
Phthalate exposure and childhood obesity

Review article

Phthalates are commonly used as plasticizers and vehicles for cosmetic ingredients. 
Phthalate metabolites have documented biochemical activity including activating 
peroxisome proliferator-activated receptor and antiandrogenic effects, which may 
contribute to the development of obesity. In vitro and in vivo studies suggest that 
phthalates have significant effects on the development of obesity, especially after 
prenatal exposure at low doses. Although few studies have examined the effects 
of phthalate on obesity development in humans, some work has shown that 
phthalates affect humans and animals similarly. In this paper, we review the possible 
mechanisms of phthalate-induced obesity, and discuss evidence supporting the 
role of phthalates in the development of obesity in humans.
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Introduction

Between the late 1970s and the early 2000s, the prevalence of obesity among Korean 
children and adolescents rapidly increased nearly 10 folds1). Although the rate of obesity has 
been leveled off, it remains prevalent particularly in boys2). In general, the increased prevalence 
of obesity is attributed to overeating, a sedentary life style, and genetic susceptibility. Although 
high-calorie fast foods and soft drinks are easily available, and people spend more time 
participating in sedentary activities, such as watching television or using a computer, these 
factors are insufficient to explain the huge increase in obesity during the 20th century3). In 
2002, Baillei-Hamilton4) proposed that the global obesity epidemic was caused by exposure 
to endocrine disrupting chemicals (EDCs), and demonstrated that increased production of 
industrial chemicals coincided with increased obesity in the Unites States. A subset of EDCs 
that promote weight gain and obesity are referred to as “obesogens”5). Obesogens may cause 
obesity in several ways including disruption of critical lipid metabolism pathways to promote 
adipogenesis and fat storage, the alteration of the metabolic set point to induce positive energy 
balance, or increasing appetite5). Indeed, there is evidence showing a positive associations 
between obesogen levels, including phthalates, and body weight or body mass index (BMI) in 
children and adults.

Phthalates are diesters of 1,2-benzenedicaraboxylic acid (phthalic acid) and are used 
to increase the softness and flexibility of plastic products and as vehicles for fragrance in 
cosmetics. They are widely found in a variety of household products or personal care products, 
including building materials, shower curtains, children’s toys, food packaging, and medical 
devices. Human exposure to phthalates can occur through ingestion of contaminated food and 
water, dermal contact, inhalation of polluted air, and parental exposure from medical devices6). 
Several in vivo and in vitro studies suggest that phthalates may promote obesity through 
antiandrogenic effects, antithyroid hormone activities, and/or activation of peroxisome 
proliferator-activated receptors (PPARs). Recently, human studies have been performed to 
study the association between phthalate exposure and obesity. Children are known to be more 
vulnerable to environmental exposure to phthalates, as compared to adults, because of their 
hand-to-mouth activity, larger surface area to weight ratio, and enhanced metabolic rate. As a 
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result, there have been concerns that phthalates may promote 
childhood obesity in recent years.

In this paper, we review the possible mechanisms by which 
phthalate might influence the development of obesity, and 
discuss evidence from human studies suggesting an association 
between phthalate exposure and obesity-related biomarkers.

Diester phthalates and their potential sources 
of exposure

Phthalates have been used as plasticizers since the 1930s, 
and are currently used as additives in various consumer 
products (Table 1). The global consumption of phthalates is 
estimated to be several million tons per year7). High molecular 
weight (HMW) phthalates, such as di-2-ethylhexyl phthalate 
(DEHP) and diisononyl phthalate (DiNP) are used primarily 
in the manufacture of polyvinyl chloride (PVC) plastics for 
food packaging, building materials, and medical devices. Low 
molecular weight (LMW) phthalates, such as diethyl phthalate 
(DEP) and butylbenzyl phthalate (BBzP) are typically used 
in the manufacture of personal care products (e.g., perfumes, 
lotions, cosmetics, shampoo), paints, and adhesives. Phthalates 
are continuously emitted from PVC and plastic materials, 
resulting in contamination of indoor air, house dust, or food6,7). 
As a result, the primary methods of HMW phthalate exposure 
are ingestion of  contaminated food or dust, or parental 

exposure. In contrast, the primary methods of LMW phthalate 
exposure are inhalation or dermal contact. 

Metabolism of phthalates

Phthalates are rapidly metabolized and excreted in urine 
and feces after exposure. Fig. 1 demonstrates the metabolism 
of phthalates. In phase I hydrolysis, diester phthalates are 
hydrolyzed by esterases and lipases in the intestine and 
parenchyma to their respective monoester phthalates8). LMW 
phthalates are primarily excreted in urine and feces as a 
monoester, without further metabolism. In contrast, HMW 
phthalates are further metabolized from monoesters through 
hydroxylation or oxidation, to produce a number of oxidative 
metabolites. The oxidative metabolites of  phthalates are 
excreted in urine within 24 hours of exposure. Alternatively, 
oxidative metabolites can undergo phase II conjugation to form 
hydrophilic glucuronide conjugates, which are excreted in urine 
rapidly8). Hydrolytic monoester phthalates can be measured in 
blood, urine, breast milk, and feces for use as the biomarkers 
of exposure to the corresponding phthalate diesters. Urinary 
phthalate metabolites are the most useful biomarkers, as they are 
relatively easy to collect and their levels in a single sample reflect 
the exposure to phthalates over several weeks or months9,10). 
The major biomarker of phthalates with short alkyl chains, such 
as di-n-butyl phthalate (DBP) and BBzP, are their monoesters 

Table 1. Diester phthalates and their potential sources of exposure
Phthalate (Abbreviation) Sources of exposure Metabolites
Low molecular weight
  Dimethyl phthalate (DMP) Personal care products

  (deodorant, fragrance atershaves, shampoos, hair styling)
Monomethyl phthalate (MMP)

  Dietyl phthalate (DEP) Personal care products (deodorant, fragrance aftershaves, 
  shampoos, hair styling, skin care, nail care, makeup,
  baby preperations)

Monoethyl phthalate (MEP)

  Di-n-butyl phthalate (DBP) Paints, adhesives, Personal care products
  (perfumes, aftershaves, nail care, makeup)

Mono-n-butyl phthalate (MBP)

  Di-iso-butyl phthalate (DiBP) Paints, adhesives Mono-iso-butyl phthalate (MiBP)
High molecular weight
  Butylbenzyl phthalate (BBzP) Paint, adhesives, car care products, toys, food packaging, 

  synthetic leather, deodorants,
Monobenzyl phthalate (MBzP)

  Di (2-ethylhexyl) phthalate (DEHP) Household products (toys, floor tiles, wall coverings,
  furniture, paints, adhesives, gloves), dust, food packaging,
  medical devices

Mono(2-ethylhexyl) phthalate (MEHP)
Mono(2-ethyl-5-hydroxylhexyl) phthalate (MEHHP)
Mono(2-ethyl-5-oxohexyl) phthalate (MEOHP)
Mono(2-ethyl-5-carboxypentyl) phthalate (MECPP)
Mono(2-carboxy-hexyl) phthalate (MCHP)

  Di-iso-nonyl phthalate (DiNP) Household products (toys, floor tiles, wall coverings,
  furniture, paints, adhesives, gloves), clothes and footwear,
  car interiors, food packaging, medical devices

Mono-iso-nonyl phthalates (MiNP)
Mono(hydroxy-iso-nonyl) phthalate (MHiNP)
Mono(oxo-iso-nonyl) phthalate (MOiNP)
Mono(carboxy-iso-octyl) phthalate (MCiOP)

  Di-n-octyl phthalate (DnOP) Household products (floorings, carpet tiles, vinyl gloves,
  garden hoses, wire and cable insulation, adhesives),
  food applications (package sealants, bottle cap liners)

Mono-(3-carboxypropyl) phthalate (MCPP)
Mono-n-octyl phthalate (MOP)

  Di-isodecyl phthalate (DiDP) Household products (toys, coated fabrics, vinyl flooring,
  wall coverings, lamination film, wire and cable insulation, 
  foot wear, paints, adhesives), school supplies 
  (scented erasers and pencil case)

Mono-isodecyl phthalate (MiDP)
Mono-(carboxynonyl) phthalate (MCNP)
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in urine7). However, in the case of DEHP and DiNP, which are 
further metabolized from their primary monoesters and yield 
numerous oxidative metabolites, exposure must be estimated 
by taking the sum of primary and secondary metabolites in 
urine11). When daily phthalate intake was estimated in children 
using urinary phthalate biomarkers, DEHP was the most 
abundant phthalate, followed by DBP, di-iso-butyl phthalate, 
DEP and BBzP12). 

Plausible mechanisms of phthalates effects on 
obesity

PPARs serve as metabolic sensors for various lipophilic 
hormones, fatty acids, and fatty acid metabolites, thereby 
controlling adipocyte proliferation and differentiation5). 
PPARα is highly expressed in liver, heart, skeletal muscle, 
gonads, and brown adipose tissue, where mediates peroxisome 
proliferation and stimulate fatty acid β-oxidation13-15). PPARα 
activators exert a variety of metabolic actions, depending on 
to the species, gender, dose, and timing of exposure. High 
doses DEHP protected adult mice from diet-induced obesity 
by promoting fatty acid oxidation and catabolic metabolism 
by activating PPARα16). In contrast, in mice expressing human 
PPARα, exposure to DEHP promoted fat accumulation and 
exacerbated obesity. Further, fetal exposure to low doses of 
mono(2-ethylhexyl) phthalate (MEHP) significantly increased 
the body weight of male offspring at postnatal day 60, whereas 
these effects were not evident in female offspring17). In rodents, 
phthalate monoesters, including MEHP and mono-n-
butyl phthalate, are responsible for deformation of the male 
reproductive tract and dysfunction of both Leydig and Sertoli 
cells, resulting in decreased testosterone/androgen production 
and impaired spermatogenesis13,18). Importantly, phthalates 
do not interact with androgen receptors directly; rather their 
anti-androgenic effects are mediated through PPARα13,18). 
The antiandrogenic effects of  phthalates have also been 

demonstrated in infants and adults19,20). As decreased androgen 
activity induces obesity, the anti-androgen effect through 
PPARα may be a possible mechanism of phthalate-induced 
obesity. 

PPARγ is mainly expressed in adipose tissue, It plays a 
number of key roles including regulating the differentiation 
of adiopocytes and fat accumulation/storage in the adipose 
tissue. Additionally, PPARγ improves insulin sensitivity21). 
PPARγ agonists, such as thiazolidinediones, are potent insulin 
sensitizing agents used to control hyperglycemia in type 2 
diabetes. However, their side effects include weight gain, which 
limits their usage in obese patients. Some phthalate monoesters, 
such as MEHP, mono-iso-nonyl phthalates, and mono-
isodecyl phthalate act as PPARγ agonists, thereby promoting 
differentiation and lipid accumulation in 3T3-L1 cells, similar to 
thiazolidinediones22,23). Therefore, it is likely that phthalates exert 
an adipogenic effect though the activation of PPARγ. However, 
few in vivo animal studies have been performed to assess the 
effects of phthalate on PPARγ and adipogenesis17).

Another possible mechanism by which phthalates might 
promote obesity is through the disruption of thyroid function, 
which plays a key role in the regulation of energy balance and 
metabolism. There is some evidence that thyroid function plays 
a role in the regulation of BMI, as small changes in thyroid-
stimulating hormone (TSH) or thyroxine levels within the 
normal range can cause measurable differences in resting 
energy expenditure in chronic hypothyroidism patients, and 
slight elevation of serum TSH levels are associated with both 
weight gain over 5 years and obesity in a population study24,25). 
In rodent studies, exposure to DEHP lowered plasma thyroxine 
and decreased iodide uptake of thyroid follicular cells26,27). 
Recent human studies have also demonstrated possible effects 
of phthalate exposure on thyroid function in children and 
adults28-31). 

Finally, the “thrifty phenotype” resulting from exposure to 
undernourished fetal environment and EDCs could be one of 
plausible mechanisms by which phthalates promote obesity32). 

Fig. 1. Metabolic pathways of phthalates.
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Epigenetic changes, induced by a suboptimal fetal environment, 
may result in increased uptake and conservation of nutrients, 
and predispose individuals to obesity and other metabolic 
disorders32). Epidemiological studies provide evidence that 
maternal malnutrition during pregnancy and subsequent 
low birth weight is associated with obesity later in life33-35). In 
rodent studies, maternal exposure to DBP or DEHP during the 
gestational period have been reported to decrease birth weight 
in offsprings36,37). Studies regarding of the effect of phthalate 
exposure on preterm delivery and/or fetal growth in humans 
are limited and conflicting. Some studies suggested that there 
is a positive association between fetal phthalate exposure 
and premature delivery or lower birth weight38-40), but other 
studies failed to show a significant relationship41,42). Prospective 
investigations are needed to reveal the validity of the hypothesis 
that phthalate exposure results in low birth weight and 
subsequent obesity.

Phthalate exposure and obesity development 
in human

Table 2 presents the results of human studies investigating the 

effects of phthalate exposure on obesity. Most epidemiologic 
studies examining the association between phthalate exposure 
and obesity have been based on the data from the National 
Health and Nutrition Examination Survey (NHANES)43-46). 
Regarding adulthood obesity, Stahlhut et al.43) demonstrated 
a positive association between urinary monoethyl phthalate 
(MEP), monobenzyl phthalate, mono(2-ethyl-5-hydroxylhexyl) 
phthalate, and mono(2-ethyl-5-oxohexyl) phthalate and waist 
circumference (WC) in male adults, using data from NHANES 
1999–200243). Using the same data, Hatch et al.44) showed a 
positive association between urinary MEP and both BMI 
and WC in female adults. Recently, a study from NHANES 
2007–2010 found that HMW phthalates were associated 
with an increased risk of obesity in male adults, while DEHP 
phthalates were associated with increased obesity in females46). 
A prospective study from Sweden investigated serum phthalate 
metabolites in elderly subjects (70 years), and measured their 
body composition by dual-energy X-ray absorptiometry (DXA) 
two years later. In this study, serum mono-isobutyl phthalate 
levels were significantly correlated with increased BMI, WC, 
total fat mass and trunk fat mass by DXA in females, but not in 
males47). 

Table 2. Human studies on phthalate exposure and obesity development
Study population Exposure assessment Findings Reference
US, male participants from 
  NHANES 1999–2002
  aged ＞18 yr (n=1,443)

Cross-sectional study
  Urine – 6 phthalates (MBP, MEP, MEHP, MBzP,
  MEHHP, MEOHP)

Positive association between WC and MEP, MBzP, 
  MEHHP, MEOHP

Stahlhut et al.43)

US, participants from
  NHANES 1999-2002
  aged 6–80 yr (n=6,369)

Cross-sectional study
  Urine – 6 phthalates (MBP, MEP, MEHP, MBzP,
  MEHHP, MEOHP)

Positive association between BMI/WC and MEP, 
  MBzP, MBP, MEHHP, MEOHP in males aged 
  20–59 yr
Positive association between BMI/WC and MEP in 
  females aged 12–59 yr
Negative association between BMI and MEHP in 
  females aged 12–59 yr

Hatch et al.44)

US, participants from
  NHANES 2007–2010
  aged ＞6 yr

Cross-sectional study
Urine – 10 phthalates
LMW phthalates (MBP, MEP, MiBP), 
  HMW phthalates (MECPP, MEHHP, MEOHP,
  MEHP, MBzP, MCNP, MCOP)

Positive association between obesity risk and 
  LMW metabolites in males aged 6–19 yr
Positive associations between obesity risk and 
  HMW metabolites in males aged ＞20 yr
Positive associations between obesity risk and 
  DEHP metabolites in females aged ＞20 yr

Buser et al.46)

Sweden, elderly aged 70 yr 
  (n=1,016)

Prospective study
Blood– 4 phthalates
MEP, MEHP, MiBP, MMP

Positive association between MEP and WC/fat 
  mass obtained 2 yr later among females

Lind et al.47)

US, participants from
  NHANES 2003–2008
  aged 6–19 yr (n=2,884)

Cross-sectional study
Urine – 9 phthalates
LMW phthalates (MBP, MEP, MiBP),
  HMW phthalates (MECPP, MCPP, MEHHP, 
  MEOHP, MEHP, MBzP)

Positive association between obesity risk and 
  sum of molar concentrations LMW phthalates 
  among non-Hispanic blacks

Trasande et al.45)

New York, children
  aged 6–8 yr
  Hispanic and Black

Prospective study
Urine – 9 phthalates
LMW phthalates (MBP, MEP, MiBP), 
  HMW phthalates (MECPP, MCPP, MEHHP,
  MEOHP, MEHP, MBzP)

Positive association between LMW phthalates
  and BMI/WC obtained 1 yr later among 
  overweight children
No associations among normal weight subjects

Teitelbaum et al.48)

NHANES, National Health and Nutrition Examination Survey; MBP, mono-n-butyl phthalate; MEP, monoethyl phthalate; MEHP, mono(2-
ethylhexyl) phthalate; MBzP, monobenzyl phthalate; MEHHP, mono(2-ethyl-5-hydroxylhexyl) phthalate; MEOHP, mono(2-ethyl-5-oxohexyl) 
phthalate; WC, waist circumference; BMI, body mass index; LMW, low molecular weight; MiBP, mono-iso-butyl phthalate; MECPP, mono(2-
ethyl-5-carboxypentyl) phthalate; MCNP, mono-(carboxynonyl) phthalate; MCOP, mono(carboxyoctyl) phthalate; DEHP, di(2-ethylhexyl) 
phthalate ; MMP, monomethyl phthalate; HMW, high molecular weight; MCPP, mono(3carboxypropyl) phthalate.
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Emerging evidence suggest childhood exposure to some 
phthalates also may increase the risk of obesity. In a study 
of Hatch et al.44), BMI and WC increased with urinary MEP 
concentrations among female girls in the United States. Two 
recent studies using data from NHANES found that urinary 
levels of LMW phthalates were associated with higher odds for 
obesity in children and adolescents45,46). A prospective cohort 
study also found that urinary LMW phthalate metabolite 
concentrations were positively associated with BMI in 
overweight children. However, no associations were reported 
among all the total subjects or normal weight subjects alone48). 
The health effects of phthalate exposure appear to be complex, 
as they are dependent on several factors, such as the time 
of exposure, level of exposure, type of phthalates, and other 
environmental/genetic factors of the individuals.

Conclusions

Many in vitro studies indicate that phthalates are likely 
obesogens, promoting obesity via several mechanisms, including 
activation of  PPARs, antithyroid effects, and epigenetic 
modulation. The fetal period appears to be a critical window 
for exposure, and differential effects are observed depending 
on the dose of phthalates received and gender. Recent human 
studies have examined the possible effects of phthalate exposure 
on the development of obesity, although most of them are 
cross-sectional and short-term prospective studies. Although 
the random concentrations of phthalate metabolites have 
good reproducibility, large-scaled longitudinal study including 
measures at different life ages is needed to establish the impact 
of phthalate exposure on the obesity epidemic.
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