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Abstract

Chemokines, a large family of small chemoattractive cytokines, and their receptors play an

integral role in the regulation of the immune response and homeostasis. The ability of chemokines

to attract specific populations of immune cells sets them apart from other chemoattractants.

Chemokines produced within the gastrointestinal mucosa, are critical players in directing the

balance between physiological and pathophysiological inflammation in health, inflammatory

bowel disease and the progression to colon cancer. In addition to the well-characterized role of

chemokines in directed trafficking of immune cells to the gut mucosa, the expression of

chemokine receptors on the cells of the epithelium makes them active participants in the

chemokine signaling network. Recent findings demonstrate an important role for chemokines and

chemokine receptors in epithelial barrier repair and maintenance as well as an intricate

involvement in limiting metastasis of colonic carcinoma. Increased recognition of the association

between barrier defects and inflammation and the subsequent progression to cancer in

inflammatory bowel disease thus implicates chemokines as key regulators of mucosal homeostasis

and disease pathogenesis.

Mucosal immunity

The healthy gastrointestinal mucosa is the largest repository of immune cells within the

human body 1. The constitutive presence and trafficking of immunocytes into the mucosal

compartment has been termed physiologic inflammation and reflects production of

chemokines by cells within the gastrointestinal mucosa 1-6. The inflammatory bowel

diseases (IBD), including ulcerative colitis (UC) and Crohn's disease (CD), are chronic

inflammatory diseases of the gastrointestinal tract that in genetically susceptible individuals

are believed to arise out of fundamental dysregulation of the immune system in response to

environmental triggers 7-9. A growing body of work suggests that the chronic inflammation

seen during IBD results from defects in the ability to properly regulate the immune system

in response to the enteric microbiota 7;10-12. These defects may include alterations in pattern
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recognition receptors expressed by epithelial cells lining the gastrointestinal mucosal surface

critical for identifying microorganisms 8;13-17. In addition to recognition of the gut

microbiota, disease pathogenesis may also reflect defects in immune regulation, increased

influx of inflammatory cells, or diminished barrier integrity 18-23. These factors are likely

inter-related in that the additional influx of immune cells may elicit damage, resulting in

epithelial and mucosal lesions, through increased production of an array of bioactive

molecules. Alternatively, increased immunocyte trafficking may reflect a primary defect in

barrier integrity, exacerbating pathogenesis of IBD by facilitating the entry of noxious

luminal stimuli into the sub-epithelial mucosal and submucosal layers and thus leading to

increased trafficking of inflammatory cells.

Further compounding IBD disease pathogenesis, patients with UC and CD are increasingly

at risk for developing cancers of the colon and rectum 24-27. Consistent with the model

proposed by Itzkowitz and Yio 28 mucosal inflammation promotes the development of colon

carcinoma through combinations of genetic and epigenetic mutations in an array of

regulatory epithelial genes, further altering or exacerbating mucosal inflammation or

mucosal wound healing responses 29;30. The current model states that innate immune

components, especially signaling through the pro-inflammatory NF-κB transcription factor,

plays critical roles in connecting IBD to carcinoma development 31-33. While these data are

compelling, the causative cancer promoting genes dysregulated by these pathways in

metaplastic epithelia remain to be fully established. Thus, regulation of host defense genes

within the cells of the intestinal epithelial lining appears to play a key role in physiologic

and pathophysiologic inflammation and may foster the progression to colon cancer in

patients with unchecked mucosal immune responses.

The intestinal epithelium

Epithelial cells lining the mucosal surface of the gastrointestinal tract function in digestion

and absorption of essential nutrients as well as the regulated secretion of electrolytes and

macromolecules 34;35. These cells also comprise a dynamic physical interface between the

external luminal environment and the body's interior and thus represent a central mechanism

of the innate immune system preventing or limiting the entry of food-and water-borne

antigens and microbes 4. The cells that comprise the mucosal barrier are a self-renewing

system undergoing continuous replacement from pluripotent stem cells located near the base

of the crypts of Lieberkühn. Daughters of these stem cells undergo terminal differentiation

into absorptive enterocytes, Goblet cells or enteroendocrine cells as they migrate toward the

crypt surface, or differentiate to Paneth cells as they migrate to the crypt base in the small

intestine 36-41. Intestinal epithelial cells migrate with increasing velocity along the basement

membrane toward the small intestinal villus tip or colonic surface, whereupon those cells

lose the ability to adhere to the basement membrane and undergo programmed cell death as

they are subsequently shed into the intestinal lumen 37;42-44.

As highlighted in studies of IBD pathogenesis and colitis-associated cancer, epithelial cells

actively participate as a dynamic front-line defense response to external stimuli, playing an

integral role in innate and adaptive mucosal immunity 45-48. Intestinal epithelial cells thus,

participate in several distinct host defense mechanisms limiting pathogen or antigen entry
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and the progression to colon cancer. Epithelial host defense functions include regulated

secretion of electrolytes that are key to flushing noxious stimuli from the bowel lumen 35.

Alternatively, modulation of epithelial growth, apoptosis and differentiation function as

repair mechanisms to maintain barrier integrity and limit entry of environmental luminal

stimuli 6. Further, the epithelium is a dynamic partner in mucosal immune responses through

the regulated production of chemokines, cytokines, growth factors and antimicrobial

molecules essential to mucosal inflammation and host defense 1;49-52.

Chemokines

Chemokines are a large family of small, 8-14kDa, secreted chemotactic cytokines with well-

recognized roles in adhesion and directional homing of immune and inflammatory

cells 53-55. These molecules have been divided into four subfamilies based on the

arrangement of highly conserved cysteine residues in the amino-terminus of the protein

(Table 1). The largest chemokine subfamilies are the CXC chemokines in which the amino-

terminal cysteines are separated by an intervening amino acid and the CC subfamily where

the amino-terminal two cysteines are adjacent. Chemokines of the CXC subfamily can

further be subdivided based on the amino-terminal presence or absence of a glutamate-

leucine-arginine (ELR) amino acid motif which are potently chemoattractive for neutrophils

and possess angiogenic properties 56. Two additional subfamilies include XCL1/

lymphotactin, which possess a single amino-terminal cysteine residue 57, and CX3CL1/

fractalkine in which three intervening amino acids separate the cysteines 58.

Chemokines have also been classified based on function and expression pattern into an

inflammatory, or inducible, subfamily regulated by proinflammatory stimuli important in

innate and adaptive immune responses. A homeostatic, or constitutive, chemokine subfamily

plays a correspondingly key immune surveillance role in lymphocyte and dendritic cell

trafficking between primary and secondary lymphatic tissues 59. These molecules are highly

basic proteins capable of adhering to glycosaminoglycans on cell surfaces further

establishing localized foci of elevated chemoattractant concentrations 60. In the vascular

lumen, under elevated sheer stress from blood flow, endothelial-produced chemokines signal

circulating leukocytes upon binding to the cognate chemokine receptor expressed by the

target cells. Functionally, activation of the chemokine receptor results in increased affinity

of leukocyte integrins for endothelial adhesion molecules as a first step in leukocyte

diapedesis into the tissue space 61;62. In addition, subsets of chemokines such as CX3CL1

and CXCL16 possess transmembrane-domains that tether the chemokine ligand to the cell

membrane thus further aiding the ability of those chemokines to establish focal regions of

high ligand concentration and foster intimate contact with receptor expressing target

cells 58;63.

Chemokine Receptors

Chemokines exert their actions through the binding and activation of specific 7

transmembrane G-protein coupled receptors located within the cell membrane of target

cells 54. Much like their ligands, chemokine receptors possess a conserved structure and

possess 20-80% amino acid identity 64. These receptors are largely linked to Gαi
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heterotrimeric G proteins and regulate cell migration 54. Binding of the chemokine ligand to

its cognate receptor activates the heterotrimeric G protein complex, resulting in the

dissociation of the Gα subunit from the Gβγ subunits and establishing two distinct signaling

modules capable of activating intracellular second messenger proteins. Increased flux in

intracellular calcium and in turn chemotaxis of those cells is prominent amongst those

signaling pathways activated by ligand engagement to chemokine receptors 53.

This shared biologic feature of chemokine signaling has classically been characterized by

directed leukocyte and lymphocyte migration, and hematopoietic progenitor cell

trafficking 53;54. Within this generalized function, specificity is dictated by expression

patterns of chemokine receptors on defined subsets of target cells and through temporal and

spatial regulation of ligand expression. The prototypic role for chemokines in leukocyte

activation and trafficking was expanded following the determination that subsets of

chemokine receptors function as co-receptors for human immunodeficiency virus (HIV)

infection 65;66.

Subsequent analyses of the cell types expressing chemokine receptors lead to the description

of even further functions, ascribing roles for specific subsets of chemokines in angiogenesis

or angiostasis 67-69, immune and non-immune tissue development 70-75, recruitment of

endothelial progenitor cells 76, and epithelial wound healing 77-81. Redundancy of ligand for

chemokine receptors is a key characteristic feature of this family of immune mediators.

Thus, for several different chemokines, distinct ligands may bind to a single specific

receptor, or alternatively, a single ligand may bind to separate chemokine receptors, leading

to a high level of redundancy in chemokine receptor function, particularly in inflammatory

responses 53;54. Ligand-receptor selectivity may also determine the level of chemokine

receptor desensitization by distinct chemokine ligand subsets, suggesting a hierarchical

relationship in receptor signaling. These interactions may be of importance in elucidating the

intricate multifactorial relationships that exist during immune and inflammatory responses

as well as lymphoid organ development.

Chemokines in mucosal inflammation

Chemokines are ubiquitous mediators of inflammation and host defense with a central role

in lymphocyte recirculation and immune surveillance as well as leukocyte trafficking. In

addition, chemokines play a role in several diseases, from viral diseases, to cancer

metastasis, to inflammation and autoimmune diseases 65;66;82-85. Within the gastrointestinal

mucosa, physiologic and pathophysiologic inflammation in the intestine reflects a network

of inter-dependent relationships that is susceptible to inappropriate activation, despite

multiple checks and balances and chemokine ligand-receptor redundancy. The diseases that

comprise IBD are not simple inflammatory diseases. Instead, disease pathogenesis reflects

an integrated activation of signaling events within and between components of the intestine

including the epithelial cells, nervous system, immune cells and extracellular matrix. The

relationship between intestinal epithelial cells and immune cells is an important factor in the

intestinal immune response 6. An array of cytokines and chemokines are upregulated during

and likely playing key participatory roles in immunocyte infiltration into the pathologically

inflamed gut mucosa 48;61.
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As previously reviewed, several reports have established the current paradigm,

schematically summarized in Figure 1A, for chemokines, especially those of the

inflammatory/inducible group, in mucosal inflammation and their regulation in

IBD 46;48;61;86. Thus, an array of inflammatory chemokines including CXCL8, CCL2,

CCL20, CCL5 amongst others, are elevated in human specimens from CD and UC patients

and likely reflect mechanisms that result in increased trafficking and localization of

monocytes, dendritic cells, natural killer cells, and T lymphocytes to the gut

mucosa 48;61;87-94. As a notable example, several reports link expression of the CCR6 ligand

CCL20 to the cells of the intestinal epithelium in vitro and in vivo 94-96 with directing the

trafficking of dendritic cells to the subjacent lamina propria and to the subepithelial dome of

Peyer's patches 97-100.

Chemokines largely of the constitutive or homeostatic group, play key roles in lymphocyte

and leukocyte recirculation and, more broadly have been shown to participate in

development and organization of mesenteric lymph nodes, Peyer's patches, cryptopatches

and establishment of the intraepithelial lymphoid compartment 99;101-104. Following their

development in primary lymph tissues, naïve antigen-inexperienced lymphocytes as well as

leukocytes circulate through secondary lymphatic tissues sampling antigens and limiting

entry of microbial pathogens 62. The role for homeostatic chemokines and their receptors in

mucosal lymphoid development and trafficking of immunocytes to the lamina propria in the

gut has been extensively reviewed elsewhere 48;105. Notably, expression of the chemokine

receptor CCR7 plays a critical role in the organization of secondary lymphoid tissue,

including Peyer's patches in the gastrointestinal tract 70;106. Similarly, genetic deficiency of

CXCL13 or its receptor CXCR5 results in impaired organization of intestinal Peyer's

patches 75;107. Those data are consistent with a role for this homeostatic chemokine in

lymphoid organogenesis and organization within the gastrointestinal mucosa. Additionally,

intestinal epithelial cells of the small intestine produce the chemokine CCL25, while those

of the large intestine selectively secrete CCL28, with each regulating the trafficking of

specific T cell subsets to the mucosa of those organs respectively 102;108;109. Alterations in

the receptors for those ligands, CCR9 and CCR10, are similarly associated with marked

changes in lymphocyte recirculation into the gastrointestinal mucosa, impaired organization

of Peyer's patches, and other mucosal-associated lymphoid tissue 103;110. Development and

organization of gastrointestinal mucosal lymphatic tissue is not solely regulated through

signaling of members of the constitutive group of chemokines as genetic ablation of CCR6

in knockout mice similarly leads to profound alterations in dendritic cell trafficking to the

epithelial barrier as well as organization of isolated lymphoid follicles 98;100;111;112.

Although those data suggest a role for homeostatic/constitutive chemokines and their

receptors in development of secondary lymphatic tissues within the gastrointestinal mucosa,

their role in the pathogenesis of IBD is less clearly understood. Thus, changes in expression

levels of homeostatic chemokines, including CCL19, CCL21, CCL25, CCL28 as well as

CXCL12 and CXCL13 have been shown to be increased in pathologically-inflamed human

small intestine or colon 113-117. Given the role for these molecules in neo-

lymphorganogenesis and lymphocyte recirculation expression of constitutive/homeostatic
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chemokines may therefore participate in re-organization of peripheral lymphoid structures

observed in the chronically inflamed mucosa of IBD patients 114;118.

CXCL12 and CXCR4

Due to its high degree of amino acid conservation and broad eukaryotic expression,

CXCL12 has been termed a primordial homeostatic/constitutive chemokine 119. Within the

gastrointestinal tract, expression of CXCL12 has been noted by the cells of the human

colonic and small intestinal epithelium 120. These data, together with previous reports

detailing the expression of its cognate receptor CXCR4 by those cells 92;121, suggests an

autocrine/paracrine signaling arc between the cells of the mucosal epithelial barrier. In

agreement with their concomitant expression in endothelial and epithelial tissues of the

small and large intestine both CXCR4 and CXCL12 are similarly expressed in other

mucosal epithelia including the liver and mammary gland 69;122;123. In mice, CXCL12,

initially termed stromal cell-derived factor-1, and CXCR4, initially termed fusin, appear to

be the only chemokine or chemokine receptor critical for life, as genetic deficiency in either

of those genes is embryonic lethal 71;72;124. Phenotypic changes in CXCR4 and CXCL12

knockout embryos include marked defects in cardiac and gut vascular development and

hematopoiesis 71;72. The comparable phenotypic defects observed in those animals

suggested this receptor and ligand comprised a monogamous signaling unit. Recent work,

however, suggests CXCL12 is also capable of binding to the newly characterized chemokine

receptor CXCR7 which is similarly necessary for life 125;126.

In addition, CXCL12 was among the first chemokines shown to inhibit HIV-1 entry through

occupancy of the CXCR4 viral co-receptor expressed on T cells, and perhaps by cells of the

intestinal epithelium 120;127. Consistent with other members of the homeostatic/constitutive

chemokine group, CXCL12 activation of CXCR4 regulates trafficking of hematopoietic

stem cells, naïve lymphocytes and leukocytes 128;129 and has roles in cell-type specific

mitogenesis 130-132, carcinoma metastasis 82;85;122, and rheumatoid arthritis 133. Together,

these findings implicate CXCL12 and CXCR4 in the broad regulation not only of

lymphocyte recirculation, but also tissue morphogenesis, tumor metastasis and inflammatory

disease.

Chemokine receptors at the epithelial barrier

Studies in chemokine receptor knockout mice assessed the roles for those receptors in

modulating mucosal inflammation. Mice lacking the CCR5 chemokine receptor appeared

refractory to induction of colitis associated with addition of dextran sodium sulfate (DSS) to

the drinking water 134. Alternatively, blockade of CCR2, or a combinatorial approach

blocking both CCR5 and CXCR3 using neutralizing antibodies similarly lead to decreased

colitis in the DSS model 134. However, mucosal protection in the DSS model of colitis

reflected abrogation of leukocyte trafficking to the gut mucosa following the concomitant

pharmacological blockade of the receptors CCR2, CCR5 and CXCR3 135. Broad expression

of those receptors by monocytes and T lymphocytes, cells with a well known role in the

pathogenesis of human IBD, were protective through modulation of immunocyte trafficking

into the mucosa 135. The conclusion that decreased trafficking of those cells is beneficial to
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limiting disease pathogenesis was further strengthened in recent reports in which gut T

lymphocytes were shown to exacerbate epithelial barrier defects, in turn worsening gut

inflammation in a murine model of colitis 136;137.

While studies implicate regulated epithelial cell expression of chemokines with increased

trafficking of immunocytes to the gastrointestinal mucosa in IBD and other inflammatory

disorders, expression and functional analysis of chemokine receptors by those cells is more

limited. Expression of chemokine receptors by intestinal epithelial cells was noted in

conjunction with the prominence of chemokine ligand production by those cells 92;121.

Much like the analysis of the varying chemokine ligands, initial reports ascribed a limited

functional role for chemokine receptors to the modulation of the intestinal epithelial

inflammatory response through regulation of additional chemokines or expression of cellular

adhesion molecules important in leukocyte transepithelial migration 92;121.

Thus, prior reports largely ascribe a limited role for chemokines in the directed infiltration of

damage-provoking or, alternatively damage-exacerbating, immune cells into the gut mucosa

in IBD. However, recent evidence from our laboratory, and others, endorse expanding that

model and assign a role for chemokine receptor signaling in the maintenance of the

epithelial barrier by stimulating the migratory repair process, termed restitution, of wounded

epithelium 79;81;138. Specifically, in addition to CXCL8, studies in cell culture systems, as

modeled in Figure 1B, demonstrate that CXCL12 binding to CXCR4 regulates epithelial cell

restitution, which is critical for repair of the barrier subsequent to inflammatory injury 79;81.

Epithelial wound healing

Limitations in epithelial barrier integrity have long been associated with IBD. Consistent

with the morphoregulation hypothesis of Edelman 139 epithelial wound repair mechanisms

parallel those important in barrier morphogenesis and require the spatial and temporal

integration and coordination of epithelial migration, proliferation and maturation 140-144.

Mucosal architecture and integrity rely upon regulated epithelial migration out of the crypt

toward the lumen surface 37. The process of epithelial migration is chemotactic locomotion

and does not reflect ‘pressure’ generated from continually dividing stem cells in the

crypt 139;145;146. It has been shown that deletion of extracellular mediators profoundly alters

mucosal structure and epithelial maturation in transgenic mice, leading to inflammation and

adenoma formation 40;147-151. Restitution, defined as the rapid migration of epithelial cells

over the site of injury independent of proliferation, is a key step in mucosal

repair 140;142;144;152. Epithelial cells surrounding the injury subsequently initiate

proliferation and differentiation gene programs to complete the repair and repolarize into a

mature enterocyte. Epithelial restitution and repair processes are of vital importance to

homeostatic turnover characteristic of the healthy mucosa and is an essential function within

normal epithelial migration 153.

Within the gastrointestinal tract several growth factors, cytokines, hormones, neuropeptides,

and polyamines 154;141;143;146;149;155;156 as well as luminal peptides and probiotics have

been shown to participate in epithelial restitution in vitro and in vivo 142;157;158. The

inflammatory chemokine CXCL8 was shown to stimulate epithelial carcinoma cell
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migration 138;159 and the cytokine TGFβ1 has been shown to participate both in restitution

and also constitutive barrier formation 149. TGFβ1 and its receptor, TGFβRII, share many

features in common with the homeostatic chemokine CXCL12 and its cognate receptor

CXCR4. Namely, both ligand and receptor are widely expressed by a multiplicity of cellular

targets in vivo and both of these receptor-ligand pairs have been shown to mediate cell type

specific signaling of differentiation, migration, extracellular matrix formation, and immune

responsiveness 65;72;160.

Restitution is dependent largely upon Rho-mediated modifications to the actin

cytoskeleton 147;161-166. Deficiencies in specific F-actin regulatory signaling pathways leads

to aberrant epithelial migration and differentiation in vitro and in vivo 41;161;163;167-171. In

contrast to TGFβ1 directed epithelial migration, the chemokine receptor CXCR4 is coupled

to heterotrimeric G-proteins and, in specific target cell subsets, directly activates the

monomeric RhoA GTPase to initiate actin polymerization, and in turn leukocyte

migration 82;129.

The signaling pathways regulated by chemokine receptors upon ligand engagement parallel,

in part, those intracellular effectors of the epithelial restitution pathway. Thus, in vitro

assays of restitution using wounded monolayers of intestinal epithelial cells indicate

epithelial sheet migration across the denuded barrier is dependent upon activation of the Rho

GTPase and in turn formation of F-actin filaments at the leading edge 152;161;164. The

importance of these signaling pathways in healing of micro-ulcers in vivo has recently been

shown in mouse models of restitution 172 and support not only the relevancy of data from

the cell culture systems but also the key role for the canonical Rho-ROCK/MLCK-actin

signaling module in epithelial restitution and barrier integrity. As the role for chemokines as

cardinal mediators of directed cell movement in epithelial restitution had not been

established, our laboratory has begun investigating the function of chemokine receptors

expressed at the mucosal epithelial cell surface. Studies using cell culture systems indicate

that, much like TGFβ1, engagement of CXCL12 to CXCR4 elicits a rapid increase in

epithelial restitution via activation of the RhoGTPase and the downstream polymerization of

F-actin in accordance with the known epithelial migration paradigm 79;81. Moreover, we

noted that this homeostatic chemokine not only was capable of directing sheet migration

across wounded epithelial monolayers but was a potent chemotactic signal for single cell

suspensions of human intestinal epithelial cells. In support of those data, a report examining

the functions of CCR6 indicate that ligand stimulation modulates p130Cas of the focal

adhesion complex, suggesting chemokines may have broader impact on epithelial cell

adhesion and migration 173. Together, these data parallel the function of chemokines in

leukocytes and suggested that CXCL12 and CXCR4 might play a role in movement of

metastatic carcinoma cells out of the gastrointestinal mucosa.

Tumor metastasis

Among the most serious complications of IBD is the increased risk of colon cancer and its

associated malignancy. Given their well defined roles in leukocyte trafficking, it was

intuitive that chemokine receptor expression on carcinoma cells could aid in their metastasis

to sites of constitutive as well acute inflammatory sites of high chemokine ligand
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production. Indeed, in accordance with our studies 79 there is increasing evidence

implicating several chemokine signaling networks in directed metastasis of colorectal

carcinoma. Specifically, CXCR3 and CCR7 expression on the surface of colorectal

carcinoma cells appears to aid in the specific homing of those cells to regional lymph nodes

while CXCR4 and CCR6 seem to be more specific to liver metastasis where expression of

the specific CXCL12 and CCL20 ligands, respectively, are readily abundant 174;175. Thus,

differential chemokine receptor expression by metaplastic carcinoma cells may play key

roles in the sequential steps of primary tumor growth, invasion, vascular entry, cell homing

and exit at ectopic tissues 85. Consistent with that notion, we have shown that expression of

an array of chemokine receptors of the inflammatory group is extensive and variable

amongst a battery of colonic carcinoma cell lines 92.

Cancer is a hyperproliferative disorder that involves morphological cellular transformation,

dysregulation of apoptosis, uncontrolled cellular proliferation, invasion, angiogenesis, and

metastasis 176. Clinical and epidemiologic studies have suggested a strong association

between chronic infection, inflammation, and cancer 32;33;177;178. Several chemokines are

known to be prominently regulated by inflammatory mediators such as the transcription

factor NF-κB, and have dysregulated expression patterns in IBD as well colorectal

carcinoma. A large majority of research has focused on the role of chemokines in the

pathologic recruitment of immune and vascular cells into chronically inflamed mucosa and

tumors. Given the identification of chemokine receptor expression on normal intestinal

epithelium as well as in colorectal carcinoma, these cells are not only producers of

chemokine ligands, but are also targets of chemokine signaling. For example, CXCL8, a

chemokine ligand known to upregulated in colitis and carcinoma, signaling through CXCR1

has been linked to the epithelial-mesenchymal transition in colonic carcinoma 179.

In addition to chemokines of the inflammatory group, the homeostatic primordial signaling

axis CXCR4-CXCL12 has been shown to be the major chemokine network pathologically

hijacked by metastasizing carcinoma cells 82;122;123;180-183. These data are strengthened by

studies showing increased CXCR4 expression in colorectal carcinomas correlated with

increased metastasis and decreased clinical prognosis 184;185. Similarly, CXCL12

stimulation of mammary cancer cells via CXCR4 and CXCR7, the newly identified receptor

for CXCL12 and CXCL11, has been shown to promote tumor cell proliferation and

survival 186;187. However, recent work from our laboratory indicates CXCL12 is

epigenetically silenced in colorectal cancer and that constitutive over-expression of

CXCL12 in carcinoma cells increased caspase activity and decreased tumor growth and

metastasis 188. Similar findings were obtained in mammary carcinoma, implying that

pathological silencing of CXCL12 is not confined to colorectal cancer 123. Aberrant loss of

homeostatic chemokine expression may thus facilitate disease progression and worsening

disease prognosis by abolishing the autocrine/paracrine signaling arc of the healthy

gastrointestinal epithelium (Figure 1C). Moreover, pathologic silencing of CXCL12 has

been detected in ulcerative colitis samples (unpublished observations) suggesting that that

small subset of cells may be at a selective advantage for metastasis in colitis-related

carcinoma even though an overall modulation of CXCL12 has not been noted in UC 189.

Further studies are needed to elucidate the full importance of non-chemotactic roles for
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chemokines in IBD and colitis-associated carcinoma, especially how paracrine and autocrine

chemokine signaling networks are modulated in the epithelial compartment.

Future Directions

Inflammatory bowel disease, radiation injury, colorectal cancer as well as infectious

enterocolitis and therapeutic drugs have long been associated with defects in epithelial

integrity. Therefore, factors that contribute to wound healing are of clinical importance as

possible therapeutic modality to restore barrier homeostasis. While additional work is

needed, especially in in vivo models of colitis, the information from cell culture systems

implicate chemokines as equally-potent in stimulating restitutive migration as the

prototypical trefoil factors and growth factors. Chronic dysregulation of chemokines and/or

chemokine receptors appears to aid in the latter steps of disease progression including de

novo establishment of mucosa-associated lymphoid tissue, as well as carcinoma cell

metastasis. Studying the genetic, epigenetic and immunological mechanisms modulating

expression of chemokines and chemokine receptors will shed light on the critical roles for

those molecules in the progression from physiologic to pathophysiologic inflammation and

neoplasia in the human colon.
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Figure 1. Expanded role for epithelial-derived chemokines in mucosal inflammation, wound
healing, and carcinogenesis
A. Chemokines likely regulate immune cell trafficking in the inflammatory bowel diseases.

Increased expression and production of chemokines by epithelial cells in the damaged or

intact mucosal barrier direct the elevated trafficking of leukocytes and lymphocytes of the

innate and adaptive immune response to the gastrointestinal mucosa. B. Potential roles for

chemokines in repair of the epithelial barrier. The homeostatic chemokine CXCL12 is

constitutively expressed in the cells of the human intestinal epithelium. In culture model

systems CXCL12 activates the canonical restitutive epithelial migration signaling pathway

and aids in increased closure of wounded epithelial monolayers. C. Chemokines

differentially participate in the progression from dysplastic epithelium to frank tumor and

metastasis. Epigenetic silencing of CXCL12 in the colonic carcinoma cells confers

metastasis-proficient phenotype to those cells, allowing them to respond to endocrine

chemokine gradients (green circles).
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