavelength cones in the surrounding region. Thus, networks
evolved to approximate cumulative probability functions assigned
stronger responses (closer to 1) when activated by relatively long
wavelengths at the central target and relatively short wavelengths at
the surrounding loci. The opposite result would have emerged if the
evolutionary task had been to respond to S rather than LM cone
increments. The networks that performed less well after evolution
than the best-performing examples evolved generally similar re-
ceptive fields (Fig. S3). Finally, similar results were obtained using
red-green single-opponent neural responses (Fig. S4).
In summary, the evolved networks showed the major charac-

teristics of double-color opponent neurons found in experi-
mental animals (15–19): (i) an overall chromatic opponency that
allowed the networks to respond preferentially to LM wave-
lengths and nonpreferentially to S wavelengths, or vice versa, at
a given spatial location; and (ii) a spatial chromatic opponency
that allowed them to be specifically responsive to contrast be-
tween the spectral distribution of a given target in relation to the
immediately surrounding spectra. The overall chromatic opponency
is a consequence of the single-opponent input that has low values
for S wavelengths and high vales for L wavelengths. Importantly,
this characteristic was essential to the evolution of the spatial
chromatic opponency and afforded the artificial neural network
the ability to respond to the chromatic contrast between LM and
S wavelengths rather than some other combination.

Color Contrast and Color Constancy. As noted by several inves-
tigators (18–22), double opponency provides a potential neural
basis for simultaneous color contrast and color constancy in
humans and other visual animals. Fig. 6 shows that in the present
paradigm, contrast and constancy are automatic consequences
of evolution driven by the conditional cumulative probability
functions arising from experience. The reason is that spectra in
retinal images, whether measured in α- or β-color space, have
a higher probability of being the same at nearby retinal loci than

A B

Fig. 1. Color contrast and constancy. (A) In any natural scene, the context of
two patches identical in spectral intensity and power distribution can make
the lightness and color of the patches look different (lightness/color contrast).
(B) Same contexts can also make two spectrally different patches look similar
(lightness/color constancy). The appearances of the targets in a neutral con-
text are shown below [Reproduced from ref. 1 (Copyright 2003, Sinauer)].
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Fig. 2. Neural network. The network input consisted of 37 blue-yellow
single-opponent neurons that forwarded responses to natural stimuli to an
integrating neuron (Σ) that then conveyed the summed values to an output
synapse that, in biological vision, would provide input to higher order visual
processing stations. The blue-yellow single-opponent neural responses
approached 1 when the dominant input was yellowish (LM wavelengths)
and 0 when the dominant input was bluish (S wavelengths). The criterion of
reproductive success was approximation of the output values to the cumu-
lative frequencies of occurrence of the central target spectrum (T), given the
spectra of the surrounding elements in the pattern.

Morgenstern et al. PNAS | July 22, 2014 | vol. 111 | suppl. 3 | 10869

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1402669111/-/DCSupplemental/pnas.201402669SI.pdf?targetid=nameddest=SF2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1402669111/-/DCSupplemental/pnas.201402669SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1402669111/-/DCSupplemental/pnas.201402669SI.pdf?targetid=nameddest=SF2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1402669111/-/DCSupplemental/pnas.201402669SI.pdf?targetid=nameddest=SF3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1402669111/-/DCSupplemental/pnas.201402669SI.pdf?targetid=nameddest=SF4


at more distant ones (10). As a result, the evolved responses to
spectra in the center of the network’s receptive field vary
according to the surrounding spectral values, causing responses
to the same target input to differ (color contrast; Fig. 6A) and
responses to different target inputs to be more similar (color
constancy; Fig. 6B, also Fig. 1). As explained in the following
Discussion, these perceptual phenomena are thus the expected

byproducts of a visual strategy based on circumventing the in-
verse problem by tracking reproductive success.

Discussion
Despite our intuition to the contrary, the visual system does not
take the measure of physical reality: The information it receives
by means of photon energies cannot specify size, distance,
orientation, surface reflectance, illumination, speed, direction, or
any other parameters that we readily assess with the instruments
of physics. The resulting quandary of how visual information
might be mapped back onto the world, the inverse optics prob-
lem, is a particular case of the “one to many problems” that
occur when the evidence in hand could have arisen in many
different ways and information that could distinguish among
them is not available. We have pointed out elsewhere (1–4) that
because the frequency of occurrence of stimuli determined by
evolution tracks reproductive success, the visual system can cir-
cumvent this problem. The aim of the present study is to show
how evolved neural circuitry achieves this goal in the case of
spectral information.

Evolved Strategy. The evolutionary process that allows vision to
circumvent the inverse problem is conventional: Some progeny
in any generation will behave more successfully than others

Fig. 3. Decomposition of natural image spectra into separate color com-
ponents. An image from the RGB database (A) was decomposed into l (B),
α- (C), and β- (D) contributions. Each component was visualized by first
converting LMS cone activation values into lαβ values thresholded to one of two
intensities, depending on whether the original value was positive or negative. To
visualize the components separately, all but the component of interest were
reduced to small constant levels before conversion back to LMS values.

0.3 0.35 0.4 0.45 0.5 0.55 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Single opponent response at center

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty

Ideal response  

Best network response 
      0 generations

0.3

0.4

0.5

0.6

A B 4000 generations

T

Fig. 4. Network evolution. (A) Example of one of the 4,600 inputs pre-
sented to each evolving network during its lifetime. The input values closer
to 1 (primarily LM cone activation) are depicted in shades of yellow, and
those closer to 0 (primarily S cone activation) are depicted in shades of blue
(see color bar). The inputs mimic the responses of single-opponent blue-
yellow neurons to natural spectra, responding relatively strongly in response
to LM cone activation and weakly to S cone activation. (B) After 4,000
generations, the evolved network output values (green squares) closely
matched the conditional cumulative probability distribution function (red
circles) of the input at the central stimulus grid square, given the input
values in the surround. The slope of the conditional cumulative distribution
function at any point indicates the frequency of occurrence of one of the 23
possible values at the target location (T), given the surrounding input pat-
tern. Gray triangles show the output responses before evolution.
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Fig. 5. Evolved double opponency. (A) Average receptive field based on
random single-opponent responses that led to a strong output response
(>0.75) for the best-performing network in the 10 simulated runs of evolu-
tion. Values greater than 0.5 indicate a preference for relatively longer
wavelengths, whereas values less than 0.5 indicate a preference for relatively
shorter ones. The evolved networks were relatively insensitive to inputs from
information beyond the central region of the patterns (dashed outline). (B)
Radial averages (red circles) of the receptive field that led to strong
responses. The blue curve is a maximum likelihood fit to a difference of
Gaussians function; error bars show ±1 SE. (C and D) Average receptive field
that led to weak responses (<0.25) for the best-performing networks in the
10 simulations. Whether a network evolved a yellow (LM)-ON center (shown
here) or a blue (S)-ON center receptive field depended on whether it evolved
to match the conditional cumulative probability function of LM or S cone
increments or of LM or S decrements. While the evolved double-opponent
receptive received input from only one type of single opponent neuron
[(LM)-ON neurons], in experimental animals the double-opponent receptive
field center is signaled by strong activation arising from the input of one
type of spectrally preferring single-opponent neurons and weak activation
arising from spectrally opposite preferring type. Conversely, the surround is
determined by the opposite input from single-opponent neurons.
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because of random variations of neural connectivity. Insofar as
the more successful behaviors lead to relatively greater re-
productive success, the underlying connectivity of that visual
system will wax in the population because the inherited con-
nections will be passed on to the next generation. Over time, the
connectivity of the visual systems of the population becomes
progressively more adept at responding to the demands of the
world that cannot be apprehended. The same principle oper-
ates during ontogeny: Although improvements in behavior
based on individual experience mediated by neural plasticity
cannot be passed on, inheriting the mechanisms that enable
individual learning and information storage adds to the in-
creasing ability of a species to operate successfully in the
world, again on the basis of reproductive success. The result is
that both nature and nurture instantiate visual apparatus and
circuitry that contend ever more effectively with the physical
world despite its occult status.
From this perspective, perceptions and behavioral responses

are reflexes, no different in kind from the automatic responses of
“simpler” neural circuit responses to stimuli. There is no reason
to suppose that vision depends on feature detection, neural
representation or probabilistic (Bayesian) inferences; the oper-
ational success of randomly varying neural circuitry that is
retained or not retained seems sufficient to contend with the
fundamental problem of behaving in the world whose physical
nature is effectively unknowable (1–4; also ref. 23).

Creation of Stimuli. Beyond these conventional assertions, what
then is the specific strategy that visual evolution has used to

achieve this goal? The short answer is the creation of light energy
patterns whose frequency of occurrence tracks reproductive
success. Although these patterns are “stimuli,” their genesis is
not what most psychologists and others take it to be. The word
“stimulus” comes from the Latin for “cattle prod,” signifying the
cause of a response. On the face of it, this concept of visual
stimuli seems apt: Photon energy in the environment causes re-
ceptor cells in the retina to respond by well-understood photo-
transduction mechanisms. A general supposition is thus that the
features of the resulting image convey the physical nature of the
environment at that moment to subsequent stations in the visual
processing chain. However, this passive concept of visual stimuli
is misleading: It ignores the fact that vision and presumably other
sensory systems cannot specify the parameters of the world in
which behaviors must be executed.
The difference between the cattle prod and visual stimuli is

that the latter are actively created by biology. The visual observer
symbolized by the eye in Fig. 7 is continually immersed in a sea of
electromagnetic radiation that arises from a multitude of sour-
ces, only some of which arise from biologically pertinent objects
and conditions. It is only after the evolved apparatus of the eye
collects, focuses, and selects a particular fraction of this energy
into a biologically determined pattern that a stimulus exists. This
statement may seem obvious, but it is crucial in understanding
how we respond appropriately to objects and conditions in the
world whose physical character cannot be apprehended by bi-
ological visual systems. Although it is, of course, the case that
physical objects and conditions in the world are part of the rel-
evant causal chain, light stimuli are determined by a collaboration
between physics and evolved biology.

Double-Opponent Neurons. The key to this strategy in the case of
color contrast and constancy is the evolution of double oppo-
nency. Double-opponent neurons are found in a variety of ex-
perimental animals, including primates (15–19, 24–26), and they
provide a plausible basis for color contrast and constancy (19–
22). In the case of a yellow (LM)-ON double-opponent neuron
(Fig. 5), color contrast arises when relatively long wavelengths
presented to both the receptive field center and surround cause
the neuron to fire at a lower rate compared with another neuron
of the same type receiving the same central target stimulation but
shorter wavelengths in its surround (compare Fig. 6A, Left and
Right). Conversely, color constancy arises when different spectra
at the central target and surround cause the neuron to fire at
roughly the same rate despite different spectral input (Fig. 6B).
To understand how double-opponent circuitry gives rise to

these response properties, consider the cumulative probability
function in Fig. 4B. The function in red ranks the frequency of
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Fig. 6. Generation of color contrast and constancy by the evolution of
double-opponent circuitry. (A) Contrast. The evolved responses of an
evolved yellow (LM)-ON network to patterns in which the input to the
central target remains the same but the input to the surround varies from S
cone domination (bluish; Left) to LM cone domination (yellowish; Right) are
shown. As a result of double opponency, the network’s output varies when
the same spectra activate the target. These responses accord with psycho-
physical observations, evident in the appearance of the central targets here,
showing that the perception is biased toward yellow by blue surrounds (Left)
and toward blue by yellowish surrounds (Right); the mixed surround (Center)
has little effect. (B) Constancy. In this case, the input values activating the
central target vary, whereas the surrounds remain the same, as in A (also Fig.
1). Thus, the network responses tend to remain the same despite variation in
the target input.
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Fig. 7. Light stimuli created by the visual system. Although illuminated objects
exist apart from observers, visual stimuli do not. Visual stimuli arise only after the
evolved properties of the visual system create them by ordering the chaotic flux
of photons that reaches the corneal surface at any given moment into ordered
patterns whose evolved frequency of occurrence indexes reproductive success.
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occurrence of single-opponent inputs at the target in a given
surrounding pattern drawn from natural images. The green curve
indicates the evolved output responses of the network. Given the
spatial correlation of spectral values created by the evolution of
retinal topography, the most frequently occurring target wave-
length in the input patterns will have been about the same as
wavelengths that have an impact on the surround. The output
values of a network mediated by the evolution of double oppo-
nency track these frequencies of occurrence of the input patterns.
Thus, for responses that rank low on the function, the wavelengths
at the target location are shorter than those that affect the sur-
round. This lower rank leads to less activation of the center and
a reduced network response. In the case of a midrank response (i.e.,
when the target and surround receive about equal distributions
of spectral power), the activation from the neuron’s excitatory
and inhibitory regions is about the same, leading to a midrange
output value. In the case of a response ranked high on the
function, the spectral distribution of the target values is affected
by longer wavelengths than the surround. This higher rank leads to
greater activation of the center, and thus a stronger response
arising from the evolved network. In biological visual systems, as
in the artificial paradigm, double-opponent circuitry allows
neural responses to track reproductive success rather than
stimulus features, thus overcoming the inverse optics problem
as it pertains to spectral ambiguity.

Lightness Contrast and Constancy. A final point concerns the
adequacy of single-opponent neurons for understanding achro-
matic contrast. In this circumstance, the responses to the cone
inputs are proportional to luminance. Thus, the equivalent of
chromatic double opponency—input that would automatically
lead to lightness contrast and constancy—already exists at the

level of the single-opponent neurons that underlie responses to
achromatic retinal stimuli.

Conclusion
The rationale for contrast and constancy given in many textbooks
is that contrast improves the ability of a visual agent to distin-
guish among surfaces, whereas constancy promotes the identifi-
cation of the same surface reflectance in different conditions of
illumination. Based on the present results, however, contrast and
constancy are consequences of a more basic purpose, namely,
contending with the conflation of spectral information in retinal
stimuli. Evolution appears to have resolved this problem by ac-
tively creating patterns of light energy whose frequencies of oc-
currence directly link perceptual and behavioral responses with
reproductive success (4). Thus, the discrepancies between mea-
sured spectral values and perceived color or lightness evident in
contrast and constancy, or any other visual qualities and their
physical correlates, should not be thought of as anomalies or
“illusions” but as signatures of the strategy that we and pre-
sumably other visual animals have evolved to promote useful
behaviors despite the inability of biological visual systems to
measure physical parameters. Successful behavior arises not
because the properties of the world are recovered from images but
because the perceptual values assigned by evolution and the
behaviors that automatically follow accord with reproductive
success.
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