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Adaptive Multivariate Global Testing
Giorgos MINAS, John A.D. ASTON, and Nigel STALLARD

We present a methodology for dealing with recent challenges in testing global hypotheses using multivariate observations. The proposed
tests target situations, often arising in emerging applications of neuroimaging, where the sample size n is relatively small compared with the
observations’ dimension K. We employ adaptive designs allowing for sequential modifications of the test statistics adapting to accumulated
data. The adaptations are optimal in the sense of maximizing the predictive power of the test at each interim analysis while still controlling
the Type I error. Optimality is obtained by a general result applicable to typical adaptive design settings. Further, we prove that the potentially
high-dimensional design space of the tests can be reduced to a low-dimensional projection space enabling us to perform simpler power
analysis studies, including comparisons to alternative tests. We illustrate the substantial improvement in efficiency that the proposed tests can
make over standard tests, especially in the case of n smaller or slightly larger than K. The methods are also studied empirically using both
simulated data and data from an EEG study, where the use of prior knowledge substantially increases the power of the test. Supplementary
materials for this article are available online.

KEY WORDS: Adaptive design; Multivariate test; Neuroimaging; Power analysis.

1. INTRODUCTION

In this work, we develop novel methodology for dealing with
recent challenges in testing global hypotheses using multivari-
ate observations. The classical approach for studying the prob-
lem, Hotelling’s T 2-test (Hotelling 1931), can efficiently detect
effects in every direction of the multivariate space when the
sample size n is sufficiently large. However, in settings where n
approaches or becomes smaller than the observation dimension
K, T 2-test becomes respectively inefficient and inapplicable.
This cost in efficiency, paid due to the need to search in every
direction of the alternative space, seems particularly wasteful
(but avoidable), if prior knowledge about the direction of the
effect is available. Motivated by the latter settings, often arising
in the increasingly important field of neuroimaging, we develop
tests which are powerful in studies with n � K , but can also be
efficient in situations where n is close to or smaller than K.

The proposed tests employ adaptive designs allowing for se-
quential modifications of the test statistic based on accumulated
data. Such adaptive designs have straightforward but not ex-
clusive application in clinical trials. A large literature on the
subject (e.g., Bauer and Köhne 1994; Proschan and Hunsberger
1995; Lehmacher and Wassmer 1999; Müller and Schäfer 2001;
Brannath, Posch, and Bauer 2002; Liu, Proschan, and Pledger
2002; Brannath, Gutjahr, and Bauer 2012) deals with the deriva-
tion of flexible procedures that allow for adaptations of the initial
design without inflation of the Type I error rate. Some sequen-
tial designs (e.g., Denne and Jennison 2000) also permit design
adaptations, but the latter need to be preplanned and indepen-
dent of the interim test statistics. Adaptive designs are employed

© Giorgos Minas, John Aston, Nigel Stallard. This is an Open Access ar-
ticle distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is
properly cited. The moral rights of the named author(s) have been asserted.

Giorgos Minas (E-mail: g.c.minas@warwick.ac.uk) and John A. D.
Aston (E-mail: J.A.D.Aston@warwick.ac.uk), Department of Statistics, Uni-
versity of Warwick, Coventry, CV4 7AL, UK. Nigel Stallard, Division of
Health Sciences, Warwick Medical School, University of Warwick, UK (E-mail:
n.stallard@warwick.ac.uk). The authors would like to express their thanks to an
AE and two referees for comments which helped improve the article. J.A.D.A.
acknowledges partial support for this work from EPSRC Grant EP/K021672/1.

Color versions of one or more of the figures in the article can be found online
at www.tandfonline.com/r/jasa.

for many kinds of adaptations including sample size recalcula-
tion (Lehmacher and Wassmer 1999; Mehta and Pocock 2011),
treatment or hypothesis selection (Kimani, Stallard, and Hutton
2009), and sample allocation to treatments (Zhu and Hu 2010).
Despite the fact that many authors have stressed the potential
for test statistic adaptation (e.g., Bauer and Köhne 1994; Bretz
et al. 2009), there are only a few papers on the subject (Lang,
Auterith, and Bauer 2000; Kieser, Schneider, and Friede 2002).
Furthermore, various approaches for adaptive designs in multi-
ple testing are available (see Bretz et al. 2009). These methods
can efficiently detect few independently significant outcomes.
However, it is well known that standard multiple testing meth-
ods (e.g., Bonferroni and Simes tests) become conservative and
inefficient in settings, such as the typical neuroimaging studies,
where strong dependencies and a large number of outcomes are
present (D’Agostino and Russell 2005).

Similarly to the tests developed by O’Brien (1984), Läuter,
Glimm, and Kropf (1998), and Minas et al. (2012), the proposed
tests are based on linear combinations of the observation vec-
tors. The crucial element in this approach is the weighting vector
reducing the observation vectors to the scalar linear combina-
tions. This defines the direction in which we decide to search
for effects, and it can substantially affect both Type I and Type
II error rate of the tests. O’Brien proposed deriving the weight-
ing vectors under the assumption of uniform mean structure,
while Läuter et al. showed that if the weighting vector is derived
from the observation sums of products matrix, the Type I error
is controlled and high power is attained under certain factorial
structures. On the other hand, the tests in Minas et al. (2012)
can attain high power levels independently of the mean and co-
variance structure but a part of the sample is used in a separate
pilot study to learn the weighting vector.

In this work, linear combination test statistics, initially con-
structed using weighting vectors derived from prior information,
are sequentially updated based on observed data at subsequent
interim analyses in an adaptive design. Early termination of the
study (due to early acceptance or rejection of the null hypothesis
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at an interim analyses) which is often of interest, especially in
clinical trials, is also possible within our approach. Our meth-
ods provide a formal framework for optimally using prior in-
formation in constructing test statistics as has been suggested,
but not implemented, in earlier papers (Pocock, Geller, and
Tsiatis 1987; Läuter, Glimm, and Kropf 1996; Tang, Gnecco,
and Geller 1989a).

While our tests maintain the two prime targets of adaptive de-
signs, namely flexibility and Type I error control (Brannath et al.
2012), we also focus on attaining power optimality. Specifically,
we employ the methods proposed by Spiegelhalter, Abrams, and
Myles (2002) to derive optimal tests maximizing the predictive
power of the test at each interim analysis. The methods of proofs
can be useful in deriving optimal adaptive designs in more gen-
eral settings. As we illustrate in Section 3, the results of Theorem
3.1 could be used to derive optimal designs for regression anal-
ysis for example.

The power performance of a multivariate test, lying in a pos-
sibly high-dimensional design space, can be hard to illustrate
and interpret. Therefore, power analysis of multivariate tests is
typically restricted to a limited part of the design space. We
tackle this problem by reexpressing the O(K2)-dimensional de-
sign space as a lower dimensional easily interpretable space that
is still sufficient to determine power. The crucial step here is to
identify a measure quantifying the angular distance between the
selected weighting vector and the optimal weighting vector and
proving its sufficiency in computing power. These results pro-
vide wide understanding of the behavior of linear combination
tests and allow us to extend earlier work on power analysis of
single stage (Pocock, Geller, and Tsiatis 1987; Follmann 1996;
Logan and Tamhane 2004) and sequential (Tang, Gnecco, and
Geller 1989b; Tang, Geller, and Pocock 1993) linear combi-
nation tests, beyond low-dimensional observations or specific
mean and covariance structures.

We perform extensive simulation studies to explore and com-
pare the proposed and alternative single stage and sequential
procedures throughout the design space. We show that linear
combination tests outperform Hotelling’s T 2-tests for the latter
angular distance being below a certain value which, especially
for sample sizes close to K, can be rather high. We further show
that, in contrast to linear combination tests, such as O’Brien
OLS test, with fixed weighting vectors, the adaptive linear com-
bination tests can attain high power levels even in situations
where the weighting vector selected at the planning stage is or-
thogonal to the true optimal (where, of course, a nonadaptive
test would have zero power asymptotically). The advantages
of the proposed tests are also illustrated through a real example
taken from an EEG depression study (Läuter, Glimm, and Kropf
1996).

This article is organized as follows. In Section 2, we for-
mulate the class of linear combination tests while in Section
3 we derive optimal, with respect to power, tests in this class.
In Section 4, we present the results allowing us to characterize
power based on low-dimensional summaries of the design pa-
rameters. In Section 5, we discuss the main results of extensive
simulation studies performed using the latter results to explore
power and compare the proposed tests with alternative global
tests under various conditions, while in Section 6 we apply our
procedures to an EEG depression study. Section 7 includes a

short summary and discussion of the obtained results. Technical
lemmas and proofs are provided in Supplementary Material A,
while further illustrations of the simulation studies are provided
in Supplementary Material B.

2. FORMULATION OF J-STAGE LINEAR
COMBINATION TESTS

In the following, we formulate J-stage linear combination z

and t-tests and define their error rate functions. We assume that
the K-dimensional observation vectors Y ij = (Yij1, . . . , YijK )T

of subjects i = 1, 2, . . . , nj , participating in stage j, j =
1, 2, . . . , J , of the study, are independent and identically dis-
tributed Gaussian random variables

Y ij ∼ NK (μ,�) , (2.1)

with mean μ = (μ1, . . . , μK )T and covariance matrix the posi-
tive definite � = (σkk′)Kk,k′=1. In medical applications, the mean
vector is often interpreted as the treatment effect. We wish to
test the global null hypothesis of no treatment effect H0 : μ =
0 = (0, 0, . . . , 0)T against the two-sided alternative H1 : μ �= 0.
Note that the methods which follow equally apply to the two-
sample test with common covariance matrix, but we continue
with the one-sample presentation to simplify notation.

The observation vectors Yij , i = 1, 2, . . . , nj , of the jth
stage are projected on the nonzero weighting vector wj =
(wj1, wj2, . . . , wjK )T and the projection magnitudes form
the linear combinations Lij = wT

j Y ij ,i = 1, 2, . . . , nj , j =
1, 2, . . . , J . The stagewise z and t statistics for testing H0

against H1 using the random sample of linear combinations
Lij , i = 1, . . . , nj , when � is either known or unknown, are
respectively

Zj = L̄j

σj /n
1/2
j

, Tj = L̄j

sj /n
1/2
j

. (2.2)

Here, σ 2
j is the variance and L̄j , s2

j are the sample mean and
sample variance of the linear combination Lj , respectively. Un-
der assumption (2.1), the stagewise z and t statistics, Zj , Tj ,
j = 1, 2, . . . , J are respectively normally and noncentrally t
distributed, Zj ∼ N (θ̄j , 1) and Tj ∼ tνj

(θ̄j ) with location pa-
rameter

θ̄j = θj
√

nj , θj = wT
j μ(

wT
j �wj

)1/2 , (2.3)

and νj = nj − 1. Under H0, the z and t statistics are stan-
dard normal and Student’s t random variables, that is, Zj ∼
N (0, 1) and Tj ∼ tνj

. The two-sided stagewise p values of
the z and t-tests are, respectively, pzj

= 2�(−|Zj |) and ptj
=

2�νj
(−|Tj |), where �(·) and �(·) are the cumulative distribu-

tion functions of the standard normal and Student’s t-distribution
with νj degrees of freedom, respectively.

At the jth analysis, j = 1, 2, . . . , J , performed after the jth
stage study, a combination function C( pj ) is used to combine
the stagewise p values, pj = (p1, . . . , pj ), of stages 1 to j (pj

either pzj
or ptj

). Rejection and acceptance critical values α1,j

and α0,j (0 ≤ α1,j ≤ α < α0,j ≤ 1, j = 1, 2, . . . , J ) are used to
decide whether to stop the study early and either reject or accept
H0, respectively. Specifically, the J-stage sequential design has
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the following form:

At interim analysis
j = 1, 2, . . . , J − 1,

if C( pj ) ≤ α1,j , stop study and reject H0,

if C( pj ) ≥ α0,j , stop study and accept H0,

otherwise, continue to stage j + 1.

At the final analysis J,

if C( pJ ) ≤ α1,J , stop study and reject H0,

otherwise, stop study and accept H0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.4)

Several combination functions are proposed in the literature.
Bauer and Köhne (1994) suggested the use of Fisher’s product
combination function

C( pj ) =
j∏

l=1

pl, (2.5)

while Lehmacher and Wassmer (1999) suggested the use of
the inverse normal combination function. These two combina-
tion functions are the most commonly used in the literature
(Bretz et al. 2009). The formulation and results which follow
use the Fisher’s product function in (2.5), but our results equally
apply to other combination functions including the inverse
normal.

Herein, we will refer to the J-stage tests with linear com-
bination stagewise z and t-test statistics as the J-stage z and
t-tests, respectively. The power function, that is, the probability
to reject H0, of the J-stage z or t-test is β = ∑J

j=1 βj where,
β1 = Pr(p1 ≤ α1,1), the first stage and

βj = Pr(C( pl) ∈ (α1,l , α0,l) ∀ l < j ; C( pj ) ≤ α1,j ), (2.6)

the jth stage power functions, j = 2, 3, . . . , J (β, βj either
βz, βzj

or βt , βtj , respectively). The boundaries α1,j , α0,j are
suitably chosen to satisfy the Type I error equation

α = α1,1 +
J∑

j=2

∫ α0,1

α1,1

∫ α′
0,2

α′
1,2

· · ·
∫ α′

0,j−1

α′
1,j−1

α′
1,j dpj−1 . . . dp2dp1,

(2.7)

where α′
1,j = α1,j /p1p2 . . . pj−1, α′

0,j = α0,j /p1p2 . . . pj−1
the conditional rejection and acceptance boundaries, respec-
tively, of stage j, j = 2, 3, . . . , J .

3. OPTIMAL J-STAGE z AND t-TESTS

The crucial element for these J-stage linear combination z and
t-tests are the stage-wise weighting vectors wj . In this section we
develop a methodology for optimally deriving these weighting
vectors. The next lemma is the first step for computing the
weighting vectors maximizing the power of the z and t-tests.

Lemma 3.1. Under (2.1), the power of the J-stage z and t-tests
in (2.4) with combination function as in (2.5) is nondecreasing
in the absolute value of θj in (2.3), j = 1, 2, . . . , J .

Note that it can be straightforwardly shown that the above
result hold for both one-sided stagewise tests and for the inverse
normal combination function. The proof of the above lemma is
surprisingly complex because for some range of values of θj

an increase in |θj | decreases the probability to continue to the

next stage and therefore the power of the subsequent stages,
β(j+1) = ∑J

l=j+1 βl , decreases. In Supplementary Material A,
we prove that even for these range of values of |θj |, the decrease
(in absolute value) in β(j+1) is bounded above by the increase
in βj .

The above result, except for being crucial for deriving The-
orem 3.1, can also be useful for more general settings of adap-
tive designs. For example, Lemma 3.1 proves that if investi-
gators wish to apply an adaptive z or t-test and are interested
in maximizing the power of these procedures, they only need
to sequentially maximize the location parameters of the stage-
wise test statistics separately. For instance, suppose that one
is willing to conduct an adaptive design study to explore the
relationship between an observation variable Y with a set of
covariates X described by Y j = Xj bj + ej , ej ∼ Nn(0, σ 2 In),
j = 1, 2, . . . , J , independent. Then, our results prove that to
maximize the power of the J-stage test with stagewise statistics
the classical z and t statistics, with respect to the experimen-
tal design, it is sufficient to maximize XT

j Xj , j = 1, 2, . . . , J ,
which agrees with the standard practice of deriving optimal
designs.

Considering the J-stage linear combination z and t-tests,
Lemma 3.1 implies that to maximize the power of these tests
with respect to the weighting vectors wj , it is sufficient to maxi-
mize the value of θj , j = 1, 2, . . . , J . Using this result, we next
derive the power-optimal weighting vector.

Theorem 3.1. Under (2.1), the power of the J-stage z and
t-tests in (2.4) with combination function as in (2.5) are maxi-
mized with respect to the weighting vectors wj , j = 1, 2, . . . , J ,
if and only if the latter are proportional to

ω∗ = �−1μ. (3.1)

The last result provides the optimal, in terms of power, weight-
ing vector for the J-stage linear combination tests ω∗. In Section
3.1, we show that ω∗, which expresses the multivariate treatment
effect standardized with respect to the variance matrix �, is
central in characterizing the power of these tests. However, this
optimal vector ω∗ depends on the unknown parameters μ and �

and therefore is also unknown. In the next section, we develop a
methodology for selecting the weighting vectors wj in practice.
We propose using the information for μ and �, available at each
interim analysis, to optimally select wj , j = 1, 2, . . . , J , where
optimality is expressed here in terms of predictive power. The
source of this information is the data collected from the stages
completed before each interim analysis, but also prior informa-
tion extracted from previous studies and expert clinical opinion.
Predictive power allows the incorporation of this information
into our procedures in a natural and plausible way. Note that, as
we also explain in the next section, if Equation (2.7) is satisfied,
the Type I error of these tests is controlled.

3.1 The Proposed z∗ and t ∗ Tests

Prior information, I0, is used to inform standard conjugate
multivariate priors for the observation mean and covariance
matrix. We use the Gaussian–inverse-Wishart prior

(μ | �, I0) ∼ NK (m0,�/n0) ,

(� | I0) ∼ IWK×K

(
ν0, S−1

0

)
, (3.2)
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where m0 represents a prior estimate of the value of μ and n0

corresponds to the number of observations on which this prior
estimate is based, while ν0 and S0 respectively represent the
degrees of freedom and the (positive definite) scale matrix of
the inverse-Wishart prior.

Under this standard Bayesian model (see Gelman et al. 2004),
the posterior distribution of μ and � given the information set
Ij = {I0, y(j )}, consisting of the prior information I0 and the
data collected up to the jth interim analysis y(j ) = [ y1 y2 . . . yj ]
is (μ | �, Ij ) ∼ NK (mj ,�/n(j )), (� | Ij ) ∼ IWK×K (νj , S−1

j ).
Here,

mj = n0m0 + n(j ) ȳ(j )

n0 + n(j )
,

Sj = S0 + ν(j ) Sy(j )
+ n0n(j )

n0 + n(j )

(
ȳ(j ) − m0

)(
ȳ(j ) − m0

)T
,

(3.3)

and ν(j ) = n0 + n(j ) − 1 with n(j ) = n1 + n2 + · · · + nj and
ȳ(j ) = ∑j

l=1

∑nj

i=1 yil/n(j ) respectively the sample size and
sample mean of y(j ). Note that, due to the positive definite-
ness of the prior estimates S0, the posterior estimates Sj are
also positive definite. Positive definiteness of S0 is required for
our procedures to be applicable.

We wish to use this information to select the weighting vectors
wj optimally. Optimality here is expressed in terms of predictive
power of the test. Predictive power (Spiegelhalter, Abrams, and
Myles 2002) in the present context is derived by averaging the
power of the J-stage z and t-tests over the distributions of the
model parameters for a given information set. The predictive
power for the first stage given the prior information set I0 is
B1 = Pr(p1 < α1,1 | I0) and for the jth stage, j = 2, 3, . . . , J ,
given the information set Ij−1 is

Bj =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 , Ij−1 s.t. C( pl) ≤ α1,l

for l ∈ {1, 2, . . . , j − 1},
0 , Ij−1 s.t. C( pl) ≥ α0,l

for l ∈ {1, 2, . . . , j − 1},
J∑

l=j

Pr (C( pl′) ∈ (α1,l′ , α0,l′ ), l′ < l;

C( pl) ≤ α1,l | Ij−1), otherwise.

(3.4)

The next result presents the weighting vectors that we suggest
to use for the stagewise linear combination z and t-tests.

Theorem 3.2. Under (2.1) and (3.2), the jth stage predictive
power, Bzj

, j = 1, 2, . . . , J , of the J-stage z-test in (3.4) is
maximized with respect to the weighting vector wj if and only
if wj is proportional to

wz∗
j
= �−1mj−1. (3.5)

Similarly, as we prove in Supplementary Material A,
for n(j−1) → ∞, the jth stage predictive power, Btj , j =
1, 2, . . . , J , of the J-stage t-test in (3.4) is maximized with re-
spect to the weighting vector wj if and only if wj is proportional
to

wt∗j = S−1
j−1mj−1, (3.6)

where mj , Sj as in (3.3). The proposed J-stage tests, henceforth
called (adaptive) z∗ and t∗-tests, proceed as follows: for the jth

analysis, j = 1, 2, . . . , J , (i) obtain wz∗
j

or wz∗
j

using (3.5) or
(3.6), (ii) set wj equal to wz∗

j
or wz∗

j
and compute the stage

j statistic Zj or Tj as in (2.2), (iii) calculate the stage j p-
value, pzj

= 2�(−|Zj |) or ptj = 2�νj
(−|Tj |), (iv) use all the

observed p-values to perform the combination test in (2.4).
Importantly, the weighting vectors wz∗

j
and wt∗j , given the

prior information and the observed (if any) data y(j−1), are fixed
before collecting yj and hence, under the standard conditions
described in the following theorem, the Type I error of z∗ and
t∗-test, is preserved.

Theorem 3.3. Under (2.1) and for α1,j , α0,j , j = 1, 2. . . . , J

satisfying Equation (2.7), the Type I error of the z∗ and t∗-tests
is preserved at the nominal α level.

4. POWER CHARACTERIZATION (POC)

To study the performance of a test, we primarily need to
explore the relationship between its power function and the de-
sign parameters. The latter might be, among others, the critical
values, the sample size(s), and the model parameters. The crit-
ical values and the sample size(s) are scalar and therefore it is
straightforward to visualize power even across all their possi-
ble values (e.g., using simulations). Their relation to power can
then be easily described and understood. In univariate settings,
this is also the case for the model parameters. However, in the
multivariate setting, model parameters can be high-dimensional
and therefore it is not practically feasible to visualize power
over the whole design space. Power analysis is then typically
restricted to a limited range of different structures of the model
parameters. This might be sufficient for power analysis in spe-
cific settings, but it has obvious limitations in considering the
general behavior of a testing procedure.

In the following, we encounter this problem in the context
of linear combination tests and we provide a solution. We first
consider the case of J-stage linear combination z and t-tests with
fixed weighting vectors which, apart from providing a method
for performing simple and efficient power analysis of tests such
as the OLS test in O’Brien (1984, see Logan and Tamhane 2004;
Pocock, Geller, and Tsiatis 1987; Tang, Geller, and Pocock
1993 for earlier work), also provides the intuition for the results
considering the z∗ and t∗ tests. Note that in Section 4, the critical
values and sample sizes (including the “prior” sample sizes) are
assumed to be fixed and described by the design vector d =
(α0,1, α0,2, . . . , α0,J , α1,1, α1,2, . . . , α1,J , ν0, n0, n1, . . . , nJ ).

To provide greater insight to the subsequent results, it is also
worth noting the joint distribution of the stagewise linear com-
bination z statistics, Zj , j = 1, 2, . . . , J , here for J = 2,

Pr (Z1 ≤ z1, Z2 ≤ z2) =
∫

Pr(Z1 ≤ z1, Z2 ≤ z2| y1) dF ( y1)

=
∫

{ y1:Z1≤z1}
�(z2 − θ̄2( y1)) dF ( y1),

where F ( y1) the cdf of the first stage data, y1, and θ̄2( y1) the
location parameter as in (2.3). The latter parameter is inde-
pendent of y1, that is θ̄2( y1) = θ̄2, for the linear combination
tests with fixed weighting vector, while for the adaptive z∗

and t∗ tests, θ̄2( y1) depends on y1 through the weighting vec-
tors in (3.5) or (3.6), respectively. The next section focuses on
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characterizing further the effect of the weighting vector, through
the parameters θ̄j , on the power function. Note that the power
function can be easily derived from the joint distribution of
the stagewise statistics by replacing zj with suitable rejection
or acceptance boundaries. In Supplementary Material A, we
show that the above expression can be easily generalized to any
J > 1 and that by replacing �(·) with the cdf of the Student’s
t-distribution �(·), we can easily derive the joint distribution of
Tj , j = 1, 2, . . . , J .

4.1 PoC for the J-Stage z and t-Tests With Fixed
Weighting Vectors

To compute the power of the J-stage z and t-tests with fixed
weighting vectors wj = w, it is sufficient to know the design
vector d, as well as the stagewise location parameters θj in (2.3)
which in this case are also fixed, that is, θj = θ . The latter can
be reexpressed as

θ = wT μ

(wT �w)1/2
= w̃T ω̃∗

‖w̃‖ = ‖ ω̃∗ ‖ cos(ang(w̃, ω̃∗)), (4.1)

where ang(w̃j , ω̃
∗) denotes the angle, in measured radians at

the origin, between the vectors w̃ and ω̃∗. Here, w̃ = �1/2w,
ω̃∗ = �1/2ω∗ = �−1/2μ are the standardized selected and op-
timal weighting vectors. In particular, the latter expresses the
standardized multivariate treatment effect, generalizing the uni-
variate (K = 1) standardized treatment effect μ/σ . Considering
the weighting vector selection problem, the first equation in (4.1)
implies that a weighting vector that increases the mean and/or
decreases the variance of the linear combination gives higher
power. The ambiguity in the latter expression becomes clearer
by the standardization in the second equation which implies that
the weighting vector selection can be expressed as a process of
learning the standardized optimal weighting vector ω̃∗.

The last equation in (4.1) establishes two scalar measures
which are sufficient to determine power. The first is the magni-
tude of ω̃∗, ‖ω̃∗‖ = (μT �−1μ)1/2 = Dμ,� , which is the Maha-
lanobis distance between the distributions of the observation Y ij

under the null and the alternative hypotheses. The Mahalanobis
distance is a generalization of the univariate signal-to-noise ra-
tio and can be interpreted as a measure of deviation from the
null hypothesis. In medical settings, it is a well-known global
measure of the strength of the treatment effect. The second,
cos(ang(w̃, ω̃∗)), is a measure of angular distance between the
selected and the optimal weighting vector. It is a measure, in
other words, of the distance of our weighting vector selection to
the optimal choice. Under this representation, it becomes clear
that, for fixed weighting vectors, the location parameter θ is
equal to a measure (Dμ,�) of the strength of the treatment effect
scaled down by a measure (cos(ang(w̃, ω̃∗))) of the distance be-
tween the parameters and their prior estimates. The last results
are formally stated in the next theorem.

Theorem 4.1. The design vector d, the Mahalanobis distance
Dμ,� = (μT �−1μ)1/2 and the angle ang(ω̃∗, w̃) between the
vectors ω̃∗ = �−1/2μ and w̃ = �1/2w are sufficient to deter-
mine the power function β of the J-stage linear combination z

and t-tests with fixed weighting vectors wj = w.

4.2 PoC for the z∗-Test

The sequential adaptation of the weighting vector increases
the complexity within the relation between the power function
and the design parameters. However, following similar method-
ology as above, analogous results can be derived. For this we
use two steps, the first of which involves standardizing the pro-
cedure, similarly to (4.1), and the second establishing a rotation
invariance property of the power function. The next lemma is a
direct consequence of the standardization step summarizing μ,
�, and m0 to the vectors ω̃∗ and w̃z∗

1
.

Lemma 4.1. The design vector d, the standardized optimal
weighting vector ω̃∗ = �−1/2μ and the standardized first-stage
weighting vector w̃z∗

1
in (3.5) are sufficient to determine the

power function βz∗ .

In the above result, we make use of the fact that the location
parameter, θz∗

j
, of the z∗-test can be written as

θz∗
j

=
w̃T

z∗
j
ω̃∗

‖w̃z∗
j
‖ , w̃z∗

j
= n0w̃z∗

1
+ n(j−1)w̃ ȳ(j−1)

n0 + n(j−1)
,

w̃Ȳ (j )
= �−1/2Ȳ (j ) ∼ NK

(
ω̃∗, I/n(j )

)
(4.2)

which implies that the adaptive selection of the weighting vec-
tors can be reexpressed as a procedure of adaptive estimation of
the vector ω̃∗. Under this standardization, we can proceed to the
rotation-invariance step which results in the next lemma.

Lemma 4.2. The power, βz∗ , of the z∗-test is invariant to rota-
tions of the weighting vector w̃z∗

1
around the optimal weighting

vector ω̃∗.

The idea behind Lemma 4.2 is that if w̃z∗
1

is rotated around
ω̃∗, that is, w̃z∗

1
is replaced by ẇz∗

1
= Rw̃z∗

1
, where R is a rotation

matrix with rotation axis ω̃∗, the rejection region of the test is
changed. However, the new rejection region is simply a rotation
of the initial rejection region. That is, for each point say w̃ ȳ(j )

in the initial rejection region, we can find a unique point, say
ẇ ȳ(j )

, in the rotated rejection region such that ẇ ȳ(j )
= Rw̃ ȳ(j )

.
Because the symmetrical Gaussian distribution of the obser-
vations w̃Ȳ (j )

∼ NK (ω̃∗, I/n(j )) remains unchanged under the
rotation, the likelihood of the rejection region, that is, the power
of the z∗-test, remains the same. The next theorem is direct
consequence of Lemmas 4.1 and 4.2.

Theorem 4.2. The design vector d, the Mahalanobis distance
Dμ,� and the angle ang(ω̃∗, w̃z∗

1
) between the vectors ω̃∗ and

w̃z∗
1

are sufficient to determine the power function βz∗ .

The above theorem states that the dependence of the power
function on the model parameters and their prior estimates is
described by simply a scalar measure of the strength of the treat-
ment effect and a scalar measure of distance between the param-
eters and their prior estimates. It provides a sufficient description
of power which is based on easily interpretable summaries and
is considerably lower dimensional (importantly not depending
on K, see Table 1). This allows us to perform power analysis of
the adaptive J-stage z∗-test in a simple way potentially covering
the whole design space.
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4.3 PoC for the t ∗ Test

The need to estimate the unknown � increases substantially
the dimension and the complexity of the design space. The se-
quential estimation of �, in addition to μ, to obtain the weighting
vectors wt∗j , implies that the power analysis needs to account for
both estimation procedures. For this, we write the weighting
vector w̃t∗j , j = 1, 2, . . . , J in (3.6) as

w̃t∗j = �1/2wt∗j = �1/2 S−1
j−1mj−1 = D−1

j w̃z∗
j
,

Dj = �−1/2 Sj−1�
−1/2 (4.3)

and w̃z∗
j

the jth standardized weighting vector of the z∗-test in
(4.2). Here the �-deviation matrix Dj is a measure of devia-
tion of the estimate Sj−1 in (3.3) from the parameter �. The
weighting vector w̃t∗j is then written as a product of the inverse
of the matrix Dj , that accounts for the estimation of �, and the
vector w̃z∗

j
which accounts for the estimation of μ, the latter

taking � as known. We next follow the same steps as in Section
4.2 for deriving the PoC of the t∗-test. The standardization step
results in the next lemma summarizing μ and � and their prior
estimates m0 and S0 to the vectors ω̃∗, w̃z∗

1
and the matrix D1

that have clear interpretation.

Lemma 4.3. The design vector d, the matrix D1 in (4.3) and
the vectors ω̃∗ and w̃z∗

1
are sufficient to determine the power

function βt∗ .

Here, we use that the location parameter θt∗j and the �-
deviation matrix Dj can be written as

θt∗j =
w̃T

z∗
j
D−1

j ω̃∗

‖D−1
j w̃z∗

j
‖ ,

Dj = D1+ν(j−1) Sw̃ y(j−1)

+ n0n(j−1)

n0 + n(j−1)

(
w̃ ȳ(j−1)

−w̃z∗
1

)(
w̃ ȳ(j−1)

−w̃z∗
1

)T
, (4.4)

and that w̃z∗
j

can be written as the weighted average in (4.2).

Here, Sw̃ y(j )
=�−1/2 Sy(j )

�−1/2 is the covariance matrix of the
sample w̃ yil

, i = 1, 2, . . . , nl , l = 1, 2, . . . , j , where, impor-
tantly, w̃Y il

= �−1/2Y il ∼ NK (ω̃∗, I).
In a similar fashion to the previous section, we next estab-

lish the invariance of the power function under certain rotations
of the prior estimates. For this, we define V = [v1 v2 . . . vK ]
to be the matrix with columns the orthonormal eigenvectors
of D1 and �1 = diag(λ1) the diagonal matrix with diago-
nal λ1 = (λ11, λ12, . . . , λ1K )T the vector of the corresponding
eigenvalues (λ11 ≥ λ21 ≥ · · · ≥ λ1K > 0). We can then write
D1 = V�1V T , w̃z∗

1
= V cz∗

1
, and ω̃∗ = V c∗ where

cz∗
j ,k

= cos(ang(vk, w̃z∗
j
)), c∗

k = cos(ang(vk, ω̃
∗)),

k = 1, 2, . . . , K. (4.5)

The rotation invariance property of the t∗-test is described in the
next lemma.

Lemma 4.4. The power function βt∗ is invariant to simulta-
neous rotations of the vector w̃z∗

1
and the eigenvectors of the

matrix D1 around the optimal weighting vector ω̃∗.

Table 1. Model and prior parameters of the z∗ and t∗-tests,
respectively, and their dimension

Parameters Dimension Parameters Dimension

μ, �, m0 (K2 + 5K)/2 μ, �, m0, S0 K2 + 3K

ω̃∗, w̃z∗
1

2K ω̃∗, w̃z∗
1
, D1

K2+5K
2

Dμ,�, ang(ω̃∗, w̃z∗
1
) 2 c∗, cz∗

1
,λ1 3K

The proof of Lemma (4.4) is similar to the proof of Lemma
(4.2), albeit rather more complex. The next theorem is direct
consequence of Lemmas 4.3 and 4.4.

Theorem 4.3. The design vector d, the vector of eigenvalues
λ1 of the matrix D1 in (4.3), and the vectors cz∗

1
and c∗ in (4.5)

are sufficient to determine the power function βt∗ .

As we can see in Table 1, the last result reduces the dimension
of the design space of the t∗-test substantially, allowing us to
explore power across the design space. While the design space,
due to the covariance matrix estimation, still depends on K, it is
reduced from order K2 to order K.

Furthermore, this reduction provides an understanding of how
the selection of the weighting vector affects power. This be-
comes clearer if we consider that θt∗j in (4.4) can be written
as

θt∗j =
cT
z∗
j
�−1

j c∗

‖�−1
j cz∗

j
‖ , j = 1, 2, . . . , J,

where

cz∗
j

= n0cz∗
1
+ n(j−1)cȳ(j−1)

n0 + n(j−1)
,

�j = �1 + ν(j−1) Scy(j−1)

+ n0n(j−1)

n0 + n(j−1)

(
cȳ(j−1)

− cz∗
1

)(
cȳ(j−1)

− cz∗
1

)T
.

Here, cȳ(j )
and Scy(j )

are the sample mean and sample co-
variance matrix of the transformed observation vectors cY (j ) =
[cY 1 cY 2 . . . cY j

] with cY l
, l = 1, 2, . . . , j , the matrix with

columns cY il
= V T

1 w̃Y il
∼ NK (c∗, I), i = 1, 2, . . . , nj . The last

expressions show that the distance of the prior estimates m0, S0

to the model parameters μ, � can be expressed by the distances
of the vectors cz∗

1
and λ−1

1 = (1/λ11, . . . , 1/λ1K )T to c∗, the lat-
ter directly reflected to power through θt∗j (see the next section
for more information).

In the special case of the first stage �-deviation matrix being
proportional to the identity matrix, that is, D1 ∝ I (λ11 = λ12 =
· · · = λ1K ), as the next result shows, the design space can be
reduced further.

Theorem 4.4. For D1 = c−1 I , the design vector d, the
constant c, the Mahalanobis distance Dμ,� , and the angle
ang(w̃z∗

1
, ω̃∗) are sufficient to determine the power function βt∗ .

The last theorem proves that, for D1 ∝ I , we can use the
fact that the prior �-deviation matrix D1 does not change the
directions of w̃z∗

j
’s, to show that the relation of βt∗ to the model

parameters and their prior estimates can be described simply by
the scalars Dμ,� and ang(w̃z∗

1
, ω̃∗). In the next section, we use
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Figure 1. Power (left panel) and RSSR (right panel) versus sample allocation ratio. We plot the sequential χ 2-test (magenta ·�·) and the
z∗ (green −− line), sequential z (cyan −), and z+ (orange −·) tests with first stage/fixed/first step weighting vector 0 (×), 30◦ (◦), 60◦ (�)
and 90◦ (�) angle to the optimal. The remaining design parameters are J = 2, K = 10, α = 0.05, α1,1 = 0.01, α0,1 = 1, nT = 60, n0 = 0.5n1,
Dμ,� = 0.65.

this result and the results of Theorems 4.2 and 4.3 to perform
power analysis studies.

5. EMPIRICAL STUDIES

To explore properties of the adaptive z∗ and t∗-tests as well as
alternative global tests and to perform comparisons, we present
empirical studies making use of the results in Theorems 4.2,
4.3, and 4.4.

In addition to z∗ and t∗-tests, we consider linear combina-
tion z and t-tests with fixed weighting vectors, a class that in-
cludes the OLS z and t-test in O’Brien (1984). We also consider
the likelihood-ratio χ2 and Hotelling’s T 2-test with statistics
χ2 = nȲ�−1Ȳ and T 2 = n(n − K)Ȳ S−1

Y Ȳ/K(n − 1) that fol-
low the noncentral χ2 and F distribution with K and (K, n − K)
degrees of freedom, respectively, and noncentrality parameter
D2

μ,� . We consider both single stage and sequential J-stage de-
signs for all these tests. Finally, the two-step, single-stage linear
combination z+ and t+ tests proposed in Minas et al. (2012) are
also considered. Note that the latter tests can be derived as spe-
cial cases of the z∗ and t∗-tests for J = 2, (α1,1, α0,1) = (0, 1)
and C( p2) = p2.

A range of experiments are performed under different values
of the design parameters. The power function of J-stage (J > 1)
tests is not analytically tractable and therefore power is approx-
imated by the rate of rejections in a large number of simulated
replications, here R = 10,000, of a single experiment. Further-
more, to study the reduction in sample size due to early stopping
of the study, we also empirically compute the rate of sample size
reduction (RSSR),

RSSR = 100 ×
(

nT − E(N )

nT

)
%,

where nT = n1 + n2 + · · · + nJ the total sample size, N the
sample size used for a single replication of the study and E(N )
its expected value. Note that single-stage tests have RSSR = 0,
in contrast to sequential tests that allow for early stopping and
thus have nonzero RSSR.

5.1 Simulation Data Examples

We next summarize the main results of a comprehensive study
of the power behavior of the above tests in relation to the design
parameters (more illustrations are included in Supplementary

Material B). First, larger values of Dμ,� and/or nT result in
higher power values for all tests considered, except the z and t-
tests with fixed weighting vectors w̃ orthogonal to ω̃∗ for which
β = α. Considering the prior sample size, the results indicate
that for n0 ∈ (0.5n1, 0.75n1) the prior estimates become influ-
ential, but they do not dominate the accumulated data when
selecting the weighting vector while larger values of n0 en-
forces z∗ and t∗ to have more similar behavior to z and t-tests
with fixed weighting vector. Furthermore, simulation examples
confirm that larger values of the acceptance critical values α0,j

increase the power of multistage tests especially for larger po-
tential power gain in subsequent stages, at the expense of less
chance of early acceptance. Simulation examples also confirm
that larger power is gained if larger rejection critical values α1,j

are allocated to stages with larger potential power gain, while
the value of RSSR increases for larger α1,j in early stages.

We also consider power behavior related to allocation of sam-
ple size to stages (Figure 1). For the sequential z and χ2-test, the
results show that higher power is achieved if sample allocation
is analogous to α-rate allocation. The z∗ and t∗-tests generally
attain higher efficiency for close to balanced allocations. For
w̃z∗

1
close to (far from) the optimal ω̃∗, slightly higher power is

attained for assigning more sample to early (late) stages. Small
to moderate allocation ratios r are more appropriate for the z+

test since no α rate is spent in the first stage. Further, as in the
χ2-test, the z∗ achieves higher RSSR for r = 0.5.

Before we proceed to comparisons, it is worth consider-
ing the impact of � being unknown and thus estimated on
the performance of the t∗-test. First, in the case of D1 ∝ I
(λ1 ∝ 1 = (1, 1, . . . , 1)T ), which as we show in Theorem 4.4 is
somewhat easier case to consider, the � estimation variability
is substantially reduced and thus we generally expect w̃t∗j to be
closer to w̃z∗

j
. On the other hand, if D1 �∝ I (λ1 �∝ 1), the direc-

tion of λ1 is more influential on w̃t∗j with the consequence being
double-edged (see Figure 2). That is, compared to the situation
of λ1 ∝ 1, the distance of w̃t∗j ’s to optimal can be larger (left
panel) but also smaller (right panel) depending on how close
the direction of λ−1

1 = (1/λ11, . . . , 1/λ1K )T is to the optimal
direction c∗.

Finally, it is useful to note that throughout our simulations of
t∗-test, the cos(ang(c∗,�−1

1 cz∗
1
)) is shown to be a robust sum-

mary, albeit not sufficient (see Supplementary Material B, Fig-
ure 7, Section 2.1), of the distance between the model parameters
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Figure 2. Power of the t∗-test versus Mahalanobis distance for various c∗, cz∗
1
, λ1. In the left panel, the vectors c∗ = cz∗

1
∝ 1 while in the

right panel c∗ = e1 = (1, 0, . . . , 0)T and cz∗
1

∝ 1 which, for λ1 = 1 (green −×− line), give ϕ = ang(c∗, �−1
1 cz∗

1
) = ang(c∗, λ−1

1 ) = 0◦ and 72◦,
respectively. In both panels, λ1 �∝ 1 are also chosen to give ϕ = 25◦ (dark green −◦− line), 45◦ (dark green −+− line) and 65◦ (dark green
−�− line). The remaining design parameters are J = 2, K = 10, α = 0.05, α1,1 = 0.01, α0,1 = 1, nT = 20, r = 0.5, n0 = 0.75n1, ν0 = n0 − 1.

and their prior estimates. For this reason, but also to reduce com-
plexity, in the comparisons to follow, we focus on the case of
λ1 ∝ 1 (particularly, as we explain later on, in cases resembling
the right panel of Figure 2), for various values of the summary
cos(ang(c∗,�−1

1 cz∗
1
)).

In terms of comparisons, first note that, for fixed design
parameters, single-stage tests attain higher power levels than
multi-stage tests, nevertheless at the expense of not allowing for
early stopping and thus not allowing for sample size reduction
(RSSR = 0). Furthermore, it might be useful to emphasize that
for fixed design parameters, the power of the linear combination
test with weighting vector (either fixed or initial) set equal to the
optimal weighting vector ω∗ attains the maximum power and
provides an upper bound to all the other presented procedures,
including Hotelling’s T 2-test as proved in Minas et al. (2012)
(Corollary 1). Compared to the z-tests with fixed weighting vec-

tors w, as we can see in Figure 3, the adaptive z∗ lose some power
for w̃ (= w̃z∗

1
) close to optimal but gains substantial amounts of

power for w̃ far from optimal, importantly avoiding the problem
of z-tests having zero power for w̃ orthogonal to optimal. This
result emphasizes that, even though the power of the proposed
tests remains sensitive to the prior information used to select
the weighting vector, they are less sensitive to the initial selec-
tion of the weighting vector than the z and t-tests, where the
weighting vector is fixed. The adaptive z∗-test also has substan-
tially higher power to z+ for small angles to the optimal and
slightly lower power for large angles. Finally, the power of the
single-stage and sequential χ2-tests is approximately equal to
the power of the z∗-test for w̃z∗

1
having respectively 60◦ and 45◦

angle with ω̃∗. Note that, as the results in Figure 3 confirm, all
the considered tests control the Type I error at the nominal level
α = 0.05.

0 0.4 0.8 1.2 1.6
0

0.2

0.4

0.6

0.8

1

Dμ,Σ

β

0 0.4 0.8 1.2 1.6
0

0.2

0.4

0.6

0.8

1

Dμ,Σ

β

0 0.4 0.8 1.2 1.6
0

0.2

0.4

0.6

0.8

1

Dμ,Σ

β

0 0.4 0.8 1.2 1.6
0%

15%

30%

45%

60%

75%

Dμ,Σ

R
SS

R

Figure 3. Power and RSSR versus Mahalanobis distance. We plot the z∗-test (green −−) with the tests z+ (orange −.) (up left), sequential
z (cyan −) and χ 2 (magenta ·�·) (up right), single stage z (blue −) and χ 2 (red ·�·) (down left) and sequential χ 2 (down right). The linear
combination z∗/z/z+ tests are performed with first stage/fixed/first step weighting vectors having 0 (×), 30◦ (◦), 60◦ (�), and 90◦ (�) angle to the
optimal. The remaining design parameters are J = 2, K = 10, α = 0.05, α1,1 = 0.01, α0,1 = 1, nT = 30, r = 0.5, n0 = 0.75n1, ν0 = n0 − 1.
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Figure 4. Power and RSSR versus the total sample size nT . We plot the t∗-test (green −−) with the tests, t+ (orange −.) (up left), sequential

t (cyan −) and T 2 (magenta ·�·) (up right), single stage t (blue −) and T 2 (red ·�·) (down left) and sequential T 2 (down right). The linear
combination t∗/t/t+ tests are performed with first stage/fixed/first step weighting vectors having 0 (×), 30◦ (◦), 60◦ (�), and 90◦ (�) angle to
the optimal. The remaining design parameters are K = 15, J = 2, α = 0.05, α1,1 = 0.01, α0,1 = 1, r = 0.5, n0 = 6, ν0 = n0 − 1, Dμ,� = 0.7.

In the case of � unknown, we consider comparisons for the
case of D1 = I which, using the results of Theorem 4.4, they can
be performed in a similar way to the case of known �. For the
simulations in Figure 4, the case of D1 = I can be thought of as
representative of λ−1

1 fairly distant to c∗ (right panel of Figure 2),
since we take c∗ = e1 resulting in cos(ang(c∗,λ−1

1 )) = √
K/K

(∼=0.26, angle 75◦, for K = 15). As we would expect, the power
of all tests is lower than their counterparts for � known (same
design parameters), but the patterns of power difference across
tests remain the same except from Hotelling’s T 2 which in
contrast to χ2-test is highly dependent on the sample size.

As Figure 4 illustrates, for nT ≤ K or nT slightly larger than K
(here, nT = 10−30 for K = 15), T 2 is respectively inapplicable
or very inefficient with power levels lower than the power of t∗

even for angles close to orthogonal. As sample size becomes
considerably bigger than K (nT > 50), the power of T 2-test
increases sharply to yield power levels analogous to the χ2-test.
For instance, for the design parameters in Figure 4, the single
stage and sequential T 2-tests, likewise to the χ2-test, have power
close to the power of the t∗ for angle 60◦ and 45◦, respectively,
for large sample sizes.

6. APPLICATION TO AN EEG STUDY

We consider applications to an electroencephalogram (EEG)
study, the results of which are provided in Läuter, Glimm, and
Kropf (1996). As Läuter et al. described, the data are collected
from nT = 19 depressive patients at the beginning and at the
end of a six week therapy. For demonstration, K = 9 variables
are used which represent the changes of the absolute theta power
in channels 3–8, 17–19 of EEG during the therapy of each pa-
tient. In Table 2, we present the means, standard deviations, and

correlation matrix of the data. Note that although an increase
is indicated in all channels, none of them (mink pk = 0.04) fall
below the Bonferroni corrected threshold α/K ∼= 0.0056 at the
α = 5% significance level. Hotelling’s T 2-test also fails to re-
ject H0 (pT 2 = 0.261). On the contrary, the SS and PC t-tests
proposed by Läuter et al. reject H0 at the 5% significance level
(pSS = 0.0489, pPC = 0.0487).

We perform power analysis by setting the design parameters
as in the above study, that is, nT = 19, K = 9, μ = ȳ, � = Sy ,
α = 0.05. For these design parameters, the power of Hotelling’s
T 2 is βT 2 ∼= 0.68 (Dμ,� = 1.15). This is larger than the power
of the SS and PC tests which are respectively βtSS

∼= 0.52,
βtPC

∼= 0.51 (the contrasting results of the tests performed us-
ing these data are because of the different shape of the t and
F distributions). The latter power values are very close to the
power of the OLS t-test in O’Brien (1984), βtOLS

∼= 0.52, which
uses the uniform weighting vector wOLS ∝ 1. This gives angle
ang(w̃OLS, ω̃

∗) ∼= 71◦. Taking into account that the single-stage
t-test for a weighting vector equal to the optimal has power
βt

∼= 1, we can easily see that there is considerable scope for
improvement.

Since the study was performed, there has been consider-
able research into EEG studies on depressive patients. There
is now literature (see, e.g., Davidson et al. 2002) indicating that
left-frontal hypoactivation and right-frontal hyperactivation are
present in such subjects. This would indicate that a nonuniform
prior over these frontal regions should be used. Using prior
information based on such evidence, the adaptive t∗-test can
attain high power levels. For example, the prior estimates given
in Table 2 are in agreement with the evidence in the literature
and further, the prior correlation structure is set to be roughly
coherent to the distances between the channels, that is, larger
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Table 2. Means, standard deviations, correlations, and their prior estimates for the EEG depression study presented in Läuter, Glimm, and
Kropf (1996)

ch. 3 4 5 6 7 8 17 18 19

ȳk 0.8710 1.5890 1.0370 1.1460 0.8510 0.8530 1.4220 0.7510 0.9950
m0,k 0.5 3.50 1 2 2 2 2 2 2
s yk

2.9494 3.5121 2.3637 2.2490 2.2760 2.0706 3.2624 2.6382 2.3593
s0,k 1.5 2.5 1 2 2 2 2 2 2
R0\R y 1 0.9262 0.8115 0.7959 0.5786 0.4902 0.9323 0.4896 0.5312
4 0.8 1 0.6270 0.7835 0.3357 0.4450 0.9313 0.2778 0.4892
5 0.8 0.7 1 0.7882 0.8492 0.7173 0.7347 0.7145 0.7611
6 0.7 0.8 0.7 1 0.6020 0.7924 0.8180 0.6334 0.7783
7 0.5 0.4 0.7 0.55 1 0.6155 0.4639 0.6833 0.5992
8 0.4 0.5 0.55 0.7 0.6 1 0.5177 0.5983 0.7833
17 0.9 0.9 0.75 0.75 0.45 0.45 1 0.4048 0.5711
18 0.45 0.45 0.65 0.65 0.7 0.7 0.5 1 0.4445
19 0.75 0.75 0.8 0.8 0.65 0.65 0.8 0.7 1

distances have smaller correlations, with larger correlations set
at the highly active frontal regions (in accordance with the
literature).

This prior estimate gives ang(w̃t∗1 , ω̃
∗) = 37.27◦ which is

much smaller than the angle under the uniform weighting
vector. For a two-stage design (J = 2), with balanced sam-
ple allocation, n1 = 10, n2 = 9, and α allocation α1,1 = 0.01,
a2 = 0.0087, no early acceptance allowed, α0,1 = 1, prior sam-
ple size n0 = 7 = 0.7n1, ν0 = 6 (see previous section) and the
remaining design parameters as the original study, the t∗-test
has power βt∗ ∼= 0.84 with RSSR ∼= 22.3% (E(N ) ∼= 15). Sub-
stantial power improvement is also obtained over the t+ which,
for n0 = 6, n1 = 13, n2 = 6 (r = 0.3) and the remaining design
parameters as above, has power βt+ ∼= 0.64.

7. DISCUSSION

The methods developed in this work demonstrate that lin-
ear combination tests provide a substantial alternative to the
classical Hotelling’s T 2 global test, especially in the setting,
commonly encountered in recent important applications of clin-
ical neuroscience, of the available sample size n being small
compared to the observation dimension K. It is also shown
that adaptive linear combination tests provide power robustness
across the set of alternative hypotheses since they can correct
initial selections of the weighting vector which are far from the
optimal selection. The adaptive J-stage z∗ and t∗-tests achieve
high power levels for large n, independently of the initial selec-
tion of weighting vector, but most importantly they can achieve
high-power performance even if n is limited.

The proposed tests achieve optimality in the sense of max-
imizing the predictive power of the test at each interim anal-
ysis. Predictive power has been used for sample size calcula-
tion (O’Hagan and Stevens 2001), treatment selection (Kimani,
Stallard, and Hutton 2009) and to select the component-wise
significance levels in multiple testing (Westfall, Krishen, and
Young 1998). It is a useful tool for incorporating prior infor-
mation into the design of a study, particularly as such studies
can often be viewed as a decision-making process. The appli-
cation in Section 6 provides an example of a setting in which

prior information is available and can substantially improve the
performance of existing tests.

Optimality is attained in our methods without undermining
the two main targets of adaptive designs: flexibility and test
specificity. This allows for future developments of the proposed
test to consider further optimal design adaptations. The use
of other adaptive designs techniques, such as sample size re-
assessment, within our methodology can improve further the
performance of the proposed tests.

The power characterization in Section 4 provides a tool for
understanding and alleviating to some extent the complexities
of multivariate tests especially those based on response dimen-
sion reductions. The possibly high-dimensional model param-
eters and their prior estimates are reduced to low-dimensional
summaries which are still sufficient to compute power. Impor-
tantly, these summaries have interpretations directly related to
the strength of the treatment effect and the effect of the dimen-
sion reduction on power. They provide a method for performing
simple power analysis, but also understanding the behavior of
linear combination tests.

The methods used to derive the power characterization are
also interesting in their own right. They can be generally de-
scribed by two steps: standardization and rotation invariance.
The first standardization step is a prevalent technique for reex-
pressing statistical models in the standard deviation unit and
eliminating correlations. Here, it allows us to reexpress the
weighting vector selection, which involves estimating the un-
known model parameters, as a procedure of learning a single
vector, that is, the optimal weighting vector. The second step of
establishing a rotation invariance property for the power func-
tion allows us to identify the measure quantifying the angular
distance between the selected and the optimal weighting vector,
reducing further the design space. The question whether these
results can be derived under more relaxed modeling assumptions
is an area of ongoing research.

SUPPLEMENTARY MATERIALS

Additional supplementary material is provided in the follow-
ing documents:
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Supplement A: Technical results Technical details, lemmas,
and proofs.

Supplement B: Extended simulation examples Examples
from the extensive simulation studies performed to study the
power of the considered tests.

[Received April 2013. Revised October 2013.]
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