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ABSTRACT In previous papers of this series, emphasis has
been placed on the steady-state phase transition and critical
properties of large lattices of interacting, symmetrical, and
identical enzyme molecules. The present paper is concerned
with a number of examples of enzyme-enzyme interactions that
do not belong to the class of models of the earlier papers. These
are more biochemically oriented and include heterologous di-
mers, a linear chain with unsymmetrical interactions, and
concerted isologous dimers (half-the-sites reactivity).

This is the fifth in a series (1-4) of theoretical papers on the
effect of enzyme-enzyme interactions on steady-state enzyme
kinetics. In all of these papers we treat the steady state as an
explicit kinetic problem and do not use an equilibrium ap-
proximation to the steady-state population of states. The reader
is assumed to be familiar with the notation and terminology
being employed (1-4). Although small (oligomeric) aggregates
of identical enzyme molecules (subunits) have received some
attention (1, 4), emphasis so far has been placed on the statistical
physics problem of large lattices of interacting, symmetrical,
identical enzyme molecules. For this latter purpose, primarily,
we have been using the relatively simple rate constant con-
vention introduced in equations 1, 4, and 5 of ref. 1. As men-
tioned at the outset (1), this convention is not unique. (Equation
2 of ref. 1, on the other hand, is a general requirement.) The
convention treats equivalently the interactions of a given
molecule with all of its nearest neighbors. This helps simplify
the already very difficult large lattice problem, but the degree
of molecular symmetry implied would not be realistic for most
actual enzyme oligomers.
The purpose of this paper is to present a few illustrative ex-

amples that are not based on the above-mentioned convention.
It is hoped, in future work, to extend these considerations to
some models of real oligomeric enzyme systems. Thus, this
paper is meant to serve as a bridge between the earlier models
of more physical interest and future biochemical models.

Other work to be reported later includes Monte Carlo (with
Y. Chen) and Bragg-Williams (with L. Stein) approaches to
critical behavior of enzyme lattices at steady state and an an-
alytical study of a special case (1, 4) of the lattice-diffusion
problem (by R. J. Rubin).
Heterologous dimer
The first example is presented in Fig. 1. Two identical enzyme
molecules associate as shown. Each separated molecule (mo-
nomer) has the (unperturbed) rate constants, for a two-state
cycle, given in Fig. 2A. The enzymatic process we have in mind
is the usual E(1) - ES(2) - (EP) - E(1), where EP is a tran-
sient intermediate. The rate constants for subunit I (Fig. 1) are
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the same in the dimer as in the monomer (Fig. 2B). State 2 (ES)
has a bound substrate molecule (Fig. 1). Binding and release
of both substrate and product are sterically hindered in subunit
II of the dimer, as suggested schematically in Fig. 1 and as is
reflected by the rate constants in Fig. 2B. That is, 0 . aa . 1
and 0 . ad . 1 in Fig. 2B. These are steric kinetic factors.
There are no interaction free energy effects in this idealized
model. That is, wil = )W12 = W21 = W22. But there are rate
constant effects (aa, a:). In other words, the interactions appear
here in transition states but not in initial and final states.
Equations 4 and 5 of ref. 1 are clearly inapplicable (except as
an asymptotic limit). In equation 2 of ref. 1, we = wje; hence
ao and ao have the same factor aa in Fig. 2B, and similarly for
the factor a# multiplying fio and Jo.

As is evident from Fig. 2B, the rate constants of I are inde-
pendent of the state of II, and vice versa. Hence, we have im-
mediately for the two fluxes (5)

JI = (aolto - akI0)/(ao + a' + 1o + f0) = JO
ji, = (aoio - ac8'O)aa#/[(ao + a')aa + (fPo + 'O)ag], [1]

where Ji is also the unperturbed flux Jo for the monomer (Fig.
2A). Clearly, JI" < J'. If either a, = 0 or ad = 0, then J11 = 0:
only one of the two monomers in the dimer operates as an en-
zyme (a simple example of half-the-sites reactivity).

Consider next a more complicated version of the above model
(Fig. 3). Here, binding of substrate induces a conformational
change. Hence state 2 is shown (schematically, in Fig. 3) to have
a different shape than state 1. We imagine that access of sub-
strate and product to the site on II is less restricted when I is in
state 2 than when it is in state 1. Hence there are two pairs of
rate constant factors (Fig. 3), with 0 < aa < ba < 1 and 0 <a.
< by < 1. Also, we assume that the two subunits fit together less
well (dispersion forces, etc.) when I is in state 2 than when it is
in state 1. Hence we take wiIi = W12= 0 (this is a reference
value) and W21 = W22 W> 0. We define y = ew/kT < 1;
hence y'1 2 1 (below).

Fig. 4 shows the new set of rate constants. One further as-
sumption has been included in Fig. 4: the effect of w on the
transitions in I has been put entirely in the release steps (a', flo)
rather than in the binding steps (ao, Q3) as if, for example,
binding on I is diffusion controlled. In the notation of ref. 1, fa
0 and fin = 1.
We note (Fig. 4) that the rate constants for I are independent

of the state of II. Hence (5)

ji = (aoflo - acO)y'/[(Yao + i3Q) + (a' + 13o)y ']. [2]
The expression for J"I is rather more complicated so we turn to
the special case of one-way cycles (a' = =0 in Fig. 4). From
pp. 173-175 of ref. 5, we find

jIl = aofo I j/(ao + floy-1)[ ], [3]
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FIG. 1. Four states of two subunits (IJI) in a heterologous dimer. Solid ball represents bound substrate. Kinetic factors (see Fig. 2B) are aa
and at for subunit II.

where

I = ao(a, + 1)babJp + #2(b, + y'I)aaafy'I
+ &oflo[(aay_1 + b,6)a,,ba + (aabb + a,6ba)y'1], and

= ao2(aa + 1)ba + ,2 (b# + y'I)a#
+ aoIlo(aay'1 + b# + aab# + aflba).

If aa = a# = 0 (no transitions between 11 and 12),

JII = aifobabol/(ao + 3oy'1)(baao + bE,,o). [4]
In earlier examples in this series, some states were eliminated
from the kinetic diagram because of assumed interactions. Here
(aa = as = 0) transitions are eliminated from the diagram, but
not states. In the present case (aa = a# = 0), states 11, 21, 22, and
12 are now connected linearly, in the order given. Hence a
"detailed balance" solution (4) for the state probabilities at
steady state is easy, even with two-way cycles.

If aa = as a and ba = b - b (which is rather plausible), we
have a quasi-equilibrium system (1, 4). Hence we find easily,
for two-way cycles,

P11 = 1/(1 + x)(1 + xy), P12 = xp11 [5]
P21 = XYP11, P22 = 2Ml,

where x = (ao + /3Q)/(fo + a0) and the p0 are state probabilities.
Then JI is given by Eq. 2 and

ji= ao(apil + bP21) -a'o(apl2 + bP22)
= Jo(a + bxy)/(i + xy). [6]

If aa = ba and as = by, II is independent of the state of L and
Jil is given again by Eq. 1.

It is easy to extend the above model to the case (ref. 5, pp.
173-175) in which I and II are different enzymes-for exam-
ple, I is a regulatory subunit and II is a catalytic subunit (6).
Excluded transitions in a linear chain
Consider an "open" linear chain ofM enzyme molecules of the
type shown in Figs. 2A, 3, and 4 (M = 2 in Figs. 3 and 4), but
in the simple case y = 1, aa = ad = 0, and ba = by = 1. Thus,
the only interaction between the enzyme molecules of the chain
is the property that a given molecule is inoperative as an en-
zyme if its left-hand neighbor is in state 1 (compare p. 175 of
ref. 5 for M = 2). The state of the right-hand neighbor is im-
material. This is illustrated in Fig. 5 for M = 4. All 2M = 16
states are shown. A line represents both a transition to the right
with rate constant (see Figure iC of ref. 1) ao + fl'o and to the
left with rate constant do + a'0. The dotted lines indicate those
transitions excluded because of the above-mentioned type of
interaction.

This is a quasi-equilibrium system (1, 4) with steady-state

probabilities of the states proportional to 1, x,"',x4 (Fig. 5). All
states are accessible despite the excluded transitions, which
therefore have no effect on state probabilities. Hence, for any
M, the probability that any molecule of the chain is in state 2
is x/(l + x). Thus, the flux in the left-hand molecule is Jo (Eq.
1) and in all of the otherM - 1 molecules it is Jox/(1 + x).
The above is an "open" (1) chain. In the "closed" chain case,

the last molecule is a nearest-neighbor of the first. In this case
the transitions (lines) marked with a small circle (Fig. 5) are also
excluded. Hence, state 1111 is inaccessible, but the other states
are all accessible and have relative steady-state probabilities
X, ,X4 as before. For arbitraryM it is easy to see, then, that the
probability that any particular molecule is in state 2 is

M-X
x(l + xY-'/[(l + x)M-1]- x/(1 + X)

and that the mean flux, for any molecule, is this probability
multiplied by Jo.
Long linear chain with interactions
Here we consider a long linear chain (M large) of enzyme
molecules with properties closely related to those used in Figs.
3 and 4. Here, however, we employ arbitrary yse = e-wi1/rT
(this is more general) but take aa =a- a and by = by b (less
general). We use fa =0 and fi = 1 as in Fig. 4. These last two
choices (a, b; f) produce a quasi-equilibrium system; hence, we
can take over the one-dimensional Ising results in ref. 2 (except
that y22 becomes here Y12Y21)-
We shall express the flux as in equation 4 of ref. 2. The ex-

plicit a rate constants for the central molecule of triplets in the
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FIG. 2. (A) Rate constants for monomer. (B) Rate constants
for dimer. See text and Fig. 1.

1102 Biochemistry: Hill

1

*)



Proc. Natl. Acad. Sci. USA 75 (1978) 1103

W21 W

ba~bl1

tba, bp

E

W22 =w

2\ 2

ba, bp

I II
FIG. 3. Dimer with conformational change (two shapes) and interactions between subunits (wij). See text.

chain are:

111 121 a = aoa, a' = aoayll/YI2Y
112 122 a- = aoa, a' = aoayll/Y22
211 ± 221 a = aob, a' = aAIyI/y22 [7

212 r± 222 a = aob, a' = aobYj2Y21/Y22
The flux per molecule, calculated from the a transitions, is
then

J = aoa(N111/M) -a' /YI2Y21)(NI21/M)
+ ao(a + b)(Nq12/M) - a'(a + b)(yjj/y22)(Nj22/M)

+ aob(N212/M) -ab(y12y21/y2)(s2/M) [8]

in which we have made use of the chain symmetry. From
equations 19 of ref. 2 we then obtain

J = [(aoflo - a~1B)/(flo + ao)][ay' (yii - y22x + v' )
+ 2(a + b)yulyl2y21x

+ bYl2y21x(y22x- yll + Vr)]/v'[ ],
where, as in ref. 2,

= [(Y11- y22x)2 + 4yl2Y21X]1/2
[ ] = (Yll + Y22X + Vf)2/2.

[9]

[10]

In the special case a = 0 (an enzyme molecule does not op-
erate if its left-hand neighbor is in state 1),

J = [(aoflo- aI3O)/(Ilo + a')]2bxy2Y21/V( )
= [(aoflo - ak)/(flo + a')]b(Nl2/M), [11]

where ( ) is the quantity in parentheses in Eq. 10.
Another special case of interest is Y12Y21 = yjyY22. In this case

we find
0 = N2/M = Y22X/(y11 + Y22X)
J = [(aofo - aA)/(#o + a')]yll

X (ay,, + bXY22)/(Yll + Y22X)2 [12]

in Fig. 6A. We suppose that the enzyme has the two confor-
mational shapes included in the figure. As a consequence, we
assume that, when molecule I is in state 1, S and P do not have
access to the binding site on II. Hence we take a =0 in Fig. 6B,
which shows the rate constants for the dimer. That is, the
transitions 11 - 12 and 13 - 11 are excluded. Furthermore,
we assume that, when I is in either state 2 or state 3, the substrate
binding rate constant for II is aob and the product release rate
constant for II is aoc (see Fig. 6B), where 0 < b, c < 1. These
are the only interactions in the model.

With a = 0 in Fig. 6B, we have the straightforward algebraic
problem of finding the nine steady-state probabilities. These
turn out to be

P11 =P31 =C(14+7b+7c+2bc)/2,
P21 =c(14+7b+7c +3bc)/Z

P12 = bc(6 + 3b + 3c + bc)/2,
P22 = bc(10 + 5b + 5c + 2bc)/Z2
P32 =bc(12 + 6b + 6c + 2bc)/2,
P13 =b(14 + 7b + 12c + 5bc + 3C2+ bc2)/1
p23=b(14+7b+8c+3bc)/2,
p33 = b(14 + 7b + 6c + 2bc)/2

where
2 =3(14b+ 14c+7b2+25bc

[14]

+ 7c2 + 8b2c + 8bC2 + 2b2C2).

Poy-l

I 11
11 21

aO

= [(aoflo - aA)/(fBo + a')](1 - 0)[a(l - 0) + be].
Actually, these results hold for any closed linear chain with M
> 2. The particular wjj in Fig. 3 are a special case: YII = Y12 =
1, Y21 = Y22 y. In this case,

J = [(aoilo - a>AO)/(flo + a')](a + bxy)/(l + yx)2. [13]
Heterologous dimer of three-state enzymes
In this example we consider a heterologous dimer of the sort
shown in Fig. 3. However, here we have a one-way, three-state
enzyme with the unperturbed rate constants and states shown

cto'a a' POPPoa1

12

P0y- I

I--T

'0

FIG. 4. Rate constants for model in Fig. 3. See text.
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FIG. 5. States and transitions of "open" linear tetramer of two-state enzyme molecules. See text. A subunit cannot operate as an enzyme if

subunit on left is in state 1. Dotted lines represent excluded transitions. Lines with small circles are excluded also if tetramer is "closed."

The two fluxes are then

JI = ao/3 = Jo [15]
JI, =aobc(28 + 14b + 14c + 5bc)/2.

When b = c = 1, J" = 6lao/255 (exclusion effect only: a = 0).
When b = c << 1, JI = aob/3. States 12, 22, and 32 are practi-
cally unoccupied; the other six states have pq l/6.
Two-state concerted dimer
This model (Fig. 7) is suggested by the paper of Seydoux et al.
(7). We have an isologous dimer of two identical subunits, each
of which can be in one of two conformations (C = circle, R =
rectangle). The two conformations in the dimer are always
different (one C, one R); the subunits change conformation in
concert. Otherwise the subunits do not interact. Each subunit
is an enzyme for S - P (with one enzymatic site): E ES
(EP) E, where EP is a transient intermediate. The symbol
X in Fig. 7 represents S bound on the site. The R site, let us say,

11

E (1)

a;(/ "\a 0
ES (2) * EP (3)

a0

SD p

(A)

aoa 1 2

4

13

is a better enzymatic site than the C site (al > a2, 01 > 02). In
the extreme, a2 = #2 = 0 (only the R site operates).
The K transitions (concerted conformational changes) in Fig.

7 are inverses of each other. But as and fli (i = 1,2) do not refer
to inverse transitions. The inverse rate constants are designated
a' and Af, respectively (these are not shown in the figure, for
simplicity). It is easy to show (5) that there are two restraints on
choices of rate constants in this model:

=j = D2_aa
KI - 21K1 lj a a''

From this point we limit ourselves to one-way cycles, as in
Fig. 7 (i.e., we take a' = l == = f2 = 0). Because of sym-
metry, the steady-state probabilities satisfy

PI =P5, P2=-P7, P3=P6, P4=P8

Pl + P2 + P3 + P4 = 1/2- [17]
a0

a0 a0
11 -* 21 -

a- * 23 -a &

31

aob

32

ao

33

(B)

[16]

FIG. 6. (A) Rate constants and conformations for three-state monomer. (B) Rate constants for dimer. See text.
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FIG. 7. Kinetic diagram for isologous dimer of two-state enzyme
with concerted conformational changes. Rectangle (R) and circle (C)
represent two conformations; X represents bound substrate. See
text.

We find for these probabilities

P1 = (11 + 02)(02C + #13D)/E,
P2 = (al + a2)(01 + 132)D/E

P3 = (al + a2)(01 + 132)C/E,
P4 = (al + a2)(aiC + a2D)/E,

[18]

where

E = 2(AD + BC)

A = fl3(fl3 + 132) + a2(al + a2) + (al + a2)(MI + 132)

B = 132(131 + 132) + al(al + a2) + (al + a2)(MI + 12)

C = (al + a2)(013 + 132)K1 + a2fli(al + a2 + 13 + 132)

D = (al + a2)(/31 + 132)K1 + al12(al + a2 + 13I + 132).

The two subunits have the same flux J (by symmetry). Using
aj transitions in the top subunit,

J = al(pi + p3) + a2(P5 + P7)

= (al + a2)(013 + 02)[(al + M2)C [19]
+ (a2 + f1l)D]/E.

In the most important special case a2 =12 = 0 (half-the-sites
reactivity):

P1 I- 1KI, P2 a1131K1, pa - alflKl, p4 4aKI
J = alfl/2(al + f13). [20]
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