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Abstract

Background—Pooling of multi-site MRI data is often necessary when a large cohort is desired.

However, different scanning platforms can introduce systematic differences which confound true

effects of interest. One may reduce multi-site bias by calibrating pivotal scanning parameters, or

include them as covariates to improve the data integrity.

New method—In the present study we use a source-based morphometry (SBM) model to

explore scanning effects in multi-site sMRI studies and develop a data-driven correction.

Specifically, independent components are extracted from the data and investigated for associations

with scanning parameters to assess the influence. The identified scanning-related components can

be eliminated from the original data for correction.

Results—A small set of SBM components captured most of the variance associated with the

scanning differences. In a dataset of 1460 healthy subjects, pronounced and independent scanning

effects were observed in brainstem and thalamus, associated with magnetic field strength-

inversion time and RF-receiving coil. A second study with 110 schizophrenia patients and 124

healthy controls demonstrated that scanning effects can be effectively corrected with the SBM

approach.

Comparison with existing method(s)—Both SBM and GLM correction appeared to

effectively eliminate the scanning effects. Meanwhile, the SBM-corrected data yielded a more

significant patient versus control group difference and less questionable findings.

© 2014 Elsevier B.V. All rights reserved.
*Corresponding author at: The Mind Research Network, 1101 Yale Blvd. NE, Albuquerque, NM 87106-3834, USA. Tel.: +1 505 504
0143; fax: +1 505 272 8002. jchen@mrn.org (J. Chen).
1These authors contributed equally to this work.

NIH Public Access
Author Manuscript
J Neurosci Methods. Author manuscript; available in PMC 2015 June 15.

Published in final edited form as:
J Neurosci Methods. 2014 June 15; 230: 37–50. doi:10.1016/j.jneumeth.2014.04.023.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Conclusions—It is important to calibrate scanning settings and completely examine individual

parameters for the control of confounding effects in multi-site sMRI studies. Both GLM and SBM

correction can reduce scanning effects, though SBM’s data-driven nature provides additional

flexibility and is better able to handle collinear effects.
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1. Introduction

Structural magnetic resonance imaging (sMRI) is increasingly used to study the morphology

of the living brain given its non-invasive nature. Based on high resolution T1-weighted

images, measures can be derived to quantify brain structure for further analysis such as

assessment of neurological diseases (Fornito et al., 2009; Glahn et al., 2008). A variety of

computational methods have been developed to deal with the anatomical complexity, one of

those commonly used is voxel-based morphometry (VBM) (Ashburner and Friston, 2000,

2005). VBM involves tissue segmentation, spatial normalization and smoothing procedures,

followed by voxelwise univariate statistical tests on feature changes across subjects. This

method has been successfully applied to characterize structural abnormalities in a variety of

diseases such as schizophrenia (SZ) and Alzheimer’s disease (Ferreira et al., 2011; Giuliani

et al., 2005; Honea et al., 2005) as well as to track the structural changes as a response of

environmental factors (Maguire et al., 2000).

Most sMRI studies are performed at a single site; however, pooling of multi-site data is

becoming more important. This is due to the need for a large sample size to provide

sufficient statistical power for the investigation of subgroups, or a rare condition, or a factor

of relatively small effect size (Button et al., 2013). Collaborative sMRI studies face some

big challenges, one of which is that inconsistent collection platforms can introduce

systematic differences to distort the image information and confound the true effect of

interest. In addition, even in single-site studies a scanner will likely undergo hardware

exchanges or software upgrades over time, making it difficult to keep the status consistent

over the period of a longer study. Previous work revealed scanning effects resulting from a

number of factors, including static magnetic field inhomogeneity, imaging gradient

nonlinearity and difference in subject positioning (Focke et al., 2011; Jovicich et al., 2006;

Littmann et al., 2006; Vovk et al., 2007). On the other hand, it is also noted that these

scanning effects may be orthogonal to and not necessarily interfere with the true effect of

interest (Segall et al., 2009; Stonnington et al., 2008), or that statistical modeling (Fennema-

Notestine et al., 2007) and scanner-specific segmentation (Moorhead et al., 2009) will

ameliorate the scanning effects.

In the present study, we aimed to explore how various scanning parameters influence the

sMRI image pattern and whether a data-driven correction is applicable. Through studying

gray matter concentration (GMC) images collected from a large cohort of 1460 healthy

subjects, we expected to identify pivotal scanning parameters, which may be calibrated

across acquisition platforms to avoid significant systematic differences, or be selectively

included as covariates in post hoc analyses. Specifically, independent component analysis
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(ICA) (Amari, 1998; Bell and Sejnowski, 1995) is applied to decompose the data into a

linear combination of underlying sources (called source-based morphometry (SBM)) (Xu et

al., 2009), which are then investigated for associations with various scanning parameters to

assess the influence. The identified significant scanning-related components can then be

eliminated from the original data for correction. This data-driven approach is also tested in a

second study (110 SZ patients versus 124 healthy controls), which allows evaluating its

effectiveness in reducing scanning effects and in particular, refining true effects of interest.

2. Materials and methods

2.1. BIG data

2.1.1. Subjects—The exploratory study included 1460 subjects from the resource of the

Cognomics Initiative at the Radboud University (Nijmegen, The Netherlands), the ongoing

Brain Imaging Genetics (BIG) study. The regional medical ethics committee approved the

study and all subjects provided written informed consents. The cohort included in this study

consisted of 617 males (age: 23.35 ± 4.22 years) and 843 females (age: 22.69 ± 3.66 years),

whose MRI scans were pooled from various studies conducted since 2003. All subjects are

healthy, typically highly educated adults of Caucasian origin, and free of neurological or

psychiatric history according to self-reports.

2.1.2. Neuroimaging—Structural images were acquired at the Donders Center for

Cognitive Neuroimaging (Nijmegen, The Netherlands). Table 1 provides a summary of the

scanning settings. Subjects were scanned using different scanners, i.e. 1.5 Tesla (T) Siemens

Avanto and Sonata, as well as 3.0 T Siemens Trio and TIM Trio. Transmitting and receiving

coils also differed across subjects. A standard sagittal T1-weighted three-dimensional

magnetization prepared rapid gradient echo sequence (MPRAGE) was employed, while

some variations were observed in repetition, echo and inversion time, as well as pixel

bandwidth and flip angle. The use of parallel imaging with an acceleration factor of 2 was

also included.

2.2. MCIC data

2.2.1. Subjects—The second dataset included 234 subjects from the Mind Clinical

Imaging Consortium (MCIC) study (Gollub et al., 2013), a collaborative effort of four

research teams from the University of New Mexico-Mind Research Network, Massachusetts

General Hospital, University of Minnesota and University of Iowa. The institutional review

board at each site approved the study and all subjects provided written informed consents.

110 SZ patients and 124 healthy controls were admitted into the present study. All healthy

subjects were screened to ensure that they were free of any medical, neurological or

psychiatric illnesses, including any history of substance abuse. The inclusion criteria for

patients were based on a diagnosis of schizophrenia, schizophreniform or schizoaffective

disorder confirmed by the Structured Clinical Interview for DSM-IV-TR disorders (First et

al., 1997) or the Comprehensive Assessment of Symptoms and History (Andreasen et al.,

1992). Table 2 summarizes the demographic information.
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2.2.2. Neuroimaging—The brain images were coronal T1-weighted MR images collected

at multiple sites. Subjects were scanned using different scanners, i.e. 1.5 T Siemens Avanto,

Sonata and GE Signa, as well as 3.0 T Siemens Trio. Scanning settings varied across and

within sites, as summarized in Table 3. Slight collinearity was observed between SZ

diagnosis and scanning parameters, which explained 7.65% of the variance in the diagnosis.

2.3. Image preprocessing

The T1-weighted sMRI data were preprocessed in Statistical Parametric Mapping 5 (SPM5,

http://www.fil.ion.ucl.ac.uk/spm) using unified segmentation (Ashburner and Friston, 2005),

in which image registration, bias correction and tissue classification are performed using a

single integrated algorithm. In this way, brains were segmented into gray matter, white

matter and cerebrospinal fluid and nonlinearly transformed into the ICBM152 standard

space without Jacobian modulation. The resulting GMC images were re-sliced to 2 mm × 2

mm × 2 mm, resulting in 91 × 109 × 91 voxels. In the subsequent quality check, we

investigated the correlations between individual GMC images and the average image across

all subjects, and excluded those exhibiting correlations four standard deviations less than the

mean correlation. Based on this criterion, 4 subjects were excluded from the BIG data and

no outliers were found for the MCIC data. A mask was then generated to include only the

segmented gray matter voxels (mean GMC > 0), resulting in a total of 298,707 voxels for

the BIG data and 292,998 voxels for the MCIC data. Finally, a voxelwise linear regression

analysis was performed to remove the effects of age and sex. This pre-regression was done

to avoid SBM majorly capturing age- and sex-driven components, which might account for

a large amount of variance in the data given their known roles in gray matter changes (Good

et al., 2001; Kalpouzos et al., 2009; Luders et al., 2005; Sowell et al., 2003).

2.4. Analysis

To identify scanning-induced local image variability, the unsmoothed GMC images

corrected for age and sex were investigated for associations with available scanning

parameters. A flow chart of the SBM model is illustrated in Fig. 1. First, spatial ICA

(infomax) (Amari, 1998; Bell and Sejnowski, 1995) is applied to decompose the group

GMC images into a linear combination of independent components (ICs), or sources, as

illustrated in Fig. 1a and Eq. (1). X, A, S and W denote the input data, loading matrix,

component matrix and unmixing matrix, respectively. Each row of S represents an

underlying component and each column of A represents the loadings associated with one

single component. The subscripts m, n and l denote the number of subjects, voxels and

components, respectively. The data decomposition of ICA is essentially an iterative learning

process to estimate the unmixing matrix W, such that Y is a good approximation to S. After

data decomposition, each of the extracted loadings (i.e. each column of A) is then assessed

for association with each continuous or categorical scanning parameter using regression or

ANOVA, respectively. This allows the investigation of how much of the gray matter

variability is attributable to scanning settings. The pairwise association tests result in a series

of p-values. Given the dependence among scanning parameters, we chose to estimate the

threshold for significant associations (pth) based on the p-value distribution. Specifically, as

in Fig. 1c, we plot the p-values (−log10(p)) in a descending order (the blue dotted curve) and

then perform linear fittings to the two segments of the curve, denoted as L1 and L2. The
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intersection O1 of L1 and L2 is then determined. Subsequently, we connect the origin and

the intersection O1 to obtain the line L3, which is extended to intersect the p-value curve at

the point O2. The p-value corresponding to O2 is then selected as the threshold for

significance (pth). Compared with the commonly used false discovery rate (FDR) control,

our approach is conservative and yields a more stringent threshold p-value.

(1)

Based on pth, the components significantly affected by scanning settings (i.e. components

exhibiting significant associations p ≤ pth with at least one scanning parameter) can be

identified. To avoid discarding useful information, the identified components can also be

examined for associations with traits of interest, such as diagnoses or symptom measures. If

a component is identified as scanning-related while not exhibiting any significant disease

effect, a correction can then be performed to eliminate the scanning-related IC to improve

data integrity. For instance, assuming that the kth component is to be corrected, we simply

subtract the reconstructed Xk from the original X to eliminate the variance induced by that

factor, as illustrated in Eq. (2). The scanning-corrected data are denoted as Xc. It should be

emphasized that the original X in Eq. (2) could be the data with or without age and/or sex

regression, depending on whether they are related to information of interest.

(2)

The above procedure was applied to the BIG data to explore the pivotal parameters

significantly affecting the image pattern. We first excluded scanning parameters with few

variations across the subjects (displayed in gray in Table 1). Then we pruned out highly

collinear (>85% variance explained) parameters, after which 8 parameters were retained. In

particular, the inversion time (TI) was modeled as an interaction with the field strength (i.e.

inversion time per field strength), as the direct effect of TI depends on the relaxation times

which are different per field strength. In addition, for each subject, we calculated the signal-

to-noise ratio (SNR) of the image, which is proportional to the ratio of the average T1-

contrast in the gray and white matter regions over the standard deviation of the T1-contrast

in air regions (Henkelman, 1985), as described in Eq. (3). The gray and white matter regions

are defined as voxels exhibiting gray or white matter concentrations greater than 0.5, and the

air regions are voxels with relatively low signal intensities, as shown in Eq. (3). The

calculated SNR was also included for the investigation of its effect on the image pattern,

resulting in a total of 9 scanning parameters for the BIG data.

(3)
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Besides the exploration with the BIG data, we evaluated the detection and correction

procedure in a second dataset by examining GMC images of 234 subjects (110 SZ patients

and 124 healthy controls) from the MCIC study. First the unsmoothed data were

investigated and corrected for scanning effects using SBM and general linear model (GLM),

respectively. The SBM correction used the same procedure as described above, where

components were extracted and subsequently assessed for associations with scanning

parameters while controlling for SZ diagnosis. The scanning parameters are summarized in

Table 3, including scanner, which was completely collinear with pixel bandwidth; TR/TE,

which was collinear with scanning sequence and flip angle; and field strength, slice

thickness, etc. Again scanning parameters with few variations across the subjects (displayed

in gray in Table 3) were excluded. For GLM correction, the scanning parameters and SZ

diagnosis were included as regressors. The estimated scanning effects were then regressed

out at each voxel from the original data. The uncorrected, GLM- and SBM-corrected data

were subsequently compared regarding the scanning and SZ effect sizes. Specifically, we

investigated the scanning and disease effects using both component (ICA) and voxelwise

(VBM) approaches. For ICA, the scanning and SZ effects were assessed based on the

associations of extracted IC loadings with scanning parameters and SZ diagnosis. The effect

size was measured with proportion of variance explained (SSQvariable/SSQtotal). For VBM, a

univariate analysis was performed to examine the associations between GMC and scanning

parameters or SZ diagnosis at each of the included 292,998 gray matter voxels. Then voxels

exhibiting significant scanning or SZ effects were identified using the FDR control for

multiple comparisons. Particularly, following the common practice, the SZ effect was

evaluated with smoothed data, where the uncorrected, GLM-and SBM-corrected data were

first smoothed with 8 mm full width at half-maximum Gaussian kernel.

2.5. Component number selection

A principal component analysis (PCA) was applied before ICA for data whitening and

reduction. Fig. S1 shows the ordered variances of the principal components (PCs) extracted

from the BIG data. It was noted that the PC variance curve turned between component 50

and 100, and the top 100 PCs explained a relatively larger amount of variance than the rest.

We thus performed ICA with the component numbers from 50 to 100, and found that the

most significant scanning-related components (due to magnetic field strength and receiving

coil) remained stable within the tested range. Meanwhile, with the increase of component

numbers, edge effects appeared to be refined, manifested as increases in the level of

significance. Given these observations and to avoid components over splitting, we chose to

perform the SBM analysis with a component number of 100.

3. Results

3.1. BIG data

We applied ICA to extract 100 components from the GMC images. The ICs were then

assessed for associations with 9 scanning parameters, as listed in Table 4. pth was estimated

to be 1.40 × 10−23, as shown in Fig. 1c. Nine ICs were significantly associated with various

parameters, including magnetic field strength and receiving coil, as highlighted in bold in

Table 4. Fig. 2 shows the spatial maps of the scanning-related ICs, thresholded at |Z| > 2.
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IC1, 5, 20, 30 and 74 reflected likely scanning effects at brain edges, while IC97 reflected

scanning effects in the ventricle region. IC9 was predominantly located in the brainstem

region and exhibited the most significant scanning effect, associated with imaging station,

inversion time-field strength, magnetic field strength and pixel bandwidth, among which

slight collinearity (>8.8% variance explained) was observed. Specifically, 634 out of 1460

subjects were scanned in 1.5 T scanners with an 850 ms inversion time and 140 Hz pixel

bandwidth. These subjects exhibited higher regional GMC in IC9 compared to 704 subjects

scanned in 3 T scanners with a 1100 ms inversion time and 130 Hz pixel bandwidth, as

shown in Fig. 3a. Meanwhile, the type of receiving coil showed a unique effect on IC7. This

component was primarily localized to the thalamus region and reflected higher regional

GMC in subjects scanned with multichannel phased-array coils, as shown in Fig. 3b. Table 5

provides a summary of the Talairach atlas labels (Lancaster et al., 1997, 2000) for IC3, 7, 9

and 97 thresholded at |Z| > 2. It needs to be pointed out that in this work the components

were mapped to the nearest gray matter, therefore brainstem areas were not included in the

table.

3.2. MCIC data

We applied the same procedure to the MCIC GMC images. 100 ICs were extracted and

assessed for associations with the summarized scanning parameters, while controlling for SZ

diagnosis. pth was estimated to be 6.47 × 10−3, based on which 8 ICs were identified as

scanning-related, as summarized in Table 6. Fig. 4 shows the spatial maps of these ICs,

thresholded at |Z| > 2. Again scanning effects were observed at brain edges (IC9, 63 and 92)

as well as in the ventricle region, (IC98). For the remaining scanning-related components,

Table 7 provides a summary of the Talairach atlas labels of mapped gray matter regions.

The most significant scanning effect was observed in IC53 (inferior temporal region),

associated with scanner, TR/TE and field strength, among which moderate collinearity was

observed (>62% variance explained). Boxplots illustrated that scans acquired with lower

field strength and shorter TR exhibited higher regional GMC in IC53, as shown in Fig. 5.

Finally these 8 scanning-related components were used for SBM-based data correction.

Table 8a summarizes the comparisons among the uncorrected, GLM- and SBM-corrected

data in terms of scanning effects evaluated with VBM or ICA. Both GLM and SBM

correction appeared to effectively eliminate the scanning effects. Specifically, the VBM

analysis did not identify any voxels exhibiting significant scanning effects passing FDR

control in either the GLM- or SBM-corrected data. The components extracted by ICA

showed greatly reduced proportions of variance explained by the scanning parameters.

Table 8b presents the performance comparisons in terms of SZ effects among the

uncorrected, GLM- and SBM-corrected data, all of which had been firstly smoothed. In the

VBM analysis, the uncorrected and GLM-corrected data yielded the same 64,632 voxels

exhibiting significant SZ effects after FDR control, while the SBM-corrected data yielded

31,858 voxels. Fig. 6 illustrates the spatial maps of voxels identified as SZ-related in the

uncorrected or GLM-corrected data, but not in the SBM-corrected data. When evaluated by

ICA, the SBM-corrected data presented more significant SZ effect, where the most

discriminating component IC2-SBMS (the subscript S stands for ‘smoothed’) explained an
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increased proportion of variance in SZ diagnosis (16.18%) compared to those obtained from

the uncorrected (11.63% for IC18-UncorrectedS) and GLM-corrected data (12.34% for

IC20-GLMS), as highlighted in Table 8b. Fig. 7 shows the spatial maps of these SZ-

discriminating components (thresholded at |Z| > 2). Boxplots are also provided to

demonstrate the group differences between patients and controls. Among these SZ-

discriminating components, the mapped brain regions were consistent, highlighting a

frontal-temporal network. Besides, the uncorrected and GLM-corrected data also presented

marginal SZ effects captured by IC5 and 7, whose spatial maps are illustrated in Fig. 8.

4. Discussion

In this study, we explored the effects of various scanning parameters in multi-site GMC data

and determined if a correction is applicable in the SBM framework. The exploration was

performed with GMC images collected from 1460 healthy subjects from the BIG study. As

expected, we observed significant scanning effects in distributed brain regions. The most

pronounced effect was observed from magnetic field strength. More interestingly, receiving

coil presented an independent effect which was not captured by scanner or field strength. In

the second study with the MCIC data of 110 SZ patients and 124 healthy controls, the results

to some extent echoed the BIG findings, highlighting scanning effects around ventricle,

brainstem and inferior temporal regions, and at brain edges. Meanwhile, some differences

were also noted. For instance, in the MCIC data, no significant scanning effect was

identified in thalamus as for the BIG data. This might be due to different scanning platforms

such that the effect was not significant in the resulting images. In addition, it was also

demonstrated with the MCIC data that the SBM approach effectively separated scanning

effects from the SZ-related GMC changes, thus enabling a correction which helped improve

the significance of SZ effect.

4.1. BIG data

The most significant scanning effect was observed in IC9. This component highlighted the

brainstem region, where the GMC exhibited differences among subjects scanned at various

stations, which primarily involved discrepancies in magnetic field strength, inversion time

and pixel bandwidth. Magnetic field strength affects the T1-relaxation and, hence, the

imaging contrast between gray and white matter (Duewell et al., 1996), which is consistent

with our observation. Higher field strength also results in increased magnetic susceptibility

artifacts (Bernstein et al., 2006). The brainstem is particularly prone to these artifacts (Focke

et al., 2011), which can cause geometric distortions, signal loss as well as influence the

effective excitation field and flip angle, thus affecting contrast in T1-weighted images

(Truong et al., 2006). Inversion time is typically chosen in line with T1-relaxation (and

hence field strength) as it determines the magnetization before excitation in each tissue, and

thus the T1-contrast. Pixel bandwidth, or receiver bandwidth, refers to the difference in

magnetic resonance frequencies between adjacent pixels. This parameter is most commonly

associated with chemical shift between fat and water and has a direct effect on image SNR

(Schmitz et al., 2005). In the present study, it is difficult to disentangle the effects of

individual parameters due to collinearity. However, it appears likely that the GMC
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variability observed in brainstem region is majorly attributable to the inversion time-field

strength interaction.

A second notable scanning effect was observed in IC7. This component highlighted the

thalamus region and reflected GMC variability induced by RF coils, especially the receiving

coil. As illustrated in Table 1, 1259 out of the 1460 BIG participants were scanned using the

same type of transmitting coil. Therefore, the present data may not appropriately reflect how

transmitting coil influences the image pattern. Moreover, effects of transmitting coil only

become more substantial at 7 T or higher (Vaughan et al., 2001). Regarding the receiving

coil, Fig. 3b shows that subjects scanned with 32-channel head coil exhibited higher GMC

in the highlighted thalamus region of IC7. Meanwhile it is noteworthy that IC7 was the only

component associated with SNR (r = 0.26, p = 1.40 × 10−23). Not surprisingly, SNR

exhibited a significant group difference among different types of receiving coils (p = 3.28 ×

10−46), where the 32-channel head coil yielded the highest overall SNR and the 8-channel

head coil the second. This observation is consistent with previous studies that have found

spatially dependent gains in SNR with the addition of element coils in multichannel phased-

array head coils (de Zwart et al., 2004; Wintersperger et al., 2006). Overall, our finding

reveals interrelationships between SNR and RF-receiving coil, and indicates that coil design

may lead to a significant variability in the image pattern. Most importantly, it is clearly

demonstrated that discrepancies in individual scanning parameters can present unique

effects not captured by a single variable of ‘site’ or ‘scanner’. Therefore, it is strongly

recommended that in addition to calibrating magnetic field strength and inversion time,

inconsistency in RF coil designs should be avoided in aggregated structural MRI analyses

whenever possible. Otherwise, individual scanning parameters should be assessed to avoid

false positive findings.

4.2. MCIC data

The MCIC study confirmed significant systematic differences in the image pattern induced

by individual scanning parameters. The most affected component was IC53, highlighting the

inferior temporal region and showing a relationship with scanner and field strength. Note

that scanner was completely collinear with pixel bandwidth, and scanning sequence

completely collinear with TR/TE and flip angle in the MCIC data. Magnetic field strength,

as discussed above, can significantly influence the T1-contrast. The observation in the MCIC

data is consistent with the BIG data in that scans obtained with lower field strength exhibited

higher regional GMC, as shown in Fig. 5a. Repetition time determines the recovery of

magnetization and directly affects the T1-contrast. The box-plot with TR/TE (Fig. 5b)

illustrates that MCIC scans acquired with shorter repetition time exhibited higher regional

GMC, consistent with the general concept of shorter TR leading to higher contrast. In

contrast, no linear relation was observed between the component loadings and TE,

suggesting that the image variability was more likely attributable to repetition time rather

than echo time. Although due to collinearity we could not determine which parameter is the

major contributor to the image variability observed in IC53, the results confirmed that

inconsistency in field strength and sequence design can introduce significant systematic

differences in multi-site sMRI studies (Fennema-Notestine et al., 2007; Stonnington et al.,

2008) and should be best avoided.
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After SBM-correction, no significant scanning effects were observed and the SZ effect was

refined when evaluated with ICA, where the identified component explained a larger

proportion of variance in SZ diagnosis, as shown in Table 8a and 8b. The most SZ-

discriminating component identified in the SBM-corrected data, IC2-SBMS, was spatially

consistent with IC18-UncorrectedS and IC20-GLMS, as shown in Fig. 7. All these three

components suggested SZ-related gray matter reduction in a frontal-temporal network, one

of the most consistently identified structural variations for the disease (Cannon et al., 2002;

Glahn et al., 2008; Kuperberg et al., 2003; Turner et al., 2012; Xu et al., 2009). The GLM-

and SBM-corrected data presented more significant group differences in the frontal-

temporal network compared to the uncorrected data, suggesting that correcting for

confounding effects might help refine the true effect of interest. Meanwhile, the uncorrected

and GLM-corrected data also presented other SZ effects, as illustrated in Table 8b and Fig.

8. IC5-GLMS resembled IC5-UncorrectedS, both highlighting voxels at edges of the frontal

region. IC7-UncorrectedS reflected sparsely scattered small clusters of voxels, and IC7-

GLMS highlighted brainstem where scanning effects were observed. Overall, the validity of

these SZ-related components is highly questionable. In contrast, the SBM-corrected data

presented one reliable frontal-temporal network exhibiting the most significant SZ effect,

suggesting that the data were more effectively corrected.

The evaluation with VBM echoed the results obtained with the ICA approach. Both GLM-

and SBM-correction effectively reduced the scanning effects. On the other hand, the

uncorrected and GLM-corrected data presented more SZ-related voxels than the SBM-

corrected data, as illustrated in Table 8b. Fig. 6 provides a slice view of the voxels not

identified in the SBM-corrected data. Clearly the SBM-missing voxels were majorly

localized to brain edges, brainstem, cerebellum and paranasal sinus. And, these missing

voxels corresponded to those highlighted in some of the identified scanning-related

components, including IC7-Uncorrected and IC53-Uncorrected, which also showed

marginal SZ effects (p = 3.08 × 10−4 and 4.51 × 10−4, respectively). As these components

were eliminated in the SBM correction, no significant effects would be expected in those

regions in the subsequent VBM analysis of SZ effect.

The comparison between GLM and SBM correction demonstrates that the former is more

model-based while the latter is more data-driven. In a GLM model, all the variance that can

be explained by the predictors is regressed out. As shown in Table 8a, the variances

explained by the scanning parameters are less in the GLM-corrected data than in the SBM-

corrected data, although both are not significant. However, one concern is that the GLM

model is not able to deal with embedded collinearity, such that variances shared between

scanning parameters and traits of interest may also be eliminated. In contrast, in the SBM

model, ICA extracts components attributed to different sources where the covariations

among voxels, therefore the systematic changes over the brain are emphasized. Thus, the

overlap between scan effects and (possibly multiple) effects of interest is allowed. For

instance, the GLM approach could not separate the SZ-related voxels from each other, while

ICA acknowledged that they covaried with different underlying patterns such that the SZ

effect was split into IC7 (p = 3.08 × 10−4), IC53 (p = 4.51 × 10−4), IC94 (p = 1.94 × 10−6)

and IC98 (p = 5.96 × 10−6) in the unsmoothed uncorrected data (see Fig. 4 for IC7, 53 and
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98; see Fig. S2 for IC94). Subsequent analyses suggested that IC94-Uncorrected showed no

significant scanning effects, while others were likely confounded, as illustrated in Table 6.

Overall, the data-driven nature is likely why SBM showed a better performance in

improving the effect of interest in this SZ study. It enables researchers to recognize the

heterogeneity and allows flexibility in whether a correction is necessary for an individual

component.

Limitations of the study lie in the following aspects. First, the image variability in multi-site

studies is the final manifestation of a complex interplay between multiple factors. We show

that ICA can be a very helpful tool in this regard. However, as a linearly additive model,

ICA only deals with linear scanning effects, which has been a common practice in the field

(Fennema-Notestine et al., 2007; Pardoe et al., 2008; Stonnington et al., 2008; Takao et al.,

2013). More efforts are awaited to address nonlinear effects. Second, some scanning-related

variance might still be retained after the correction. One possibility is that some effects

might be ignored if the contributing scanning parameter is not taken into account, which

emphasizes the importance of completely examining the scanning settings and generating a

reliable design matrix for the purpose of detecting scanning effects. Also it is possible that

some marginal scanning effects may not be eliminated if they miss the selected threshold p-

value, though these marginal effects are not expected to be a major source of bias and can be

mitigated by co-variation in post hoc analyses. Finally, the results of this study were

developed on gray matter concentration data. However, we also evaluated the images from a

modulated preprocessing step, and found the identified scanning effects were highly

consistent (not shown). 8 scanning-related components were identified in the modulated

images, 7 of which showed similar spatial patterns to those observed in the unmodulated

data. Again the component highlighting brainstem showed the most significant effect. These

observations suggested that the identified image variability is not highly sensitive to the

preprocessing and more likely induced by the scanning process.

In summary, our study explored scanning effects in multi-site structural MRI studies and

demonstrated an effective approach for correction. The results confirm that inconsistent

magnetic field strength, sequence design and RF-receiving coil can all induce significant

image variability and deserve more attention in the current atmosphere of data sharing and

aggregation for large-scale analyses. For aggregated studies where discrepancies exist in

scanning platforms, our work justifies the importance of including individual scanning

parameters, instead of a single ‘site’ or ‘scanner’ variable, as covariates for the evaluation of

confounding effects. Finally, SBM proves a flexible and effective data-driven approach to

detect and correct scanning effects, which holds the promise to reduce the risk of false

positives and enhance the true effect of interest.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

• Explored how scanning settings affect the image pattern in multi-site sMRI

studies.

• A data-driven SBM correction was designed and tested.

• Consistent field strength, sequence design and RF coil are strongly

recommended.

• SBM proves a flexible and effective approach to detect and clean scanning

effects.
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Fig. 1.
A flow chart of the SBM model. (a) ICA model; (b) pairwise association analyses; (c)

estimation of threshold p-value. Red lines L1 and L2 represent the linear fittings to the two

segments of the component curve (the blue dotted curve); O1 denotes the intersection of L1

and L2; the green line L3 represents the line connecting the origin and the intersection O1;

O2 denotes the intersection of L3 and the component curve based on which threshold p-

value is determined. (For interpretation of the references to color in figure legend, the reader

is referred to the web version of the article.)
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Fig. 2.
Spatial maps of the scanning-related components identified in the BIG data (|Z| > 2).
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Fig. 3.
Boxplots of two components exhibiting the most significant scanning effects in the BIG

data; (a) IC9 loadings versus magnetic field strength-inversion time-pixel bandwidth; (b)

IC7 loadings versus receiving coil.
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Fig. 4.
Spatial maps of the scanning-related components identified in the MCIC data (|Z| > 2).
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Fig. 5.
Boxplots of the component exhibiting the most significant scanning effect in the MCIC data;

(a) IC53 loadings versus magnetic field strength; (b) IC53 loadings versus TR/TE.
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Fig. 6.
A spatial map of the SZ-related voxels identified with VBM (FDR control) in the

uncorrected or GLM-corrected, but not in the SBM-corrected data.
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Fig. 7.
Spatial maps (|Z| > 2) and boxplots of the most significant SZ-discriminating components

identified in the uncorrected (IC18), GLM-corrected (IC20) and SBM-corrected (IC2) data

after smoothing. All the components are spatially consistent, highlighting the frontal

temporal network.
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Fig. 8.
Spatial maps of questionable SZ-discriminating components identified in the uncorrected

and GLM-corrected data after smoothing.

Chen et al. Page 23

J Neurosci Methods. Author manuscript; available in PMC 2015 June 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Chen et al. Page 24

Table 1

Summary of BIG scanning parameters.

Scanning parameter Variations across subjects

Station Name avanto (572), sonata (175), trio (56), triotim (657)

Sequence Name *tfl3d1 (16), *tfl3d1_ns (1101), spc3d1rr282ns (6), tfl3d1 (2), tfl3d1_ns (335)

Slice Thickness 0.8 (2), 0.84 (2), 0.87 (1), 0.91 (1), 1 (1453), 1.1 (1)

Repetition Time 1660 (3), 1960 (16), 2250 (645), 2300 (690), 2730 (100), 3200 (6)

Echo Time 2.02 (3), 2.86 (1), 2.92 (28), 2.94 (1), 2.95 (572), 2.96 (193), 2.99 (15), 3.03 (403), 3.04 (1), 3.08 (1), 3.11
(1), 3.13 (1), 3.55 (2), 3.68 (162), 3.93 (54), 4.01 (6), 4.43 (9), 4.58 (4), 5.59 (3)

Inversion Time 1000 (100), 1100 (704), 750 (3), 850 (645), 900 (2), null (6)

Number Of Averages 1 (1457), 2 (3)

Magnetic Field Strength 1.494 (112), 1.5 (635), 2.89362 (56), 3 (657)

Number Of Phase Encoding Steps 176 (3), 196 (6), 253 (5), 255 (658), 256 (786), 320 (2)

Percent Phase Field Of View 100 (1441), 68.75 (3), 81.25 (16)

Pixel B and width 130 (714), 140 (735), 240 (2), 260 (3), 751 (6)

Transmitting Coil body (1259), cp_head (53), txrx_head (148)

Acquisition Matrix [0 256 176 0] (3),[ 0 256 208 0] (16), [0 256 256 0] (1433), [0 256 258 0] (6), [0 320 320 0] (2)

Flip Angle 120 (6), 15 (645), 7 (100), 8 (707), 9 (2)

Pixel Spacing [0.5 0.5] (17), [0.8 0.8] (2), [1.0 1.0] (1440), [1.1 1.1] (1)

L Accel Fact PE 1 (787), 2 (662), 3 (3), 4 (5), null (3)

tcoil ID/Receiving Coil 32ch_head (281), 8ch_head (667), body (1), cp_head (430), headmatrix (78), null (3)

Note: Each scanning setting is followed by the number of subjects that were scanned using this setting. Scanning parameters with small variations
across the subjects (displayed in gray) were excluded from the subsequent analysis.
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Table 2

Demographic information of MCIC subjects.

Demographics SZ (110) HC (124)

Sex

Male 82 75

Female 28 49

Age

Mean ± SD 35 ± 11 32 ± 11

Range 18–60 18–58

Race/ethnicity

Caucasian 83 110

African American 17 4

Asian 5 5

American Indian 1 1

Unreported 4 4

Collection site

M021 28 23

M552 32 60

M554 29 18

M871 21 23
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Table 3

Summary of MCIC scanning parameters.

Site M021 (51) M552 (92) M554 (47) M871 (44)

Scanner Siemens Avanto GE Signa Siemens Trio Siemens Sonata

Scanning Sequence GR RM IR\GR GR

Sequence Name *fl3d1_ns N/A *tfl3d1_ns (19),
tfl3d1_ns (28)

*fl3d1_ns (35), fl3d1_ns
(9)

Slice Thickness (mm) 1.5 1.5 (20), 1.6 (38), 1.7
(31), 1.8 (3)

1.5 1.5

TR/TE (ms) 12/4.76 20/6 2530/3.81 12/4.76

Number of Averages 1 1 (2), 2 (90) 1 1

Magnetic Field Strength (T) 1.494 1.5 2.8936 1.494

Number of Phase Encoding
Steps

256 N/A 256 288

Percent Phase Field of View 100 100 100 100

Pixel B and width 160 122 180 110

RF Coil Body HRBRN Body Body

Acquisition Matrix 0 256 256 0 0 256 256 0 0 256 256 0 0 256 256 0

Flip Angle 20 30 7 20

Pixel Spacing 0.625 0.625 (11),
0.70313 0.70313 (40)

0.625 0.625 (32),
0.66406 0.66406 (16),
0.70313 0.70313 (44)

0.625 0.625 0.625 0.625 (42), 0.70313
0.70313 (2)

Note: Each scanning setting is followed by the number of subjects that were scanned using this setting. Scanning parameters with small variations
or incomplete information (displayed in gray) were excluded from the subsequent analysis.
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Table 5

Talairach regions of the scanning-related components identified in the BIG data (|Z| > 2).

Component Brain region Brodmann area L/R volume (cm3) L/R random effects, max Z (x,y,z)

IC3
pos

Superior frontal gyrus 8, 6, 9, 10, 11 9.1/10.2 3.73(−6,45,46)/4.07(4,45,46)

Middle frontal gyrus 9, 6, 8, 10, 46 5.8/5.4 3.12(−30,46,35)/2.77(22,22,58)

Postcentral gyrus 5, 7, 3, 40, 2, 1 3.4/3.5 2.62(−12,−43,70)/2.60(16,−45,69)

Inferior parietal lobule 40, 7, 39, 2 2.9/2.8 2.64(−50,−52,50)/2.88(48,−44,54)

Superior parietal lobule 7 2.3/2.6 2.73(−34,−49,61)/3.01(24,−57,62)

Precentral gyrus 6, 4, 9, 44 2.1/2.4 2.55(−46,−1,53)/2.57(22,−20,67)

Precuneus 7, 19, 39, 31 1.3/1.7 2.03(−22,−71,51)/2.51(4,−49,63)

IC3
neg

Lentiform nucleus 3.7/4.8 7.75(−30,−14,1)/8.53(28,−17,3)

Middle temporal gyrus 21, 20, 39, 37, 22, 19, 38 1.7/1.4 7.29(−42,1,−29)/6.68(53,−37,−3)

Precuneus 7, 31, 19, 39 1.7/1.1 7.50(−22,−68,33)/5.72(16,−47,34)

Middle frontal gyrus 10, 46, 8, 6, 11, 9, 47 1.5/0.9 6.36(−32,38,17)/6.35(40,13,20)

Superior temporal gyrus 22, 13, 38, 39, 21, 41 1.4/0.8 6.18(−53,0,−3)/5.77(46,−42,24)

IC7
pos

Thalamus 4.2/4.4 6.00(−10,−23,1)/6.07(8,−23,1)

Superior temporal gyrus 22, 41, 13, 39, 38, 21, 42 1.5/1.8 4.75(−50,−17,5)/6.79(44,−25,5)

Middle temporal gyrus 21, 37, 22, 19, 39, 20 1.9/1.0 3.74(−57,7,−19)/3.65(50,−26,−7)

Middle frontal gyrus 10, 6, 9, 11, 8, 46, 47 1.1/1.2 4.10(−26,64,6)/3.28(26,32,26)

IC9
pos

Thalamus 2.2/2.7 5.48(−6,−29,−4)/5.54(6,−29,−5)

Rectal gyrus 11 0.9/1.0 4.80(−10,16,−23)/7.18(4,14,−21)

IC97
pos

Superior temporal gyrus 38, 22, 13, 41, 42, 21, 39 4.2/3.8 6.58(−42,11,−16)/7.18(40,11,−16)

Anterior cingulate 25, 24, 33, 32 2.7/0.4 6.77(0,6,−5)/4.46(2,3,−10)

Insula 13, 22, 40, 41, 47 2.4/3.2 5.91(−44,−11,10)/6.40(44,−6,0)

Parahippocampal gyrus 34, 28, 35, 27, 30, 19, 36, 37 2.3/2.0 8.08(−10,−9,−16)/8.09(10,−7,−18)

Inferior frontal gyrus 47, 13, 46, 44, 9, 45, 11, 10 1.7/1.8 6.23(−40,15,−16)/6.90(38,13,−17)

Medial frontal gyrus 25, 10, 9, 6, 11, 8, 32 1.7/0.8 4.66(0,20,−18)/4.72(10,7,−19)

Thalamus 1.6/0.8 8.26(0,−16,1)/7.77(6,−31,3)

Cingulate gyrus 24, 32, 31, 23 1.4/0.1 4.80(0,15,27)/3.48(8,−31,35)

Caudate 1.3/1.2 7.69(−6,10,3)/7.39(6,6,5)
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Table 7

Talairach regions of the scanning-related components identified in the MCIC data (|Z| > 2).

Component Brain region Brodmann area L/R volume (cm3) L/R random effects, max Z (x,y,z)

IC7
pos

Middle frontal gyrus 11, 9, 8, 6, 46, 10, 47 2.7/2.1 4.76(−36,40,−10)/4.13(38,21,30)

Inferior frontal gyrus 47, 9, 44, 45, 13, 10, 46, 11, 6 1.6/1.2 3.83(−55,15,29)/3.91(32,13,−17)

Superior frontal gyrus 9, 6, 8, 10, 11 1.4/2.1 4.30(−16,58,28)/4.86(16,54,32)

Superior temporal gyrus 21, 22, 39, 42, 38, 41, 13 1.4/1.9 4.48(−59,−8,−1)/4.34(40,−55,27)

IC7
neg

Middle frontal gyrus 6, 9, 11, 10, 8, 46, 47 2.6/2.4 4.32(−38,27,28)/4.79(28,8,44)

Middle temporal gyrus 20, 39, 21, 19, 22, 37, 38 2.1/2.2 5.20(−53,−43,−10)/4.97(42,−59,20)

IC33
pos

Middle frontal gyrus 9, 6, 46, 10, 8, 11, 47 5.3/2.8 7.17(−36,13,31)/5.41(36,14,49)

Superior temporal gyrus 41, 39, 42, 22, 38, 13, 21 3.8/3.0 8.24(−46,−39,6)/5.15(30,8,−29)

Superior frontal gyrus 8, 6, 10, 11, 9 3.6/2.9 4.55(−12,30,48)/5.52(38,16,47)

Precuneus 39, 7, 31, 19 3.3/3.0 7.03(−34,−62,36)/4.16(20,−76,28)

Precentral gyrus 9, 44, 6, 3, 43 3.2/1.6 7.65(−36,11,31)/7.28(48,12,10)

Middle Temporal gyrus 22, 21, 39, 37, 20, 38, 19 3.0/2.5 7.20(−48,−39,6)/5.96(55,−26,−10)

Inferior parietal lobule 39, 40, 7, 2 2.6/1.6 7.48(−36,−62,38)/4.45(44,−48,45)

Inferior frontal gyrus 44, 9, 46, 45, 13, 47, 10, 11, 6 2.2/2.5 6.17(−34,9,29)/7.59(48,12,12)

IC33
neg

Middle frontal gyrus 6, 8, 10, 9, 46, 11, 47 3.3/2.3 5.10(−36,10,47)/4.57(38,14,53)

Superior frontal gyrus 6, 10, 8, 9, 11 2.8/2.5 4.99(−20,58,25)/5.34(12,22,58)

Middle temporal gyrus 39, 21, 20, 19, 37, 22, 38 2.2/1.9 5.40(−30,−61,31)/4.75(55,−9,−18)

Inferior parietal lobule 40, 7, 39 2.2/1.3 6.11(−38,−49,39)/4.23(65,−42,24)

Precuneus 7, 31, 19, 39 2.0/2.1 8.09(−24,−60,36)/4.63(14,−59,31)

IC38
pos

Middle frontal gyrus 10, 8, 6, 9, 11, 46, 47 3.4/2.6 6.06(−36,39,13)/5.14(32,37,11)

Superior frontal gyrus 10, 6, 9, 8, 11 2.4/1.9 4.97(−24,44,18)/4.50(20,43,38)

Cuneus 18, 7, 19, 17, 30, 23 2.2/2.3 6.07(−20,−81,21)/5.55(16,−74,26)

Parahippocampal gyrus 30, 19, 37, 36, 27, 28, 35, 18 2.1/1.0 5.52(−12,−41,6)/4.35(24,−32,−9)

Lingual gyrus 19, 18:*, 17, 30 1.9/1.2 4.30(−20,−95,−2)/4.46(16,−47,−3)

Inferior frontal gyrus 9, 47, 45, 46, 13, 10, 44, 6, 11 1.5/1.8 4.74(−36,9,25)/4.33(30,28,−13)

IC38
neg

Middle frontal gyrus 46, 9, 10, 6, 8, 11, 47 2.9/1.9 4.65(−42,51,14)/3.83(32,23,38)

Superior frontal gyrus 10, 6, 9, 11, 8 2.1/1.4 5.40(−20,46,23)/4.02(12,56,30)

Middle temporal gyrus 22, 37, 39, 19, 21, 20, 38 1.8/1.9 4.80(−50,−41,4)/4.12(42,−55,−2)

Parahippocampal gyrus 30, 35, 27, 36, 28, 34, 19, 37 1.8/0.9 6.64(−8,−39,4)/4.03(10,−41,−1)

Superior temporal gyrus 38, 39, 21, 41, 22, 42, 13 1.6/1.5 3.56(−46,−39,6)/4.46(24,8,−26)

Inferior frontal gyrus 45, 44, 47, 10, 9, 11, 13, 46 1.5/1.5 5.66(−38,45,0)/4.65(34,32,−18)

IC53
pos

Inferior temporal gyrus 20, 21, 37, 19 3.5/3.4 10.76(−46,−21,−28)/8.66(46,−21,−28)

Superior frontal gyrus 11, 6, 10, 8, 9 3.1/2.7 6.24(−8,57,−23)/5.41(10,53,−23)

Middle frontal gyrus 11, 9, 10, 8, 46, 6, 47 3.0/2.1 4.01(−32,39,11)/4.33(42,48,−14)

Middle temporal gyrus 38, 39, 22, 21, 20, 37, 19 2.5/2.1 4.46(−36,10,−37)/4.36(55,−47,2)

Fusiform gyrus 20, 36, 18, 19, 37 2.3/2.6 8.67(−50,−23,−27)/9.08(50,−25,−26)

Inferior frontal gyrus 47, 9, 11, 45, 46, 13, 44, 10 1.9/1.6 3.72(−50,38,−14)/3.56(53,3,27)

Superior temporal gyrus 38, 22, 13, 39, 42, 41, 21 1.7/2.4 4.42(−22,10,−36)/5.44(30,4,−39)

IC53
neg

Precentral gyrus 6, 4, 44, 9, 13, 43, 3 3.8/4.2 4.56(−30,−7,52)/4.84(18,−18,65)
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Component Brain region Brodmann area L/R volume (cm3) L/R random effects, max Z (x,y,z)

Superior frontal gyrus 6, 8, 11, 9, 10 3.4/2.5 4.64(−8,3,68)/5.54(14,−12,71)

Middle frontal gyrus 6, 11, 8, 46, 10, 9, 47 2.2/1.2 5.57(−20,−1,61)/4.80(18,−7,59)

Medial frontal gyrus 6, 9, 10, 8, 25, 32, 11 1.9/2.4 4.64(−6,−20,71)/5.01(6,−20,71)
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Table 8

Comparisons of the uncorrected, GLM- and SBM-corrected MCIC data in (a) scanning and (b) SZ effects

evaluated with ICA or VBM, respectively.

Uncorrected GLM-corrected SBM-corrected

a. Scanning effect (unsmoothed data)

VBM (number of voxels passing FDR)

 Scanner 8526 0 0

 Slice Thickness 3740 0 0

 TR/TE 19491 0 0

 Number of Averages 8099 0 0

 Magnetic Field Strength 19487 0 0

 Receiving Coil 3739 0 0

 Pixel Spacing 363 0 0

ICA (Proportion of variance explained)

 Scanner 61.99% 0.90% 3.45%

 Slice Thickness 27.43% 3.06% 2.86%

 TR/TE 61.39% 0.86% 1.88%

 Number of Averages 29.47% 0.64% 3.33%

 Magnetic Field Strength 57.87% 0.42% 1.68%

 Receiving Coil 8.28% 0.14% 2.36%

 Pixel Spacing 19.02% 3.05% 3.28%

b. SZ effect (smoothed data)

 VBM (number of voxels passing FDR) 64,632 64,632 31,858

 ICA (Proportion of explained variance) 11.63% (IC18) 12.34% (IC20) 16.18% (IC2)

8.84% (IC5*) 10.11% (IC5*)

5.63% (IC7*) 7.74% (IC7*)

Note: The most significant SZ components, IC18-UncorrectedS, IC20-GLMS and IC2-SBMS (highlighted in bold) are summarized in Fig. 7. Fig.

8 shows the spatial maps of IC5-UncorrectedS, IC7-UncorrectedS as well as IC5-GLMS and IC7-GLMS exhibiting questionable SZ effects.
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